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Limits of Sequences of Operators
on Spaces of Vector Valued
Funections

Yoram Sagher and Niandi Xiang

ABSTRACT. We generalize the celebrated theorem of Stein on the maximal operator of a sequence of
translation invariant operators, from the scalar case to vector valued functions.

1. Preliminaries

‘We begin with some probabilistic prerequisites.
The following theorem, proved in [3], will be used in this article.

Theorem 1.
Let X = {X;} be asequence of independent mean—zero randomvariables definedon (2, ), v),

and B a Banach space. Assume that X satisfies the Khinchin-Kahane inequality in B, as generalized
in [3],
N N
u0+ZXjuj < Ap MO+ZXjuj , forsome p>1,YN >0,
j=t

where uj € B. There exist constants > 0, B; > Owhere 0 < g < ps.t. if Zfil Xjuj converges
a.e. thenVE € Y, u(E) > 0, In = n(E) s.t.

[o o] o]
piweE: lug+ Yy Xjwhull = pol 3 Xjujll ¢ = - u(E).

Jj=1 Jj=n+ p

For a scalar version of this theorem, see [1].

Corollary 1.
Let X = {X;} be a sequence of independent mean—zero random variables satisfying the

conditions in Theorem 1. There is a constant B, > 0s.t. VE € Y. 3n =n(E), if {uj, j = O} are
vectors in the Banach space, and Zﬁl Xju; converges a.e. on E, then

0 o0

Bp ZXjuj < esSSUDyeE uo—i-ZXjuj
P j==1
j=n p J
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We prove a principle of contraction in Orlicz spaces.

Theorem 2.

Let (2, 3_, 1) be a probability space, and {X;, j > 1} be a sequence of independent mean—
zero random variables in L?. Let0 < A; j < LVj. Let {uj, j = 1} be vectors in a Banach space.
Then forany N > 1,

N N
ijxju,- < ZXjuj
j=1

Lé j=l L

Proof. It is enough to show that for any y > || ZN=1 Xjujllpe,

N N
1 1
f¢ - ZAijuj d[,LSf¢ - ZXjuj du .
Q Y=t Q Y =t

Let us consider first A; = 0, 1. We may assume thatA; = 1,1 < j <k; 4; =0,k+1<j < N.
Then by Jessen’s inequality

1 N
/Q ¢\ g iXjuill | du fg ¢
N
f ZX,(w)u, / D Xjwhujdpw)| | du(w)

k
ZXj(w)uj dp(w)

j=l1 j=k+1
1 N

= f 2 / ZXJ(W)“J‘+ 3 Xy | du(w'y | dp(w)
Q Y Ja =1 =kt 1

1
SLL¢(; ZX (w)u; + Z X;j(wuj )dﬂ(w')du(w)

Jj=k+1
(5=
=/ ¢ 1= | Xiwu| | duw).
e \7 i3
[+ ]
=) 2Nk, Ak =0,1, 1<j<N,

In general, for 0 < A; <1, let
k:

we have
N oo N
—k
E Aj Xju; = E 2 E Ajk Xjuj .
j=l k=1 j=1

Since ¢ 1s convex,

fg:p zx,x,u, du

Jj=1

)

o0
522 "/qb ijkX]uj
k=1 Q
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N
1
S/¢ = ZXjuj du . O

For an LP version of Theorem 2 with {X;} an independent sequence of symmetric random
variables, see {2, 4].

Corollary 2.

If ¢ is a strictly increasing Young function, then the convergence of Zj'il Xjuj in L%—norm
implies the a.e. convergence of Z;"’:I AjXju; for any bounded sequence {1;}.

Proof. Lety > || fo’__l Xjujlls. We can assume that A; € R and [A;] < 1.
Since ¢ is strictly increasing, Yo > 0, ¢ (¢y~!) > 0. Thus,

M M

1 «

piw: D X >at =piw:é ” > iXj(wu; >¢(;)
j=n j=n

1 i
<——F] o - AXiuill 1du
¢(ay“‘)fsz y ; T

M
1 / 1
< — — Xjujf |ldu—0, as n,M - 0.
s@r N )\ ; ™

This shows that S, = Z}‘zl A;X;(w)u;j is Cauchy in measure, and hence converges in measure.
Since {X;} is an independent sequence, we get that S, = ;’=1 Aj Xj(w)u; also converges a.e.

