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L i m i t s  o f  S e q u e n c e s  of  O p e r a t o r s  
on  S p a c e s  o f  Vec tor  Va lued  

F u n c t i o n s  

Yoram S a g h e r  and  Niandi  X iang  

ABSTRACZ. We generalize the celebrated theorem of Stein on the maximal operator of  a sequence of 
translation invariant operators, from the scalar case to vector valued functions. 

1. Prel iminaries  

We begin with some probabilistic prerequisites. 
The following theorem, proved in [3], will be used in this article. 

T h e o r e m  1. 
Let X = { X j } be a sequence o f  independent mean-zero random variables defined on ( ~2 , y~, v ), 

and B a Banach space. Assume that X satisfies the Khinchin-Kahane inequality in B, as generalized 
in [3], 

uo + uj < Ap uo + Xju j  , for  some p >  1 , ¥ N > 0 ,  

j----1 p 1 

where uj E B. There exist constants ot > 0,/~q > 0 where 0 < q < p s.t. i f  ~'~,~= I X j u j  converges 
a.e. then YE  ~ Y], lz(E) > O, 3n = n (E)  s.t. 

{ JI JPI w ~ F~ : uo + ~ Xj(w)uj  >_ ~q Xjuj  >_ ~ .  ~ ( E ) .  
j = l  j = n + l  q 

For a scalar version of  this theorem, see [ 1 ]. 

Corol lary  1. 
Let X = {Xj} be a sequence o f  independent mean-zero random variables satisfying the 

conditions in Theorem 1. There is a constant ~6p > 0 s.t. Y E  6 Y], 3n = n(E) ,  i f  {uj, j > O} are 
vectors in the Banach space, and Y'~=I X j u j  converges a.e. on E, then 

J=, X j u j  p uo + ~p ~ <_ esssupw~e X ju j  . 
j=l 

Math Subject Classifications. 42B25, 46E40. 
Keywords and Phrases. Translation invariant operator, Orlicz space, Vector valued functions, Khinchin-Kahane 
inequality. 

© 1997 CRC Press LLC 
ISSN 1069-5869 



960 Yoram Sagher and Niandi Xiang 

We prove a principle of  contraction in Orlicz spaces. 

Theorem 2. 
Let (f2, y], iz) be a probability space, and {Xy, j > 1} be a sequence of independent mean- 

zero random variables in L b. Let O < ;Lj < 1, Vj. Let {uj, j > 1} be vectors in a Banach space. 
Then for  any N >__ 1, 

uj <_ uj . 

L¢ L ¢J 

Proof .  It is enough to show that forany v > II ~=1Xyu. / l lL, ,  

so+ rl),.-< s.+ II3 . . .  

Let  us cons ider  first ~'1 = 0, 1. We  m a y  assume that ~'1 = 1, 1 < j < k; ~'1 = 0, k + 1 < j < N.  
Then  by  Jessen ' s  inequal i ty  

s:+ tl),.<., 
( 11 " ll) 

j = l  j=k+ l  

( soll  " II ) <_ [_... 4) Xs(w)u s + ~ xs(w')u s dlz(to') alz(w) 
j=k+ i  

j = l  j=k+ l 

In general ,  for  0 < ~.j < 1, let 

~.j = Z 2-k ~.jk, ~.jk = 0 , 1 ,  I <_ j < N , 
k=t 

we have  

Since ~b is convex,  

N e~ N 

Z~,x,u;  = Z ~  - '  Z~, ,  x,u;. 
j = l  k=l j = l  

ii ).. 
<- Z 2-k ~ ~ ~qlcXjuj dlz 

k=l  j = l  
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" " .  [] 

For an L p version of  Theorem 2 with {Xj} an independent sequence of symmetric random 
variables, see [2, 4]. 

Corollary 2. 
I f  qb is a strictly increasing Young function, then the convergence of ~'~=1 Xjuj in L O-norm 

implies the a.e. convergence of ~-~.~=1 )~j Xjuj for any bounded sequence {),j }. 

Proof .  Let y > [[ ~--~--1Xjuj[[L~" Wecan  assume that ~.j ¢ 7~and [Ejl < 1. 

Since ~ is strictly increasing, ¥~ > O, O(o~y - l )  > O. Thus, 

I~ 113 : ~ . j X j ( w ) u j  > ~ = I£ 113 : ~) ~ . j X j ( w ) u j  > 

j=n  

_< 4,(a~,_~) 4, 

< ~b (0~y_l )  q~ X j u j  

j •  xjXiuj dg 

) d l~ --~ O, as n, M ---> ~ . 

