The Journal of Fourier Analysis and Applications

Volume 3, Special Issue, 1997

Limits of Sequences of Operators on Spaces of Vector Valued Functions

Yoram Sagher and Niandi Xiang

ABSTRACT. We generalize the celebrated theorem of Stein on the maximal operator of a sequence of translation invariant operators, from the scalar case to vector valued functions.

1. Preliminaries

We begin with some probabilistic prerequisites.

The following theorem, proved in [3], will be used in this article.

Theorem 1.

Let $X = \{X_j\}$ be a sequence of independent mean-zero random variables defined on (Ω, \sum, ν) , and B a Banach space. Assume that X satisfies the Khinchin-Kahane inequality in B, as generalized in [3],

$$\left\| u_0 + \sum_{j=1}^N X_j u_j \right\|_p \le A_p \left\| u_0 + \sum_{j=1}^N X_j u_j \right\|_1, \text{ for some } p > 1, \forall N > 0,$$

where $u_j \in B$. There exist constants $\alpha > 0$, $\beta_q > 0$ where $0 < q \le p$ s.t. if $\sum_{j=1}^{\infty} X_j u_j$ converges a.e. then $\forall E \in \sum_{j=1}^{\infty} \mu(E) > 0$, $\exists n = n(E)$ s.t.

$$\mu\left\{w\in E: \left\|u_0+\sum_{j=1}^{\infty}X_j(w)u_j\right\|\geq \beta_q\left\|\sum_{j=n+1}^{\infty}X_ju_j\right\|_q\right\}\geq \alpha\cdot\mu(E).$$

For a scalar version of this theorem, see [1].

Corollary 1.

Let $X = \{X_j\}$ be a sequence of independent mean-zero random variables satisfying the conditions in Theorem 1. There is a constant $\beta_p > 0$ s.t. $\forall E \in \sum, \exists n = n(E), \text{ if } \{u_j, j \ge 0\}$ are vectors in the Banach space, and $\sum_{j=1}^{\infty} X_j u_j$ converges a.e. on E, then

$$\beta_p \left\| \sum_{j=n}^{\infty} X_j u_j \right\|_p \le esssup_{w \in E} \left\| u_0 + \sum_{j=1}^{\infty} X_j u_j \right\| .$$

Math Subject Classifications. 42B25, 46E40.

Keywords and Phrases. Translation invariant operator, Orlicz space, Vector valued functions, Khinchin-Kahane inequality.

③ 1997 CRC Press LLC ISSN 1069-5869 We prove a principle of contraction in Orlicz spaces.

Theorem 2.

Let (Ω, \sum, μ) be a probability space, and $\{X_j, j \ge 1\}$ be a sequence of independent meanzero random variables in L^{ϕ} . Let $0 \le \lambda_j \le 1, \forall j$. Let $\{u_j, j \ge 1\}$ be vectors in a Banach space. Then for any $N \ge 1$,

$$\left\|\sum_{j=1}^N \lambda_j X_j u_j\right\|_{L^{\phi}} \leq \left\|\sum_{j=1}^N X_j u_j\right\|_{L^{\phi}}.$$

Proof. It is enough to show that for any $\gamma > \| \sum_{j=1}^{N} X_j u_j \|_{L^{\phi}}$,

$$\int_{\Omega} \phi\left(\frac{1}{\gamma} \left\|\sum_{j=1}^{N} \lambda_j X_j u_j\right\|\right) d\mu \leq \int_{\Omega} \phi\left(\frac{1}{\gamma} \left\|\sum_{j=1}^{N} X_j u_j\right\|\right) d\mu.$$

Let us consider first $\lambda_j = 0, 1$. We may assume that $\lambda_j = 1, 1 \le j \le k$; $\lambda_j = 0, k + 1 \le j \le N$. Then by Jessen's inequality

$$\begin{split} &\int_{\Omega} \phi \left(\frac{1}{\gamma} \left\| \sum_{j=1}^{N} \lambda_j X_j u_j \right\| \right) d\mu = \int_{\Omega} \phi \left(\frac{1}{\gamma} \left\| \sum_{j=1}^{k} X_j(w) u_j \right\| \right) d\mu(w) \\ &= \int_{\Omega} \phi \left(\frac{1}{\gamma} \left\| \sum_{j=1}^{k} X_j(w) u_j + \int_{\Omega} \sum_{j=k+1}^{N} X_j(w') u_j d\mu(w') \right\| \right) d\mu(w) \\ &\leq \int_{\Omega} \phi \left(\frac{1}{\gamma} \int_{\Omega} \left\| \sum_{j=1}^{k} X_j(w) u_j + \sum_{j=k+1}^{N} X_j(w') u_j \right\| d\mu(w') \right) d\mu(w) \\ &\leq \int_{\Omega} \int_{\Omega} \phi \left(\frac{1}{\gamma} \left\| \sum_{j=1}^{k} X_j(w) u_j + \sum_{j=k+1}^{N} X_j(w') u_j \right\| \right) d\mu(w') d\mu(w) \\ &= \int_{\Omega} \phi \left(\frac{1}{\gamma} \left\| \sum_{j=1}^{k} X_j(w) u_j + \sum_{j=k+1}^{N} X_j(w') u_j \right\| \right) d\mu(w) \,. \end{split}$$