O

Theorem 3.
Let X = {X;} be a sequence of random variables as in Theorem 2, and B a Banach space. Let

Sp = Z};l Xjuj,n =1,2,... where uj € B. Let ¢ be a Young function. If a subsequence {S,,)
converges in L?, then {S,} converges in L?.
Proof. Givene¢ > 0, 3N = N(e) s.t. whenever n,,ng > N,

g

IS0, = Sacllps = D° Xjus] <.
Jj=n,+1 L

Now let N < n, <n <m < ng, applying Theorem 2, we get

m
ISm = Sullze = | Y Xju;

j=n+l Lé
nq
< Z Xju; =uan—Snr 16 <€-
j="r+l L¢

Thus, S, converges in L?. O
2. Limits of Sequences of Operators on Spaces of Vector Valued

Functions

In [5] Stein proved that with some minimal conditions, the maximal operator defined by a
sequence of linear operators on L®(M) which commute with group action on M, is of weak type
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(P, @) for ® in a certain class of Young functions.

We extend Stein’s result by considering operators that are defined on function spaces whose
elements take values in Banach spaces of type p, 1 < p < 2, and map them to functions with values
in an arbitrary Banach space. We also consider a somewhat larger class of operators than that of
translation invariant ones.

Definition 1.
Anoperator T : L? (M) — L? £ (M) is of type (¢, ¢) if there is a constant A’ so that

ITfl, < A" 1Fl 0

holds for every f € Lg(M ) where ¢ is a Young function and B, E are Banach spaces.

Definition 2.
Let G be a group and M a homogeneous space of G. Assume that G acts on M transitively. Let
f be defined on M. We define (t5 f)(x) = f (g~ '(x)), Vg € G,¥x € M and call T, a translation

by g.

Let T map B—valued functions on M to E-valued functions on M, where B and E are two
Banach spaces. If there exist linear operators A(g, f,T) : E — E so that |A(g, f, T)u| >
cllull, Yu € E, for some ¢ = ¢(T) > 0, and so that

T(rg f)(x) =A@, £, T) 1e(Tf)(x),
then we say that T is a quasi-translation—invariant ( QTI ) operator.

We say {T,,} is uniformly QTI if c(T,) = ¢ > 0.

Let ® denote a Young function on [0, 00) so that (¢ P) is concave and ®(0) = 0. It follows
thatforalla > 1, ®(at) < a?d (1), andthisimpliesthat f € Ld’(M) iff f isstrongly measurable
and fM D fIDdm < oo. Hence, for functions ® as above, T is of type (P, ®) iff

f ST lIg)dm < / ®(Alfl15)dm
M M

for some constant A.

Theorem 4.
Let B be a Banach space ofRademacher typep, 1 < p <2 Let ® beastrictly monotone Young

function, and assume also that ®(t? ; ) is concave. Let T, bea sequence of linear operators which are
uniformly QTI, and each of which is of type (®, ®). Let G be a compact group and m the G-invariant
measureon M s.t. m(M) = 1. IfVf € L‘};(M), T*(f)(x) := supp> [(Tn )X E < 00 on some
set of positive measure then there exists a constant A (independent of f and ) s.t.

m{x:T*f(x)>a}5/ <I><é Ilfllg)dm, Ve > 0.
M [+1

Proof. We will omit subscripts E, B for the norms |.|| £ and ||.{l p in the following proof.
Suppose that the theorem does not hold. Then one can find { f;}, a sequence of functions in
L$(M) so that

chb(j2 Ifilpdm <m{x:T*fix) > 1} < 1.

Since $(0) = 0 and @ is convex, we have

7 [ edsbam < [ 0G? s Dam.
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Let k; be positive integers s.t.

1 1
—.—-<kj-/Md>("fj||)dm_<_—,—2-, j>1.