This shows that Sn = ~--~-~=1 )~jXj(w)uj is Cauchy in measure, and hence converges in measure. 

Since {Xj} is an independent sequence, we get that Sn = ~--~7=1 ~.jXj(w)uj also converges a.e. 
[] 

Theorem 3. 
Let X = {Xj} be a sequence of  random variables as in Theorem 2, and B a Banach space. Let 

Sn = ~ = t  Xjuj,  n = 1, 2 .... where uj ~ B. Let ~ be a Young function. I f  a subsequence {Snk} 

converges in L ~, then {Sn} converges in L ¢. 

Proof .  Given E > 0, 3N = N(E) s.t. whenever nr, nq > N, 

j =nr + 1 L¢' 

Now let N < nr < n < m < nq ,  applying Theorem 2, we get 

< ~ .  

nSm - ShilL+ = [ Xju: 
j =n+ 1 LO 

j=nr+ l LOb 

Thus, Sn converges in L ~. [ ]  

2. Limits of Sequences of Operators on Spaces of Vector Valued 
Functions 

In [5] Stein proved that with some minimal conditions, the maximal operator defined by a 
sequence of  linear operators on L~(M)  which commute with group action on M, is of  weak type 
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(¢ ,  ¢ )  for qb in a certain class of Young functions. 
We extend Stein's result by considering operators that are defined on function spaces whose 

elements take values in Banach spaces of type p, 1 _< p < 2, and map them to functions with values 
in an arbitrary Banach space. We also consider a somewhat larger class of operators than that of 
translation invariant ones. 

Definit ion 1. 
An operator T : L~(M) --~ L~(M) is of type (~, qb) if there is a constant a' so that 

IITfIIL~ e < A' IITIIL~ n 

holds for every f ~ L~o(M) where q~ is a Young function and B, E are Banach spaces. 

Definit ion 2. 
Let G be a group and M a homogeneous space of G. Assume that G acts on M transitively. Let 

f be defined on M. We define ( rg f ) (x )  = f (g -1  (x)), Yg 6 G, Yx ~ M and call rg a translation 
byg. 

Let T map B-valued functions on M to E-valued functions on M, where B and E are two 
Banach spaces. If there exist linear operators A(g, f ,  T) : E -+ E so that I]A(g, f ,  T) ull _> 
c Ilull, Vu ~ E, forsome c = c(T) > O, andso that 

T(rg f ) (x )  = A(g,  f ,  T) vg(Tf)(x)  , 

then we say that T is a quasi-translation-invariant ( QTI ) operator. 
We say {Tn} is uniformly QTI if c(Tn) > c > O. 

1 
Let • denote a Young function on [0, ~ )  so that d~(t ~) is concave and d~(O) = O. It follows 

thatforallot > 1, ~(ott) < otP~(t), andthisimpliesthat f ~ L~(M)  iff f isstronglymeasurable 
and f M ~ ( [I f ll)dm < ~ .  Hence, for functions • as above, T is of type ( ~, ~ ) iff 

for some constant A. 

Theorem 4. 

fM @(llTflle)dm ~ fM @(AIIfllB)dm 

Let B be a Banach space of Rademacher type p, 1 < p < 2. Let • be a strictly monotone Young 
I 

function, and assume also that ~ ( t-~ ) is concave. Let Tn be a sequence of linear operators which are 
uniformly QTI, and each of which is of type ( ~ , a) ). Let G be a compact group and m the G-invariant 
measure on m s.t. re(M) = 1. I fY  f E L~(M), T*( f ) (x )  := SUPn>__ 1 I[(Tnf)(x)[lE < oo on some 
set of  positive measure then there exists a constant A (independent o f f  and or) s.t. 

m{x : T* f(x) > u} <_ fM* (A  I, f l l s )  dm, ¥c~ > 0 .  

P r o o f .  We will omit subscripts E, B for the norms II.lle and II-IIB in the following proof. 
Suppose that the theorem does not hold. Then one can find {3~}, a sequence of functions in 

L ~ ( M )  so that 

JM ,(j2 iiJ5 ii)d m _< m {x: T*fj(x)  > 1} < 1. 

Since ~ (0 )  = 0 and ¢ is convex, we have 

j2 .  fm ¢(ltfJ]l)dm < f m  . ( j 2  lifj[[)dm . 
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Let kj be positive integers s.t. 

2J 2 < k j -  ~ , ( / I j ~ l l ) d m  < - -  j > x - -  j 2  ~ - -  • 

Define 

Fji = f j ,  i = 1 , 2  . . . . .  kj ,  
E. / i={x:T*Fji  > 1 } = { x : T * f j ( x ) >  1}, j >  I .  

