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One=Sided Littlewood=Paley
Theory

Liliana de Rosa and Carlos Segovia

ABSTRACT.  In this article we develop the theory of one-sided versions of the g function of Littlewood
and Paley, the area function S of Lusin and the g} that admit weighted norm estimates with weights
belonging to the classes A; of Sawyer. In Sections 1 and 2 we give definitions and some lemmas that
shall be needed. Section 3 is devoted to the study of the one—sided version of the functions g and S. In
Section 4 we obtain a good X estimate for the one-sided g3 function, and iri Sections 5 and 6 we apply
the results already obtained to fractional integrals and multiplier operators.

1. Notations and Definitions
As usual, S(R) denotes the class of all those C®—functions ¢ defined on R such that

sup |x*(DPp)(x)| < o0,

XER
for all non—negative integers & and . Let B be a Banach space and let r be a positive integer. We
shall consider the space Cg(B) of all B-valued functions ¢ defined on R, with compact support and
such that its derivatives D@, 1 < B < r, are continuous. If B = R, we simply write Cp- Given
a Lebesgue measurable set E C R, we denote its Lebesgue measure by | E| and the characteristic
function of E by x.. Let f be a measurable function defined on R, the one—sided Hardy-Littlewood
maximal functions M~ f and M f, are given by

1 x 1 x+h

M~ f(x) = sup— f |f(#)| dt and M* f(x) = sup - / |f(®]ds.
k=08 Jron r>0h Jx

For 0 < a < 1, the one-sided fractional integrals of f are defined as

~ 1 x §46)) + _ 1 /-co F
Ia f(x) - F(d) /;oo (x _ y)l—a dy and Ia f(X) - F(d) x (y._x)l—a ?

We extend these definitions to the case a = 0, setting I f(x) = Io+ fx) = f(x).
As usual, a weight w is a measurable and non-negative function. If E C R is a Lebesgue
measurable set, we denote its w—measure by w(E) = g w(t) dt. A weight w belongs to the class
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A;, 1 < p < oo, see [12], if there exists a constant C such that

1 x p fxth 1 p-1
sup (- / w(t) dt) (-—/ w(t) 7T dt) < C,
r>0 \A Jx—k hJx

for all real number x, and w belongs to AI" if M~ w(x) < Cw(x) holds for almost every x. Given
w belonging to A;,", 1 < p < 00, we can define x—o, > —00 and x < 00 such that

) wkx)=0 in (—00, X—~x0) »
@ii) wlx) =00 in (xo, 00), and (L1
({iii) 0 <w(x) <oo foralmostevery x € (X—0, Xoo) -

We always have x_o, < Xs0. In order to avoid the non—interesting case of x_o, = Xoo, We assume
that there exists a measurable set E satisfying 0 < w(E) < oo.

If (B, || - Il 3) is a Banach space, we shall consider the Bochner-Lebesgue space L2 (w), 1 <
p < o0, consisting of all strongly measurable functions f : R — B for which

00 I/p
1Flzy = ( / 1Al o) dx) ,

is finite. If B = R, the space L# (w) shall be denoted by LP(w).

Given two Banach spaces, (A, || - |,) and (B, || - || 8), we denote by L(A, B) the space of all
bounded linear operators T from A into B with the norm ||Tllza,8) = supjx,=1 IT(x)}lz. The
Hilbert space H = L? (R¥, 4}) consists of all measurable functions f defined on R* = (0, c0)

such that || f]l, = ( fg’" f(@)? “;—’)1/ 2 is finite. Let ¢ be a real number, we shall say that f belongs to
L,‘oc(c, 00) ifj;b [ f(x)[dx < ooforeveryc <a <b < o0.

2. Basic Lemmas
The next lemma contains the results about fractional integrals that shall be needed in the sequel.

Lemma 1.