2j2 J
Define
Fi=f, i=12 ..k
Ejj={x:T*Fy>1}={x:T*fix)>1}, j>1.
Then

ZZm(E],) = Zk m{x : T* f;(x) > 1}

j=1

>3k [ 0G| fhan
j=1
> ijk,-f & (|| f;])dm = o0 .
j=I M

Let us recall Lemma 1 in [5]:
If {E,} is a sequence of sets in M, with the property that >_ m(E,) = oo, then there exists
a sequence of elements in G, {g,}, s.t. almost every point in M belongs to infinitely many sets

gn(Ep) ={gn(x) : x € E ), 1e,
{7Lhua0=1
=1 n=k

Applying this lemma, we have that there exists {g;;}, a sequence of elements in G, s.t.
00 00 kj
AU UsiEn | =1 @.1)

I=1j=l i=l

Since f,, ®(lizg,; Fjil) dm = f,, (|| F;;1) dm, we have
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Let {r;; } be an independent sequence of Rademacher functions on / = [0, 1), and let u be Lebesgue
measure on /. Since B is of Rademacher type p, we get

o ki P

f Z Zj%rﬁ(t)rgﬁFji(x) du

j=t i=l
© ki
= CPZ ng ||rgji1«"j,-(x)||" .
j=1 i=l
Let v (¢) = ¢(¢1/P). Since W > 0 is concave it is subadditive and so

Jube

o Kk l
D D ¥t Fii| | dpdm
j=1 i=l

2

Jj=1

=L£w(

o0
o

oy

...
Il
-

Ko

i—1

-

1
Jarjitg; Fji

1
Jirjitg; Fji

4

4

dudm

du | dm

<Lz
s[M\v c'éjf

c? itk | ol rhd .
< ;, ,/M (£ dm < oo

kj
2 lzgiFal® | dm
i=1

This implies that Zj’il Zf{__ W J i rji(t) Tg; Fji(x) converges in L‘};(I x M). We define

0o &

Gtxy =3 3 j*rji(t) vy Fiix) .

j=1 i=1

. . ki 1 . .
There exists a subsequence of partial sums of Zj'il 2 oiny J* rji(t) Tg;, Fji(x) which converges in

L‘g(M ) forae. t € I. Since Tj, is a linear operator of type ($, ®), we have thatforae. t € 1,

oo ki
T.G(t,x) = Z Zjéfji(t) Tn (tgﬁEfi) (x)

j=1 i=l

where a fixed subsequence of partial sums of right-hand side converges in LQE’(M) to T,G(t, x).
Similarly,

f f SUT, Gt )l dm dps

IJM

< f f S(AnIG(, X)) dm dys
1JM

<AP f f SUGE, )] dm dp
IJM
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o ki
]
=A,’,’-/Mf1¢ SN Jirjig Fiill | dudm

j=1i=1

<AfcrY jik chp(]mu)dm<oo.

j=1

This implies that
k;

o0
T,G(t, x) =Z .’erl(t) T, Tg_,,F_u) (x)
j=1 i=1

&

is also a Lq’(I x M) function. Hence, there exists a subsequence of partial sums of

14 rii(t) Ty T, Fji (x) which converges in L® gD for a.e. x € M. By Theorem 3,
j =1 l J &8ji tJ
wehaveforae xXEM,

oo Kk
TuG(t,x) =Y > j4ri(®) Tu (tg; Fyi) (x) convergesin LE(I),
j=1 i=1

and by Corollary 2 the series converges a.e. in I x M.
It follows from (2.1) that for a.e. x there exist infinitely many indices (j, i) s.t. gj'ilx € Ej;.
Therefore, for infinitely many (j, i), we have

iiT* Fyi (g5 i
J jilgi ) =>J*-

Let us show that this implies T*G(t,x) = oo ae. on I X M.
If T*G (1, x) < oo on a set of positive measure in I x M, then there exists a constant C > 0

andaset S C I x Ms.t.

[l,®m(5) >0, and T*G(t,x) <C, (t,x)€S.