In general, for $0 \le \lambda_j \le 1$, let

$$\lambda_j = \sum_{k=1}^{\infty} 2^{-k} \lambda_{jk}, \ \lambda_{jk} = 0, 1, \ 1 \le j \le N$$

we have

$$\sum_{j=1}^N \lambda_j X_j u_j = \sum_{k=1}^\infty 2^{-k} \sum_{j=1}^N \lambda_{jk} X_j u_j.$$

Since ϕ is convex,

$$\int_{\Omega} \phi\left(\frac{1}{\gamma} \left\|\sum_{j=1}^{N} \lambda_{j} X_{j} u_{j}\right\|\right) d\mu$$
$$\leq \sum_{k=1}^{\infty} 2^{-k} \int_{\Omega} \phi\left(\frac{1}{\gamma} \left\|\sum_{j=1}^{N} \lambda_{jk} X_{j} u_{j}\right\|\right) d\mu$$

$$\leq \int_{\Omega} \phi\left(\frac{1}{\gamma}\left\|\sum_{j=1}^{N} X_{j} u_{j}\right\|\right) d\mu$$
.

For an L^p version of Theorem 2 with $\{X_j\}$ an independent sequence of symmetric random variables, see [2, 4].

Corollary 2.

If ϕ is a strictly increasing Young function, then the convergence of $\sum_{j=1}^{\infty} X_j u_j$ in L^{ϕ} -norm implies the a.e. convergence of $\sum_{j=1}^{\infty} \lambda_j X_j u_j$ for any bounded sequence $\{\lambda_j\}$.

Proof. Let $\gamma > \| \sum_{j=1}^{\infty} X_j u_j \|_{L^{\phi}}$. We can assume that $\lambda_j \in \mathcal{R}$ and $|\lambda_j| \le 1$. Since ϕ is strictly increasing, $\forall \alpha > 0$, $\phi(\alpha \gamma^{-1}) > 0$. Thus,

$$\mu \left\{ w : \left\| \sum_{j=n}^{M} \lambda_j X_j(w) u_j \right\| > \alpha \right\} = \mu \left\{ w : \phi \left(\frac{1}{\gamma} \left\| \sum_{j=n}^{M} \lambda_j X_j(w) u_j \right\| \right) > \phi \left(\frac{\alpha}{\gamma} \right) \right\}$$

$$\leq \frac{1}{\phi(\alpha \gamma^{-1})} \int_{\Omega} \phi \left(\frac{1}{\gamma} \left\| \sum_{j=n}^{M} \lambda_j X_j u_j \right\| \right) d\mu$$

$$\leq \frac{1}{\phi(\alpha \gamma^{-1})} \int_{\Omega} \phi \left(\frac{1}{\gamma} \left\| \sum_{j=n}^{M} X_j u_j \right\| \right) d\mu \to 0, \text{ as } n, M \to \infty.$$

This shows that $S_n = \sum_{j=1}^n \lambda_j X_j(w) u_j$ is Cauchy in measure, and hence converges in measure. Since $\{X_j\}$ is an independent sequence, we get that $S_n = \sum_{j=1}^n \lambda_j X_j(w) u_j$ also converges a.e.

Theorem 3.

Let $X = \{X_j\}$ be a sequence of random variables as in Theorem 2, and B a Banach space. Let $S_n = \sum_{j=1}^n X_j u_j, n = 1, 2, ...$ where $u_j \in B$. Let ϕ be a Young function. If a subsequence $\{S_{n_k}\}$ converges in L^{ϕ} , then $\{S_n\}$ converges in L^{ϕ} .

Proof. Given $\epsilon > 0$, $\exists N = N(\epsilon)$ s.t. whenever n_r , $n_q > N$,

$$\left\|S_{n_q} - S_{n_r}\right\|_{L^{\phi}} = \left\|\sum_{j=n_r+1}^{n_q} X_j u_j\right\|_{L^{\phi}} < \epsilon$$

Now let $N < n_r < n < m_q$, applying Theorem 2, we get

 \square

$$\|S_m - S_n\|_{L^{\phi}} = \left\|\sum_{j=n+1}^m X_j u_j\right\|_{L^{\phi}}$$
$$\leq \left\|\sum_{j=n_r+1}^{n_q} X_j u_j\right\|_{L^{\phi}} = \|S_{n_q} - S_{n_r}\|_{L^{\phi}} < \epsilon$$

Thus, S_n converges in L^{ϕ} .