Let o be a continuous function defined on the real line and y > 1 such that,

(a) supp(c) C (—o0,0], limy_, oo Do (x) =0, foreverys, 0 <s5s <y, and

(b) there exists 8,0 < B < 1 such that |DYo(x)| < c¢/(1 — x)YH1+8 holds for x < O.
These conditions on o imply that |D*a (x)| < c¢/(1 = x)**1*8 for x <0, and0 <5 < y. In
addition to (a) and (b) we ask o to satisfy

(c) 2 o(x)dx=0.

Then, given0 < a < 8 < 1 and any /3', o< ﬁl < B, we have that I} (o) satisfies:
(i) IF(o)(x) =0 if x>0 and limy—,_oo D°IF (0)(x) =0, foreverys, 0 <s <y,
(ii) |D°IF (0)(x)| < ¢/(1 —x) 4B =% for x <0,and0 <s <y, and

@iii) [0 IF (0)(x) dx = 0.

Proof. We observe that if p is a bounded and integrable function, then the fractional integral 17} (o)
is a bounded and continuous function tending to zero at infinity.
Let us estimate I:(D‘a), 1 <s <y.Letx < —2. Since supp(c) C (—o0, 0], we have
/2 DSg (x + - Dio(x+
I}(Dfo)(x) = / Doty 4y 4 / Dot gymr411.
0 y —x/2 Yy
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For the integral I we get,

s —— ) R S
T (1 - x)stI+s 2 T (—x)$tiHpe — (_.x)s+l+ﬂ/-a )
In order to deal with I/, we define

hy(x) = /x D lo(z) dz .

fle o]
Since |D~lo(2)| < c/(1 — z)**#, then |D*~lo(z)| < ¢/(1 — z)**# and using this estimate for

D*=1g it follows that
c

(1- x)”'ﬂ/

c

A ID*" o ()] <
—x)

Jhs (X} <

>

and

2 _ 5 c
|D*h;(x)| = |Dfo(x)| < __—(l—-x)l'*'”ﬂ' for x<0O.

Moreover, Dh;(0) = D*~1o(0) = 0 and hs(0) = ffm D*~lo(z) dz = 0. Then, integrating /1

by parts, we get
= on(3) (5) T-0-on ) (2)

™ hs(x+y) dy

+(1-a)2-a) T
y

—x/2

The first two terms are bounded by c/(—x)!** +6'~a_ The third term is bounded by

-x 1 1 ¢ L 1
¢ T . -dy = ————— e 4y
—x/2 YT (—x — y)sI+B (=x)itstB-a Jipp 7% (1 - y)f

Therefore, we have shown that

+/ns e« <
PO = —gm s 1S5y, @D
for any g, a< g < B.
Now, we shall show that
X
f IF(D*o)(z)dz = D" 'IJ(o)(x), 1<s<vy. 2.2
—00

By (2.1) we know that I} (D*g) is integrable and by the observation at the beginning of the proof
[} (D*o) is also continuous. Then, if (2.2) holds, it follows that I;(D¢) = DI} (Do), | <
s < y, and we obtain parts (i) and (ii) of this lemma. Let us prove (2.2). For x < 0, we have

X X hat'4 5
/ IF(D°0)(@) dz = / ( / D—‘%—y—)dy) dz
-N -N \Jo y

-x 1 X N 1 -y
= f — (f Do (z+y) dz) dy + f - (/ Dio(z+y) dz) dy
o Y -N —x Y —N

= I7(D*'o)(x) = IJ(D*"'o)(=N) .
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Then taking the limit for N tending to infinity, we get that (2.2) holds. Let us prove (iii). From (2.1)
and (2.2) we obtain

c .
UI(U)(X)I < (—_—Bl_:-ﬁ_’:; if x<0.