This implies that | T,G(¢, x)|| < C on S, forall n.
Forx € Mdenote Sy = {t € I : (¢, x) e S} m{x € M : u(Sy) > 0} > 0, and so from

2.1), {x e M : u(Sy) > 0N (ﬂ, 1U . U, lg,,(EJ,)> is not empty. Let x be a point in this

intersection.
By Corollary 1, there exists N = N(x) s.t. forall n,

/ ZZV’/* w (Tg; Fji) )| dp

j=Ni=]

o &

- .1 -
< By esssupres, 2214 rji(®) Ty (T Fji) XD || < By Ic.
j=1i=1
Applying the principle of contraction to the left-hand side of the inequality above, we have
1 - . .
J3 N Tn (zgi Fii) @) < B7C, Viz N, 1<si<kj.

Since T (tg;; Fji)(x) = A(gji, Fji, Tn) Tg;; (Tn Fji)(x), and since T, satisfy the QTI condition uni-
formly, we have
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1.1 | . _ _ . .
EJZ<ZJ4T Fj,-(gjilx)sﬂIIC,jZN, 1<i<k,

a contradiction.
Since G(¢, x) is a L‘g(M) function fora.e. t € I and T*G(¢,x) = oo a.e. on ] x M, we have

a contradiction. O

Remark. When E = B = C, then p = 2. Taking A(g, f, T,) to be the identity, we obtain
Theorem 3 in [5]. O

Theorem 5.

Let B be a Banach space of Rademacher type p, 1 < p < 2. Let T, be a sequence of
uniformly QTI bounded operators from LY 3(M) to L':(M) where 1 < g <00, 0 <r < oco. Let
T*(H)x) = suppsy T )N, Vf € Lq (M), and denote s = min(p, q). IfVf € L§(M),
T*(f)(x) < oo on a set of positive measure then T* is of weak type (q, s), i.e., there exists a
constant A (independent of f and a) s.t.

m{x:T*f(x) > a} < Ae”*|I fII}, Yo > 0.

Proof. The case g = 1 follows from Theorem 6 below. Let us consider, therefore, 1 < g < 0.
It is enough to prove the case ¢ > p, since if ¢ < p, then B is also of type q, and the same proof
applies.

Although the proof is similar to that of Theorem 4, there are some important differences, in

1
particular if ¢ (¢) = ¢9 then ®(27) is not concave. We therefore give a full proof of this theorem.
If the theorem does not hold, then one can find { f;}, a sequence of functions in L‘fg so that

Pl smix: T @ > 1) <1.

Let {k;} be positive integers s.t.

1
s <kl <%
Define
Fji=fj, 1 <i <kj,
Ej,'=[x:T*Fj,~> 1} ,
then
1) kj ©
il Fall = Zm 151 Z—z :
j=1 i=l1 j=1
and
oo kj
sz(Eji)
j=1i=l

Z,m x:T*fi(x) > 1} =00

As before, this implies that there exists a sequence of elements {g;;} in G s.t.

mU Ug]l(Ejl =1.

I=1j=l i=l
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Since B is of type p, we have

ok P

/ S5 ) Ty Fa | du

Jj=1 i=1

oo ki

<CPY Yl Fa@®|”

j=li=l
Moreover, for a.e. x € M, by the Khinchin—Kahane inequality for Rademacher series,

o k& d

/ S5 i) Ty Fa)| dis

I j=1 i=l
o k& P

, |
<C(p,9) fl Y i) Ty F(o)) du
j=1 i=l1

LA
oo ki

<Cp.@ ZZ}'“fgﬁFﬁ(x)“p :

j=1i=1
Integrating both sides and applying Minkowski’s inequality, we have

o K i
/ / S S Fry tg Fyi| dudm
M I =t

4
oo ki

14
S/M Cr. )Y Y ilwFi®]”] dm

j=li=l

o ki

1
P
< C(P,Q)ZZ J'”fg,-iFji": <0oo.

j=1i=1

This shows that
o ki

1
G(t,x) =Y > jPri(t) tg; Fji(x)
j=1i=1
is an L%(l x M) function, and moreover the series converges in L% (I x M). Thus, there exists a
. 1
subsequence of partial sums of Z;’f’__l Zf; 1 JPri(t) Tg;; Fji(x) which converges in L7 (M) for a.e.
t € 1. Since T, is a bounded linear operator from L% (M) to L'z (M), we have that forae. t € I,

o ki

T,Gtx)=Y Y jPrOT, (g Fii) (x)

j=ti=l

where a subsequence of partial sums of right-hand side converges in L (M) to T,G (1, x) for a.e. t.
We may assume that this subsequence converges a.e. in x for a.e. t. Thus, it also converges a.e. int
for a.e. x.
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It follows that