2. Limits of Sequences of Operators on Spaces of Vector Valued Functions

In [5] Stein proved that with some minimal conditions, the maximal operator defined by a sequence of linear operators on $L^{\Phi}(M)$ which commute with group action on M, is of weak type

 (Φ, Φ) for Φ in a certain class of Young functions.

We extend Stein's result by considering operators that are defined on function spaces whose elements take values in Banach spaces of type $p, 1 \le p \le 2$, and map them to functions with values in an arbitrary Banach space. We also consider a somewhat larger class of operators than that of translation invariant ones.

Definition 1.

An operator $T: L^{\phi}_{B}(M) \to L^{\phi}_{E}(M)$ is of type (ϕ, ϕ) if there is a constant A' so that

$$||Tf||_{L_{F}^{\phi}} \leq A' ||f||_{L_{B}^{\phi}}$$

holds for every $f \in L^{\phi}_{B}(M)$ where ϕ is a Young function and B, E are Banach spaces.

Definition 2.

Let G be a group and M a homogeneous space of G. Assume that G acts on M transitively. Let f be defined on M. We define $(\tau_g f)(x) = f(g^{-1}(x)), \forall g \in G, \forall x \in M \text{ and call } \tau_g \text{ a translation by } g.$

Let T map B-valued functions on M to E-valued functions on M, where B and E are two Banach spaces. If there exist linear operators $\Lambda(g, f, T) : E \to E$ so that $\|\Lambda(g, f, T)u\| \ge c \|u\|$, $\forall u \in E$, for some c = c(T) > 0, and so that

$$T(\tau_g f)(x) = \Lambda(g, f, T) \tau_g(Tf)(x) ,$$

then we say that T is a quasi-translation-invariant (QTI) operator.

We say $\{T_n\}$ is uniformly QTI if $c(T_n) \ge c > 0$.

Let Φ denote a Young function on $[0, \infty)$ so that $\Phi(t^{\frac{1}{p}})$ is concave and $\Phi(0) = 0$. It follows that for all $\alpha \ge 1$, $\Phi(\alpha t) \le \alpha^p \Phi(t)$, and this implies that $f \in L^{\Phi}_B(M)$ iff f is strongly measurable and $\int_M \Phi(||f||) dm < \infty$. Hence, for functions Φ as above, T is of type (Φ, Φ) iff

$$\int_{M} \Phi(\|Tf\|_{E}) dm \leq \int_{M} \Phi(A\|f\|_{B}) dm$$

for some constant A.

Theorem 4.

Let B be a Banach space of Rademacher type p, $1 . Let <math>\Phi$ be a strictly monotone Young function, and assume also that $\Phi(t^{\frac{1}{p}})$ is concave. Let T_n be a sequence of linear operators which are uniformly QTI, and each of which is of type (Φ, Φ) . Let G be a compact group and m the G-invariant measure on M s.t. m(M) = 1. If $\forall f \in L_B^{\Phi}(M)$, $T^*(f)(x) := \sup_{n\ge 1} ||(T_n f)(x)||_E < \infty$ on some set of positive measure then there exists a constant A (independent of f and α) s.t.

$$m\{x: T^*f(x) > \alpha\} \leq \int_M \Phi\left(\frac{A}{\alpha} \|f\|_B\right) dm, \ \forall \alpha > 0.$$

Proof. We will omit subscripts E, B for the norms $\|.\|_E$ and $\|.\|_B$ in the following proof.

Suppose that the theorem does not hold. Then one can find $\{f_j\}$, a sequence of functions in $L^{\Phi}_{B}(M)$ so that

$$\int_{M} \Phi(j^{2} \| f_{j} \|) dm \leq m \{ x : T^{*} f_{j}(x) > 1 \} \leq 1.$$

Since $\Phi(0) = 0$ and Φ is convex, we have

$$j^2 \cdot \int_M \Phi(||f_j||) dm \leq \int_M \Phi(j^2 ||f_j||) dm .$$

962

Let k_j be positive integers s.t.

$$\frac{1}{2j^2} < k_j \cdot \int_M \Phi(\|f_j\|) dm \le \frac{1}{j^2}, \ j \ge 1.$$

Define

$$F_{ji} = f_j, \ i = 1, 2, ..., k_j,$$

$$E_{ji} = \left\{ x : T^* F_{ji} > 1 \right\} = \left\{ x : T^* f_j(x) > 1 \right\}, \ j \ge 1.$$

Then

$$\sum_{j=1}^{\infty} \sum_{i=1}^{k_j} m(E_{ji}) = \sum_{j=1}^{\infty} k_j m \left\{ x : T^* f_j(x) > 1 \right\}$$
$$\geq \sum_{j=1}^{\infty} k_j \int_M \Phi(j^2 || f_j ||) dm$$
$$\geq \sum_{j=1}^{\infty} j^2 k_j \int_M \Phi(|| f_j ||) dm = \infty.$$

Let us recall Lemma 1 in [5]:

If $\{E_n\}$ is a sequence of sets in M, with the property that $\sum m(E_n) = \infty$, then there exists a sequence of elements in G, $\{g_n\}$, s.t. almost every point in M belongs to infinitely many sets $g_n(E_n) = \{g_n(x) : x \in E_n\}$, i.e.,

$$m\left(\bigcap_{k=1}^{\infty}\bigcup_{n=k}^{\infty}g_n(E_n)\right)=1$$
.