Then 

Z Z m ( E j i ) = Z k j m { x : T * f j ( x ) >  1} 
j = l  i=1 j = l  

j = l  

j = l  

Let us recall Lemma 1 in [5]: 

I f  {En} is a sequence of  sets in M, with the property that Y'],m(En) = ~ ,  then there exists 
a sequence of elements in G, {gn}, s.t. almost every point in M belongs to infinitely many sets 
gn(En) = {gn(X) : x ~ En}, i.e., 

m n ( E n  = I . 

Applying this lemma, we have that there exists {gji }, a sequence of elements in G, s.t. 

) m = 
V =l j=/ iU=lgji(Eji) 1 (2.1) 

Since fM ~ (t[ rg]i l~i I[) am = fM ~ (]I Fji [I) am, we have 

f j = l  i=1 

j = l  

< Z j  ~r kj fM q~(llfjll) dm 
j = l  

oo 
_< ~ j-z+~ < ~ .  

j = l  
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Let {rji } be an independent sequence o f  Rademacher functions on I = [0, 1), and let /z  be Lebesgue 
measure on I. Since B is o f  Rademacher type p,  we get 

Ej~rji(t)rgjiFji(x) dtt 
j = l  i=1 

<_ c" } 2  ~ J ~  II~,Fj,(x)ll ~ • 
j=l i=1 

Let ~p(t) = q~(tl/p). Since ~ > 0 is concave it is subadditive and so 

f f  (ll II) E jTirji'CgjiFji dlzdm 
j=l i=1 

=L fI* Ej¼r.iirgyil~i dlzdm 
j=l i=1 

EJrirjizg, i1~i ] dlzl dm 
j=l i=1 , ]  

£ .  c, E J~ ~ II~g,,FJ'll p dm 
j----I i=1 

oo 

< cp ~ j~ kj fM *( l l~ l l )dm < ~ "  

j = l  

This implies that )-'~q=l ~'~-ikJ=l J~ rji(t) rgj, Fji(x) converges in L~(I x M). We define 

oo 

j=l i=1 

Ei=I  J ¼ rJ i (t) rgji Fji(x) which converges in There exists a subsequence o f  partial sums of  )'-~O=1 kj 
L~(M) for a.e. t ~ I .  Since Tn is a linear operator of  type ( ~ ,  ~ ) ,  we  have that for a.e. t ~ I ,  

o¢ k~ 

r.o(,,x) = ~ ~j~rj,(,)r. (.,,,rj,)(x) 
j=l i=1 

where a fixed subsequence of  partial sums of  right-hand side converges in L~(M) to TnG(t, x). 
Similarly, 

fl fM '~(IIT~ G(t ,  x)ll) dm dlz 
<-f~fu~(AnllG(t,x)ll)dmdt * 
<aPnflfM~(l'G(t,x'H'dmdbt 
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(11 I) = A P L f  I dp Z j ¼ r j i r g j i F j i  d lzdm 
j = l  i--I 

oo 

< a p C p ~ j~r kj fM ¢(l[ ,511)dm < ~ .  
j=l 

This implies that 
oo 

TnG(t,x) = Z Z j¼ rji(t) Tn (vgjiFji)(x) 
j = l  i=l 

is also a L~(I x M) function. Hence, there exists a subsequence of  partial sums of  

~"~-i=1 J¼ rji(t) Tn rgjiFji(x) which converges in L~(I) for a.e. x ~ M. By Theorem 3, 
we have for a.e. x ~ M, 

oo 

TnG(t,x)= ~ ~-~.j¼rji(t) Tn (rgjiFji)(x) convergesin L~(I), 
j = l  i=1 

and by Corollary 2 the series converges a.e. in I x M. 
It  follows from (2.I)  that for a.e. x there exist infinitely many indices ( j ,  i) s.t. g~lx ~ Eji. 

Therefore, for infinitely many ( j ,  i) ,  we have 

Let  us show that this implies T*G(t, x)  = oo a.e. on I x M. 
I f  T*G(t, x)  < oo on a set of  positive measure in I × M, then there exists a constant C > 0 

and a s e t  S C I × M s.t. 

lz(~m(S) > 0, and T*G(t,x) < C, ( t , x )  ~ S .  