By Fubim’s Theorem, a change of variables, and (c)

0 0 -x
[ I[F(o)(x)dx = / (/ g%é—a_y) dy) dx
~N -N \JO
N 1 0 N 1 —N+y
Ll o) o[ (e o
_N+y -0

The absolute value of the last integral is bounded by a constant times

N 1
1 1 1 1 1
f ia Fdy = — / - rdy.
o YT (1+N-yF NB=« Jo ™% (1-y)f
Then taking the limit for N tending to infinity it follows that
0
/ IHo)Yx)dx = 0.
—00

ending the proof of the lemma. O

Lemma 2.
Let ¢ € S(R), m a positive integer and p(x) = x™@(x). Then, for every t > 0, holds

ro = [b(3)] - SE[(£))0).

Proof. The proof is simple and shall be omitted. U

Lemma 3. ,
Letw € A;I", 1 <g <ooand0 <t < 1. Then for every non-negative u € L9 /*(w) there

exists a non-negative v € L9 /*(w) such that
(a) u(x) <v(x)a e,

(b) "vlqu',,(w) < 2||u||Lq’/,(w)
(c)vweA;' ifp=Q0-—-1t)g+t.

Proof. This is the one-sided version of Lemma 5.17 of [5, page 447]. The sublinear function used

in the proof of our lemma is S(u) = (M~ ([u}/*w)w~1). O
Lemma 4.
Let B be a Banach space and | < r < o0. Let U; be a sequence of linear operators such that
i/r 1/r
(/ NU; Ol p(x) dX) <cr(p) (/ [fGN p(x) d1> (2.3)

holds for every p € A} with a constant c,(p) not depending on j. Then, for every 1 < p < co and
1 < g < o0, we have that

1/q

q/p
f (Z nUm(x)ug) w(x) dx 2.4)
J
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1/q

q/p
< cpgw) | | (}:mmnp) wix) dx
J

holds for every w € A

Proof. We observe that by extrapolation, see [9], if (2.3) holds for a givenr, 1 < r < oo, then it
holds forevery r, 1 < r < 00. If p = ¢, the proof of the theorem is trivial. Let p < ¢, by Lemma 3

witht = (¢ — p)/(g — 1) given0 <u € La/p {(w) there exists v such that

"v”L(q/p)'(w) =2 "u"L(q/p)' (w)’

1/p 1/p
(/ IIUijI‘;u(X)w(x)dX> s(/ If(x)!"v(x)w(x)dx) ,

where ¢ does not depend on j. Then proceeding as in Theorem 6.1 of [5, page 519] we get (2.4) for
1 < p < g < 00. As for the case p > g we have

and

q/p l

q
J{Zwiswiz) wwa] = [Swsisgwas,
J J

where {g;(x)} € LZP, (w“',/ 7). Now proceeding as in the proof of Theorem 6.4 of [5, page 519] we
obtain that (2.4) holds for p > q. U

3. One-Sided Littlewood-Paley and Lusin

Area Functions

In this section we shall develop the theory of the one—sided versions of the Littlewood—~Paley
and Lusin area functions using vector—valued methods.

Theorem 1.
Let Hy and H, be Hilbert spaces and k a strongly measurable L(H), Hy)-valued function

defined for x # 0, and strongly measurable. Assume that k satisfies the conditions
; 1
(i) WG gy sy < Bi
(ii) for x # 0, Dk(x) exists in the L(H\, Hy)-norm and

1
”Dk(x)”c(h'].ffz) =B W ’

(iii) for any pair (¢, N), 0 <€ < N,

/ k(x) dx
e<|x|<N

(iv)ifx > 0, thenk(x) = 0.

< B3, and

L(H{ Hy)

Then, the operator

K*f(x) = sup

>0

-/| | k(x —y)f(y)dy
x—-y|>€

Hy
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satisfies:
ifwe A;,L, 1 < p < o9, there exists a constant ¢ such that

f K*f(x)P wx)dx < 0/ IfGNF wix) dx
holds, and if w € Ai*', there exists a constant ¢ such that

rw(fx:K*OH@>A) < ¢ f 1 (), wx) dx
holds for any A > 0. The constants c depend on p, By, B2, B3 and the constant of the condition A;
for w.