Applying this lemma, we have that there exists $\{g_{ji}\}$, a sequence of elements in G, s.t.

$$m\left(\bigcap_{l=1}^{\infty}\bigcup_{j=l}^{\infty}\bigcup_{i=1}^{k_j}g_{ji}(E_{ji})\right) = 1$$
(2.1)

Since $\int_M \Phi(\|\tau_{g_{ji}}F_{ji}\|) dm = \int_M \Phi(\|F_{ji}\|) dm$, we have

$$\sum_{j=1}^{\infty} \sum_{i=1}^{k_j} \int_M \Phi\left(\left\| j^{\frac{1}{4}} \tau_{g_{ji}} F_{ji} \right\|\right) dm$$
$$= \int_M \sum_{j=1}^{\infty} k_j \Phi\left(\left\| j^{\frac{1}{4}} f_j \right\|\right) dm$$
$$\leq \sum_{j=1}^{\infty} j^{\frac{p}{4}} k_j \int_M \Phi(\|f_j\|) dm$$
$$\leq \sum_{j=1}^{\infty} j^{-2+\frac{p}{4}} < \infty.$$

Let $\{r_{ji}\}$ be an independent sequence of Rademacher functions on I = [0, 1), and let μ be Lebesgue measure on I. Since B is of Rademacher type p, we get

$$\int_{I} \left\| \sum_{j=1}^{\infty} \sum_{i=1}^{k_{j}} j^{\frac{1}{4}} r_{ji}(t) \tau_{g_{ji}} F_{ji}(x) \right\|^{p} d\mu$$
$$\leq C^{p} \sum_{j=1}^{\infty} \sum_{i=1}^{k_{j}} j^{\frac{p}{4}} \left\| \tau_{g_{ji}} F_{ji}(x) \right\|^{p} .$$

Let $\psi(t) = \phi(t^{1/p})$. Since $\Psi \ge 0$ is concave it is subadditive and so

$$\begin{split} &\int_{M} \int_{I} \Phi\left(\left\| \sum_{j=1}^{\infty} \sum_{i=1}^{k_{j}} j^{\frac{1}{4}} r_{ji} \tau_{g_{ji}} F_{ji} \right\| \right) d\mu \, dm \\ &= \int_{M} \int_{I} \Psi\left(\left\| \sum_{j=1}^{\infty} \sum_{i=1}^{k_{j}} j^{\frac{1}{4}} r_{ji} \tau_{g_{ji}} F_{ji} \right\|^{p} \right) d\mu \, dm \\ &\leq \int_{M} \Psi\left(\int_{I} \left\| \sum_{j=1}^{\infty} \sum_{i=1}^{k_{j}} j^{\frac{1}{4}} r_{ji} \tau_{g_{ji}} F_{ji} \right\|^{p} d\mu \right) \, dm \\ &\leq \int_{M} \Psi\left(C^{p} \sum_{j=1}^{\infty} j^{\frac{p}{4}} \sum_{i=1}^{k_{j}} \left\| \tau_{g_{ji}} F_{ji} \right\|^{p} \right) \, dm \\ &\leq C^{p} \sum_{j=1}^{\infty} j^{\frac{p}{4}} k_{j} \int_{M} \Phi(\left\| f_{j} \right\|) \, dm < \infty \, . \end{split}$$

This implies that $\sum_{j=1}^{\infty} \sum_{i=1}^{k_j} j^{\frac{1}{4}} r_{ji}(t) \tau_{g_{ji}} F_{ji}(x)$ converges in $L_B^{\Phi}(I \times M)$. We define

$$G(t, x) = \sum_{j=1}^{\infty} \sum_{i=1}^{k_j} j^{\frac{1}{4}} r_{ji}(t) \tau_{g_{ji}} F_{ji}(x) .$$