This implies that IITnG(t, x)ll ~ C on S, for all n. 
For  x ~ M denote Sx = {t E I : (t, x) E S}. m{x E M : lz(Sx) > 0} > 0, and so from 

M: Iz(Sx) > 0} ~ (A~=I [_Jj~--I Ui~J=l gji(Eji)) is not empty. Let  x be a point  in this (2.1), {x E 

intersection. 
By Corollary 1, there exists N = N(x) s.t. for all n, 

fl [j~=Ni~=lJ¼rjiTn (rgjiFji)(x) dlz 

<_~lesssupt~s~ ~_.j¼rj~(t)T~ (~g~Fji)(x) <_~I~C. 
j = l  i=I 

Apply ing  the principle of  contraction to the left-hand side of  the inequality above, we have 

1 

Since  Tn (rgji Fji)(x) = A(gji, Fji, Tn) 7:gjl (TnFji)(x), and since Tn satisfy the QTI condition uni- 

formly, we have 
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, 
l j ¼  < - j l  T*Fji lx < f l l lC ,  j > N, 1 < i < kj , 

c 

a contradiction. 
Since G(t,  x)  is a L ~ ( M )  function for a.e. t ~ I and r * G ( t ,  x) = c~ a.e. on I x M, we have 

a contradiction. [ ]  

R e m a r k .  When E = B = C, then p = 2. Taking A(g,  f ,  Tn) to be the identity, we obtain 
Theorem 3 in [5]. [ ]  

T h e o r e m  5. 
Let  B be a Banach space of  Rademacher type p, 1 < p < 2. Let Tn be a sequence o f  

uniformly QTI bounded operators from Lq  (M)  to LrE(M) where 1 < q < c~, 0 < r < c~. Let 
T * ( f ) ( x )  = SUPn>_l II(Tnf)(x)lle,  Y f  ~ Lqs(M), and denote s = min(p,  q). I f Y f  ~ L q ( M ) ,  
T * ( f ) ( x )  < oo on a set o f  positive measure then T* is of  weak type (q, s), i.e., there exists a 
constant A (independent o f  f and or) s.t. 

m {x : Z * f ( x )  > ~} < aa-S l l f l lq ,  Va > O. 

P r o o f .  The case q = 1 follows from Theorem 6 below. Let us consider, therefore, 1 < q < c¢. 
It is enough to prove the case q _> p, since if q < p, then B is also of  type q, and the same proof 
applies. 

Although the proof is similar to that of  Theorem 4, there are some important differences, in 
1 

particular if ¢P (t) = t q then ¢P (t ~) is not concave. We therefore give a full proof of  this theorem. 
I f  the theorem does not hold, then one can find {.~ }, a sequence of  functions in L q so that 

j3 -< m {x :  T* f j ( x )  > 1} < 1.  

Let {kj } be positive integers s.t. 
1 I 

Define 

then 

and 

Fji = f j , 1  < i < kj , 

Eji = {x :  T*Fji > I} , 

oo ~ e¢ oo 1 

j = l  i=1 j = l  1=1 

j = l  i= t  

oo 

= F_ jm{x : r * f j c x ) >  
j----l 

As before, this implies that there exists a sequence of  elements {g/i } in G s.t. 

m gji(E/i)  = 1 . 
\ l= l  j=l "= 
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Since B is of  type p, we have 

y~j~rji(t) ~'gjiFji(x ) dlz 
i=1 

ks 

<_cP EJII   ,Fj,(x)[I p 
j = l  i=1 

Moreover, for a.e. x ~ M, by the Khinchin-Kahane inequality for Rademacher series, 

fl ~ j~r j i ( t )  ~giiFji(x) dlz 
i=1 

q 

< C(p, q) ~_.j-~rji(t) ggj~ d#x 
j = l  i=1 

q 

< C(p,q) j [Irg~,Fj,(x)[I p 

Integrating both sides and applying Minkowski 's  inequality, we have 

[ kj I q fMfI ~ Y~jlFji TgJiFji dlzdm 
j = l  i = I  

q 

<_ ~ C(p,q)~-~jllrgj,  Fji(x)[[ p drn 
j = l  i=1 

q 

< C(p,q) j Iirgj, Fji < oo. 
j = l  i=1 

This shows that 
kj 

G(t,x) = ~ ~ j½rji(t) 7;gjiFji(x) 
j = l  i--1 

is an Lq(I x M) function, and moreover the series converges in Lq(I x M). Thus, there exists a 
~j 1 

)-]4=1 j-Prji(t) 7:gjiFji(x) which converges in Lq(M) for a.e. subsequence of partial sums of Y~=l  

t E I .  Since Tn is a bounded linear operator from Lq(M) to LrE(M), we have that for a.e. t ~ I ,  

kj 

roco, x) = S .  j rji ,)r. Fj,) 
j = l  i=1 

where a subsequence of partial sums of right-hand side converges in L~ (M) to Tn G (t, x) for a .e . t .  
We may assume that this subsequence converges a.e. in x for a .e . t .  Thus, it also converges a.e. in t 

for a .e .x .  
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It follows that 
r 

f l f m l l T n G ( t , x ) l l r d m d l z < a ~ n f i ( f M I I G ( t , x ) l l q d m ) T d l  z .  