J [ im0l dmau < 4 | ( / nG(t,x)nqdm)Edu.
IJM I M

If r > g, then by the Minkowski's inequality and the Khinchin—-Kahane inequality

/I (/M ”G(t’x)"qdm> e (/M (/1 ”G(t,x)ll’d#)gdm);—

oo ki 4 é
L
<C(q,r) /M /; DN vy, Fii(x) dudm) <

j=li=1

as shown before. If r < g, then

q qL q a
/](/1;1 G, )l dm) du < (L/;HG(t,ﬂll dudm) < 00.

Thus, we conclude that 7,G (¢, x) is an Lz (I x M) function.
Notice that Vx € M2, UL Uf;l gji(Ej;), there exist infinitely many indices (j, i) s.t.

“lxeE ji- Therefore, for infinitely many (j, i), we have

Lo —~1i 4
jrT Fji(gj,- x)>_]P.

This implies T*G(¢, x) = oo a.e. on I x M.
The rest of the proof is the same as in Theorem 4. O

Remark. When E = B = (, then p = 2. Taking g = r and A(g, f, I,) to be the identity, we
obtain Theorem 1 in [5] from the case g < 2, and Theorem 11 in [5] from the case g > 2.

In view of Theorem 5 and the fact that B C L7 is of Rademacher type min(2, p), we imme-
diately have

Corollary 3.

Let p = 1 and B C LP be a Banach subspace. Let T, be a sequence of operators as in
Theorem 5. Suppose that for every f € L% (M) with q > 1, T*(f)(x) < o0 on a set of positive
measure. Let s = min{p, q,2}. Then T* is of weak type (q, s).

Theorem 6.

Let K be a Banach space whose elements are measurable functions defined on M. Assume
that K is translation invariant, i.e, Vg € G,Vf € K, ||tg fllx = I fllx. Let {T,} be a sequence
of uniformly QTI operators from K to L';(M) where E is a Banach space and 0 < r < o0. Let
T*(f)(x) = sup,>) W(Tn )X)e, Vf € K. IfVf € K, T*(f)(x) < o0 a.e. on a set of positive
measure then there exists a constant A (independent of f and ) s.t.

m{x:T*f(x) > a} < sufu,(, Yo > 0.

Proof. If the conclusion does not hold, we have, as in the proof of Theorem 4, sequences { fih
{kj} S.t.
Pl smix: T e >1) <1,

s <klfilg<7m ji=12.
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Define as before
Fii=fi,12i <k,
Ej,'={x:T*Fj,'>1] )

we then have
oo ki

SN m(Ep) =) km{x:T*fix) > 1} =00,
j=1

j=ti=1

and so there exists a sequence of elements {gj;} in G s.t.

o oo ki
m{ (U UsgiEin | =1.

I=1j=l i=l

Since ||zg;; Fjillk = Il Fjillk, we have

\F

2 2

o0
. .l
l-]%rgjiFji"K =Zﬂki HfJIIK
j=1 i=1 Jj=1

52 j‘%<oo.

o0
j=l

Let {r;; } be a sequence of independent Rademacher functions, then
o ki 1
G, ) =Z Z rji(t) j? g; Fji(-) converges in K Veel, and
j=1 i=l1

3
J I<oo.

NP

|l
—

1G@ Mk <
J

Since T, is a bounded operator from K to L% (M), we have that forae. r € I,

oo Kk

T,G(t, x) = Z Z rji(t) T, (7gj: Fji) @)

j=1 i=l

where the series converges in Lz (M).
Moreover, since [|T,G(¢t, ), < |1 Tx|l G, )| x, we have that

// 1T.G@, ) dmdp < 0o,
I /M

i.e., T,G(t, x) is an L (I x M) function. We get T*G(¢,x) = oo a.e. on I x M, and the proof
proceeds as in Theorem 4. (I

Remark. When E =C,r = 1,K c L}(M), and A(g, f, T,) is the identity, we obtain Theo-
rem 10 in [5]. 0
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