There exists a subsequence of partial sums of $\sum_{j=1}^{\infty} \sum_{i=1}^{k_j} j^{\frac{1}{4}} r_{ji}(t) \tau_{g_{ji}} F_{ji}(x)$ which converges in $L_B^{\Phi}(M)$ for a.e. $t \in I$. Since T_n is a linear operator of type (Φ, Φ) , we have that for a.e. $t \in I$,

$$T_n G(t, x) = \sum_{j=1}^{\infty} \sum_{i=1}^{k_j} j^{\frac{1}{4}} r_{ji}(t) T_n \left(\tau_{g_{ji}} F_{ji} \right)(x)$$

where a fixed subsequence of partial sums of right-hand side converges in $L_E^{\Phi}(M)$ to $T_n G(t, x)$. Similarly,

$$\int_{I} \int_{M} \Phi(\|T_{n}G(t,x)\|) dm d\mu$$

$$\leq \int_{I} \int_{M} \Phi(A_{n} \|G(t,x)\|) dm d\mu$$

$$\leq A_{n}^{p} \int_{I} \int_{M} \Phi(\|G(t,x)\|) dm d\mu$$

Limits of Sequences of Operators on Spaces of Vector Valued Functions

$$= A_n^p \int_M \int_I \Phi\left(\left\| \sum_{j=1}^{\infty} \sum_{i=1}^{k_j} j^{\frac{1}{4}} r_{ji} \tau_{g_{ji}} F_{ji} \right\| \right) d\mu dm$$
$$\leq A_n^p C^p \sum_{j=1}^{\infty} j^{\frac{p}{4}} k_j \int_M \Phi(\|f_j\|) dm < \infty.$$

This implies that

$$T_n G(t, x) = \sum_{j=1}^{\infty} \sum_{i=1}^{k_j} j^{\frac{1}{4}} r_{ji}(t) T_n \left(\tau_{g_{ji}} F_{ji} \right)(x)$$

is also a $L_E^{\Phi}(I \times M)$ function. Hence, there exists a subsequence of partial sums of $\sum_{j=1}^{\infty} \sum_{i=1}^{k_j} j^{\frac{1}{4}} r_{ji}(t) T_n \tau_{g_{ji}} F_{ji}(x)$ which converges in $L_E^{\Phi}(I)$ for a.e. $x \in M$. By Theorem 3, we have for a.e. $x \in M$,

$$T_n G(t, x) = \sum_{j=1}^{\infty} \sum_{i=1}^{k_j} j^{\frac{1}{4}} r_{ji}(t) T_n \left(\tau_{g_{ji}} F_{ji} \right)(x) \quad \text{converges in} \quad L_E^{\Phi}(I) ,$$

and by Corollary 2 the series converges a.e. in $I \times M$.

It follows from (2.1) that for a.e. x there exist infinitely many indices (j, i) s.t. $g_{ji}^{-1}x \in E_{ji}$. Therefore, for infinitely many (j, i), we have

$$j^{\frac{1}{4}}T^* F_{ji}\left(g_{ji}^{-1}x\right) > j^{\frac{1}{4}}$$

Let us show that this implies $T^*G(t, x) = \infty$ a.e. on $I \times M$.

If $T^*G(t, x) < \infty$ on a set of positive measure in $I \times M$, then there exists a constant C > 0and a set $S \subset I \times M$ s.t.

$$\mu \bigotimes m(S) > 0$$
, and $T^*G(t, x) \leq C$, $(t, x) \in S$.

This implies that $||T_nG(t, x)|| \leq C$ on S, for all n.

For $x \in M$ denote $S_x = \{t \in I : (t, x) \in S\}$. $m\{x \in M : \mu(S_x) > 0\} > 0$, and so from (2.1), $\{x \in M : \mu(S_x) > 0\} \cap \left(\bigcap_{l=1}^{\infty} \bigcup_{j=l}^{\infty} \bigcup_{i=1}^{k_j} g_{ji}(E_{ji})\right)$ is not empty. Let x be a point in this intersection.

By Corollary 1, there exists N = N(x) s.t. for all n,

$$\int_{I} \left\| \sum_{j=N}^{\infty} \sum_{i=1}^{k_{j}} j^{\frac{1}{4}} r_{ji} T_{n} \left(\tau_{g_{ji}} F_{ji} \right) (x) \right\| d\mu$$

$$\leq \beta_{1}^{-1} esssup_{t \in S_{x}} \left\| \sum_{j=1}^{\infty} \sum_{i=1}^{k_{j}} j^{\frac{1}{4}} r_{ji}(t) T_{n} \left(\tau_{g_{ji}} F_{ji} \right) (x) \right\| \leq \beta_{1}^{-1} C.$$

Applying the principle of contraction to the left-hand side of the inequality above, we have

$$j^{\frac{1}{4}} \|T_n(\tau_{g_{ji}}F_{ji})(x)\| \leq \beta_1^{-1}C, \quad \forall j \geq N, \quad 1 \leq i \leq k_j.$$

Since $T_n(\tau_{g_{ji}}F_{ji})(x) = \Lambda(g_{ji}, F_{ji}, T_n)\tau_{g_{ji}}(T_nF_{ji})(x)$, and since T_n satisfy the QTI condition uniformly, we have

965

$$\frac{1}{c} j^{\frac{1}{4}} < \frac{1}{c} j^{\frac{1}{4}} T^* F_{ji} \left(g_{ji}^{-1} x \right) \le \beta_1^{-1} C, \ j \ge N, \ 1 \le i \le k_j ,$$

a contradiction.