I f  r > q, then by the Minkowski 's  inequality and the Khinchin-Kahane inequality 

r (i. )r (i.(Z )' l IlG(t,x)llqdm ~dtz < IlG(t,x)llrdlz dm 

r 

< C(q, r) j'prji(t)rgy i Fji(x) dlzdm < oo 

as shown before. I f  r < q, then 

f l  ( L  ) r  ( L  f l  qdlzdm) q IIG(t,x)llqdm ~ dl~ < IlG(t,x)ll < o0. 

Thus, we conclude that TnG(t, x) is an LrE(I X M) function. 

Notice that ¥x ~ N ~ ]  [..Jc~=t Uik~=l gji(Eji), there exist infinitely many indices ( j ,  i) s.t. 

g~Ix ~ Eji. Therefore,  for infinitely many ( j ,  i), we have 

, 

j T r *  Fji ix > j-~. 

This implies T*G(t, x)  = oo a.e. on I x M. 
The rest o f  the proof  is the same as in Theorem 4. [ ]  

R e m a r k .  When E = B = C, then p = 2. Taking q = r and A(g, f ,  Tn) to be the identity, we 
obtain Theorem 1 in [5] from the case q < 2, and Theorem 11 in [5] from the case q > 2. 

In view of  Theorem 5 and the fact that B C L p is of  Rademacher type min(2, p) ,  we imme-  
diately have 

Corollary 3. 
Let p > 1 and B C L p be a Banach subspace. Let Tn be a sequence of operators as in 

Theorem 5. Suppose that for every f ~ Lq (M) with q > 1, T*( f ) (x )  < oo on a set of  positive 
measure. Let s = rain{p, q, 2}. Then T* is of  weak type (q, s). 

Theorem 6. 
Let K be a Banach space whose elements are measurable functions defined on M. Assume 

that K is translation invariant, i.e., Vg E G, V f E K, Ilrgfllx = Ilf l lr .  Let {Tn} be a sequence 
of  uniformly QTl operators from K to Lre(M) where E is a Banach space and 0 < r < oo. Let 
T*( f ) (x )  = suPn>__ 1 II(Tnf)(x)llz, Y f ~ K. I f Y  f ~ K, T*( f ) (x )  < oo a.e. on a set ofpositive 
measure then there exists a constant A (independent o f f  and ct) s.t. 

m {x : T* f (x )  > tz} < AIIf l Ix ,  roe > 0 .  
0l 

I f  the conclusion does not hold, we have, as in the proof of  Theorem 4, sequences {3~ }, P r o o f .  
{kj } s.t. 

j2 11.,311  --< m { x :  > _< 1. 

I _ ~ ,  j = l , 2  . . . .  
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Define as before 

Fji = f j ,  l < i < kj , 
Eji = {x :  T*Fji > 1} , 

we then have 
oo ~ o~ 

j = l  i=1 j=l  

and so there exists a sequence o f  elements {gji } in G s.t. 

(5L3 ) m = 
\ l=l j=l  i~=l gji(Eji) 1. 

Since II rgj; Fji II K = II Fji IlK, we have 

E 
j=l 

kj oo 

i=1 j=l 
oo 

j=l 

Let {rji } be a sequence of  independent Rademacher functions, then 

oo ~: 
G(t")=E E rji(t)j½rg~,Fji(.) converges in 

j = l  i=1 

oG 

IIa(t ,-)lIK < E J  -~  < oo .  
j=l 

K V t E I ,  and 

Since Tn is a bounded operator from K to L~(M) ,  we have that for a.e. t E 1, 

oo kj 

rnG(t,x)= E rj,(,) :½ 
j=I i=l 

where the series converges in L~(M).  
Moreover, since II Zn G (t, :) II r ~ II Tn 11 II G ( t , ' )  II K, we have that 

fz fM [ITnG(t'x)llr dmdlz < ~ ' 

i.e., TnG(t, x) is an LrE(I × M) function. We get T*G(t, x) = oc a.e. on 1 × M, and the proof 
proceeds as in Theorem 4. [ ]  

R e m a r k .  When E = C, r = 1, K C L I ( M ) ,  and A(g, f ,  Tn) is the identity, we obtain Theo- 
rem I0 in [5]. [ ]  
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