Proof. The proof is a straightforward generalization of the proof given in [1] for the scalar case,
i.e., Hy = Hy = C the complex numbers. O

Theorem 2,
If in addition to conditions (i), (ii), (iii) and (iv) of Theorem 1 we assume that
(v) Foranyu € Hy and v € Ha,

lim <v, (/ k(x) dx) u> 3.1
>0 e<lx[<1

k(x =y)f(y) dy = lim Ke f(x) (3.2)

exist, then
Kf(x) = lim
€

lx—yl>¢

exists weakly in Ho forany f € Cé(H 1)

[1xs@iz, we s < ¢ [iseons, we ax (33)

holds for 1 < p < 0o, w € A}, and

wo ([r: 1870, 2]) < o [ 1701, w0 ax (34)

holds for any > > 0 and w € A'l".
Moreover, K f can be extended to Lf,l (w) and so that (3.3) and (3.4) hold and the limitin (3.2)

exists weakly in Ha a.e. for a general f € Lzl w),we A;,L, 1<p<oo

Proof. Assumption (v) is equivalent to assume that there exists | € L(H|, Hz) such that the limit
in (3.1) is equal to (v, lu). Then, if f € Cé(H1) andv € H,

1iIIb(U, K f(x)) = (v, / k(x = If Q) = fFGN d)’>
€~ Ix—yl<1

+<v, /I  HE=SO) dy>+ (. LF () = (v, KF Q) .
x—y|>

Now, Theorem 1 and standard arguments (see, for instance [3, page 110]), allow us to extend X to
ageneral f, f € Lf,l (w), remaining valid (3.2), (3.3), and (3.4). O

Given an integer ¥ > 1 and x € R, we shall say that a Cg° ~function v belongs to the class
&, (x) if there exists a bounded interval Iy = [x, B] containing the support of ¥ such that DYy
satisfies
1y "D Yl < 1.
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Let F be a distribution on D'(r, 00), —00 < r < 00. We define the one—sided maximal
function F}j‘y(x) as
Fi,(x) =sup{l < F.¥ > |1 ¥ € @y(x))
for every x > r.
Fixed w € A;', g > 1, we shall consider x_ and xo asin (1.1). Given0 < p,and y > 1
satisfying
(y+Dpzg>lor(y+p>g=1, (3.5)
we shall say that the distribution F in D (x—00, 00), belongs to H _f'y(w) if

1/p

o
IIFIle‘y(w)=(/x F;_y(x)i’w(x)dx> ,
—00

is finite.

Remark 1.

We observe that if y| and y, satisfy the condition (3.5) and y| < y», then, taking into account
the definition of FY ,,, we have the inclusion Hf‘ n (W) H-f»n (w). On the other hand, in virtue of
the decomposition into atoms obtained in Theorem 2.2 of [11], it follows that H f-rz (w)C H f. n W),
and therefore H fm (w) =H f'n(w). Finally, we remark that the set of all bounded functions f
with bounded support belonging to H f'y (w) is dense in H f,y(w)' Also, it can be shown that the
set of Cé—furzctions f belonging to H. f.y (w) is dense in H f'),(w).

Theorem 3.

Let y be a positive integer and 0 < p < oo such that p(y + 1) > 1. Let K be a singular
integral operator as in Theorem 1 for Hy = C and H, = H, a Hilbert space. Moreover, we assume

that the kernel k of K satisfies

1
1D e < But o (3.6)

foreveryt, 0 < ¢ 542/.
Then, if w € Ap(y+l) we have

f IKf@NE wix) dx SC[ fiy )P wx) dx 3.7

X—o0
with a constant ¢ not depending on f.
Proof. Let f be a bounded function with bounded support. Since f induces a distribution in
D (—c0, 00), then we consider the maximal function fjﬁ'y(x) defined for every real number x. The
sets
Q={x:f;,(x)>2}), ieZ,
are open and bounded. Then, applying Theorem 2.2 of [11], with respect to w = 1, if I; ; stands for
the connected components of €;, there exist functions a; ;(x) such that
) llai,jlloo = C,
(i) supp(ai ;) < 1i,j,
(iii) [ a; j(x)x* dx =0 foreverys,0<s <y —1,
and