Since G(t, x) is a $L^{\Phi}_{B}(M)$ function for a.e. $t \in I$ and $T^{*}G(t, x) = \infty$ a.e. on $I \times M$, we have a contradiction.

Remark. When E = B = C, then p = 2. Taking $\Lambda(g, f, T_n)$ to be the identity, we obtain Theorem 3 in [5].

Theorem 5.

Let B be a Banach space of Rademacher type p, $1 . Let <math>T_n$ be a sequence of uniformly QTI bounded operators from $L^q_B(M)$ to $L^r_E(M)$ where $1 \leq q < \infty$, $0 < r < \infty$. Let $T^*(f)(x) = \sup_{n\geq 1} ||(T_n f)(x)||_E$, $\forall f \in L^q_B(M)$, and denote $s = \min(p, q)$. If $\forall f \in L^q_B(M)$, $T^*(f)(x) < \infty$ on a set of positive measure then T^* is of weak type (q, s), i.e., there exists a constant A (independent of f and α) s.t.

$$m\left\{x:T^*f(x)>\alpha\right\}\leq A\alpha^{-s}\|f\|_a^s, \ \forall \alpha>0.$$

Proof. The case q = 1 follows from Theorem 6 below. Let us consider, therefore, $1 < q < \infty$. It is enough to prove the case $q \ge p$, since if q < p, then B is also of type q, and the same proof applies.

Although the proof is similar to that of Theorem 4, there are some important differences, in particular if $\Phi(t) = t^q$ then $\Phi(t^{\frac{1}{p}})$ is not concave. We therefore give a full proof of this theorem.

If the theorem does not hold, then one can find $\{f_j\}$, a sequence of functions in L_B^q so that

$$j^{3} \|f_{j}\|_{q}^{p} \leq m \{x: T^{*}f_{j}(x) > 1\} \leq 1$$

Let $\{k_j\}$ be positive integers s.t.

$$\frac{1}{2 j^3} < k_j \| f_j \|_q^p \le \frac{1}{j^3} .$$

Define

$$F_{ji} = f_j, 1 \le i \le k_j, E_{ji} = \{x : T^*F_{ji} > 1\},$$

then

$$\sum_{i=1}^{\infty} j \sum_{i=1}^{k_j} \|\tau_{g_{ji}} F_{ji}\|_q^p = \sum_{j=1}^{\infty} jk_j \|f_j\|_q^p \le \sum_{j=1}^{\infty} \frac{1}{j^2} < \infty ,$$

and

$$\sum_{j=1}^{\infty} \sum_{i=1}^{k_j} m(E_{ji})$$
$$= \sum_{j=1}^{\infty} k_j m \{ x : T^* f_j(x) > 1 \} = \infty$$

As before, this implies that there exists a sequence of elements $\{g_{ji}\}$ in G s.t.

$$m\left(\bigcap_{l=1}^{\infty}\bigcup_{j=l}^{\infty}\bigcup_{i=1}^{k_j}g_{ji}(E_{ji})\right)=1.$$

Since B is of type p, we have

$$\int_{I} \left\| \sum_{j=1}^{\infty} \sum_{i=1}^{k_{j}} j^{\frac{1}{p}} r_{ji}(t) \tau_{g_{ji}} F_{ji}(x) \right\|^{p} d\mu$$
$$\leq C^{p} \sum_{j=1}^{\infty} \sum_{i=1}^{k_{j}} j \left\| \tau_{g_{ji}} F_{ji}(x) \right\|^{p} .$$

Moreover, for a.e. $x \in M$, by the Khinchin-Kahane inequality for Rademacher series,

$$\begin{split} &\int_{I} \left\| \sum_{j=1}^{\infty} \sum_{i=1}^{k_{j}} j^{\frac{1}{p}} r_{ji}(t) \tau_{g_{ji}} F_{ji}(x) \right\|^{q} d\mu \\ &\leq C(p,q) \left(\int_{I} \left\| \sum_{j=1}^{\infty} \sum_{i=1}^{k_{j}} j^{\frac{1}{p}} r_{ji}(t) \tau_{g_{ji}} F_{ji}(x) \right\|^{p} d\mu \right)^{\frac{q}{p}} \\ &\leq C(p,q) \left(\sum_{j=1}^{\infty} \sum_{i=1}^{k_{j}} j \left\| \tau_{g_{ji}} F_{ji}(x) \right\|^{p} \right)^{\frac{q}{p}}. \end{split}$$

Integrating both sides and applying Minkowski's inequality, we have

$$\int_{M} \int_{I} \left\| \sum_{j=1}^{\infty} \sum_{i=1}^{k_{j}} j^{\frac{1}{p}} r_{ji} \tau_{g_{ji}} F_{ji} \right\|^{q} d\mu dm$$

$$\leq \int_{M} \left(C(p,q) \sum_{j=1}^{\infty} \sum_{i=1}^{k_{j}} j \left\| \tau_{g_{ji}} F_{ji}(x) \right\|^{p} \right)^{\frac{q}{p}} dm$$

$$\leq \left(C(p,q) \sum_{j=1}^{\infty} \sum_{i=1}^{k_{j}} j \left\| \tau_{g_{ji}} F_{ji} \right\|_{q}^{p} \right)^{\frac{q}{p}} < \infty.$$

This shows that

$$G(t, x) = \sum_{j=1}^{\infty} \sum_{i=1}^{k_j} j^{\frac{1}{p}} r_{ji}(t) \tau_{g_{ji}} F_{ji}(x)$$

is an $L_B^q(I \times M)$ function, and moreover the series converges in $L_B^q(I \times M)$. Thus, there exists a subsequence of partial sums of $\sum_{j=1}^{\infty} \sum_{i=1}^{k_j} j^{\frac{1}{p}} r_{ji}(t) \tau_{gji} F_{ji}(x)$ which converges in $L^q(M)$ for a.e. $t \in I$. Since T_n is a bounded linear operator from $L_B^q(M)$ to $L_E^r(M)$, we have that for a.e. $t \in I$,

$$T_n G(t, x) = \sum_{j=1}^{\infty} \sum_{i=1}^{k_j} j^{\frac{1}{p}} r_{ji}(t) T_n \left(\tau_{g_{ji}} F_{ji} \right) (x)$$

where a subsequence of partial sums of right-hand side converges in $L_E^r(M)$ to $T_nG(t, x)$ for a.e. t. We may assume that this subsequence converges a.e. in x for a.e. t. Thus, it also converges a.e. in t for a.e. x. It follows that

$$\int_{I}\int_{M}\|T_{n}G(t,x)\|^{r}\,dmd\mu\leq A_{n}^{r}\int_{I}\left(\int_{M}\|G(t,x)\|^{q}dm\right)^{\frac{r}{q}}d\mu$$

If $r \ge q$, then by the Minkowski's inequality and the Khinchin-Kahane inequality

$$\int_{I} \left(\int_{M} \|G(t,x)\|^{q} dm \right)^{\frac{r}{q}} d\mu \leq \left(\int_{M} \left(\int_{I} \|G(t,x)\|^{r} d\mu \right)^{\frac{q}{r}} dm \right)^{\frac{1}{q}}$$
$$\leq C(q,r) \left(\int_{M} \int_{I} \left\| \sum_{j=1}^{\infty} \sum_{i=1}^{k_{j}} j^{\frac{1}{p}} r_{ji}(t) \tau_{g_{ji}} F_{ji}(x) \right\|^{q} d\mu dm \right)^{\frac{r}{q}} < \infty$$

as shown before. If r < q, then

$$\int_{I} \left(\int_{M} \|G(t,x)\|^{q} dm \right)^{\frac{r}{q}} d\mu \leq \left(\int_{M} \int_{I} \|G(t,x)\|^{q} d\mu dm \right)^{\frac{r}{q}} < \infty.$$

Thus, we conclude that $T_n G(t, x)$ is an $L_E^r(I \times M)$ function.

Notice that $\forall x \in \bigcap_{l=1}^{\infty} \bigcup_{j=l}^{\infty} \bigcup_{i=1}^{k_j} g_{ji}(E_{ji})$, there exist infinitely many indices (j, i) s.t. $g_{ji}^{-1}x \in E_{ji}$. Therefore, for infinitely many (j, i), we have

$$j^{\frac{1}{p}}T^* F_{ji}\left(g_{ji}^{-1}x\right) > j^{\frac{1}{p}}$$

This implies $T^*G(t, x) = \infty$ a.e. on $I \times M$.

The rest of the proof is the same as in Theorem 4. \Box

Remark. When E = B = C, then p = 2. Taking q = r and $\Lambda(g, f, T_n)$ to be the identity, we obtain Theorem 1 in [5] from the case $q \le 2$, and Theorem 11 in [5] from the case $q \ge 2$.

In view of Theorem 5 and the fact that $B \subset L^p$ is of Rademacher type min(2, p), we immediately have

Corollary 3.

Let $p \ge 1$ and $B \subset L^p$ be a Banach subspace. Let T_n be a sequence of operators as in Theorem 5. Suppose that for every $f \in L^q_B(M)$ with $q \ge 1$, $T^*(f)(x) < \infty$ on a set of positive measure. Let $s = \min\{p, q, 2\}$. Then T^* is of weak type (q, s).

Theorem 6.

Let K be a Banach space whose elements are measurable functions defined on M. Assume that K is translation invariant, i.e., $\forall g \in G, \forall f \in K, \|\tau_g f\|_K = \|f\|_K$. Let $\{T_n\}$ be a sequence of uniformly QTI operators from K to $L_E^r(M)$ where E is a Banach space and $0 < r < \infty$. Let $T^*(f)(x) = \sup_{n\geq 1} \|(T_n f)(x)\|_E, \forall f \in K$. If $\forall f \in K, T^*(f)(x) < \infty$ a.e. on a set of positive measure then there exists a constant A (independent of f and α) s.t.

$$m\left\{x:T^*f(x)>\alpha\right\}\leq \frac{A}{\alpha}\|f\|_K, \ \forall \alpha>0.$$

Proof. If the conclusion does not hold, we have, as in the proof of Theorem 4, sequences $\{f_j\}$, $\{k_j\}$ s.t.

$$\begin{aligned} j^2 & \left\| f_j \right\|_K \leq m \left\{ x : T^* f_j(x) > 1 \right\} \leq 1 , \\ & \frac{1}{2 \ j^2} < k_j \left\| f_j \right\|_K \leq \frac{1}{j^2}, \ j = 1, 2, \dots \end{aligned}$$

968

Define as before

$$F_{ji} = f_j, 1 \le i \le k_j ,$$

$$E_{ji} = \{ x : T^* F_{ji} > 1 \} ,$$

we then have

$$\sum_{j=1}^{\infty} \sum_{i=1}^{k_j} m(E_{ji}) = \sum_{j=1}^{\infty} k_j m\{x : T^* f_j(x) > 1\} = \infty$$

and so there exists a sequence of elements $\{g_{ji}\}$ in G s.t.

$$m\left(\bigcap_{l=1}^{\infty}\bigcup_{j=l}^{\infty}\bigcup_{i=1}^{k_j}g_{ji}(E_{ji})\right)=1.$$

Since $\|\tau_{g_{ji}}F_{ji}\|_{K} = \|F_{ji}\|_{K}$, we have

$$\sum_{j=1}^{\infty} \sum_{i=1}^{k_j} \left\| j^{\frac{1}{2}} \tau_{g_{ji}} F_{ji} \right\|_{K} = \sum_{j=1}^{\infty} j^{\frac{1}{2}} k_j \left\| f_j \right\|_{K}$$
$$\leq \sum_{j=1}^{\infty} j^{-\frac{3}{2}} < \infty .$$

Let $\{r_{ji}\}$ be a sequence of independent Rademacher functions, then

$$G(t, \cdot) = \sum_{j=1}^{\infty} \sum_{i=1}^{k_j} r_{ji}(t) \ j^{\frac{1}{2}} \tau_{g_{ji}} F_{ji}(\cdot) \quad \text{converges in} \quad K \ \forall t \in I, \text{ and}$$
$$\|G(t, \cdot)\|_K \le \sum_{j=1}^{\infty} j^{-\frac{3}{2}} < \infty.$$

Since T_n is a bounded operator from K to $L_E^r(M)$, we have that for a.e. $t \in I$,

$$T_n G(t, x) = \sum_{j=1}^{\infty} \sum_{i=1}^{k_j} r_{ji}(t) \ j^{\frac{1}{2}} T_n \left(\tau_{g_{ji}} F_{ji} \right)(x)$$

where the series converges in $L_E^r(M)$.

Moreover, since $||T_nG(t, \cdot)||_r \le ||T_n|| ||G(t, \cdot)||_K$, we have that

$$\int_I \int_M \|T_n G(t,x)\|^r \, dm \, d\mu < \infty \,,$$

i.e., $T_n G(t, x)$ is an $L_E^r(I \times M)$ function. We get $T^*G(t, x) = \infty$ a.e. on $I \times M$, and the proof proceeds as in Theorem 4.

Remark. When E = C, r = 1, $K \subset L^{1}(M)$, and $\Lambda(g, f, T_n)$ is the identity, we obtain Theorem 10 in [5].

Yoram Sagher and Niandi Xiang

References

- [1] Burkholder, D.L. (1968). Independent sequences with the Stein property. Ann. Math. Stat. 39, 1282-1288.
- [2] Kahane, J.P. (1982). Some Random Series of Functions. 2nd ed., Cambridge University Press.
- [3] Sagher, Y. and Xiang, N. Norm inequalities for vector valued random series. To appear, Illinois J. Math.
- [4] Schwartz, L. (1981). Geometry and probability in Banach spaces. Lecture Notes in Math. 852, pp. 1–101, Springer-Verlag, Berlin.
- [5] Stein, E.M. (1961). On limits of sequences of operators. Ann. Math. 74(1), 140-171.

Department of Mathematics University of Illinois at Chicago

Department of Mathematics University of Illinois at Chicago