(v) f(x) =3, 2' Y aij(x) in L2,
Thus, .
Kf(x) = > 2"y Ka; j(x)
i j
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in the sense of L},, and therefore

IKfFOy = Y 2> IKai j(oll, -
i Jj

Given a bounded interval / = [e, B], we denote I =[3a - 28, Bl. Since (3.6) holds, it can
be shown, as usual, that for x ¢ J; ; we have

IKai ;) < ¢ IMY(xp )P (3.8)

Ifx e f, jand {[Ka; j(x){[, <1 we see that (3.8) holds with a constant which is a fixed multiple of
the former c. Finally, if x € f,} and {|Ka; j(x)|l, > 1, then

IKai j(My < [1KaijH%* .
Thus, we have shown that for any x
IKai ;0 < ¢ IM* () + [ Kag j )%+

holds. Then,
pze)
[lle(x)llz w(x) dx < c,,/ (Z M+(2i/(y+l)x:;_j)(X)”+') w(x) dx
i i
+cp/ (Z IlK(Z‘/(V“)a,-,j)(x)i]’;“) wix) dx
L

Sincew € AT by Lemma 4 applied to the operators M* and K, we obtain

py+l1)’

p
/ IKf@I; w) dx <c f (Z 2 Zx:.-.,-(x)) w(x) dx
i
. p ’
< C/ <Z 2'x$2;(x)) wx)dx <c¢ /f:,y(x)l’ w(x) dx .

By Remark 1, (3.7) holds forevery f € H_{_y (w). U

Theorem 4.

Let y be a positive integer and 0 < p < o0 such that p(y + 1) > 1. Let ¢ be a function
satisfying

(i) $(x) =0 ifx > 0and limy_, _oo D¢P(x) =0 forevery£,0< £ < v,

(ii) DY ¢ is continuously differentiable on (—o0, 0), and fora B, 0 < <1

IDY ¢ (x)| < if x<0.

—_—
1- x)l+y+f3

These conditions imply

Ip%(x)ls(—l—_—;c){m if x<Oand0<t<y. (3.9)
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In addition to (i) and (ii), let us assume
(iii) [%, ¢ (y) dy = 0.

Then, if we define

[e3] d 172
g H&) = ( fo 8 * O 7’) ,

there exists a constant ¢ such that

le* Pllipy <€ 1FEplre (3.10)
holds ifw € A;'(y +1y- In consequence, if p > land w € A}, there exists a constant ¢’ such that
“g+(f)|ILp(w) E CI ”f”[_p(w) M (311)
Moreover, for A > 0
Aw(fx: gt (N > A)) < il (3.12)

holds ifw € AT.
Iffor a > 0, we define
dzde\'/?
SHfHx) = ( f f (@ * £)(x +2)I? —-2—)
O<z<at t
we obtain that (3.10), (3.11), and (3.12) hold substituting ST (f) for g% (f).

Proof. We give the proof for g*(f). The proof for S} (f) is similar. Let H; = C, the complex
numbers, and H; = H = L2 (R, ‘f—') We shall show that the kernel k(x) = ¢,(x) =t~ (x/1)
satisfies the hypotheses of Theorem 2 and therefore the conclusions of that theorem. Moreover, in
this case the operator K can be given explicitly as

Kf(x) = (¢ * /H(x), (3.13)

almost everywhere on the halfline x_, < x.
We observe that an operator M € £(C, H) coincides with a function m(z) in the sense Mu =

m(t).u for any complex number u, and M || z(c, 7y = Im|| 4.
Let us prove that condition (1) of Theorem 1 holds for k(x) = ¢ (x). If x 3 O, then

(fm|¢(x)|2ﬂ)m<c(/°°< ! )mﬁ 2)1/2
o )] T \Je \tr+m 3
c (o)t \*% a\'”?
- H5E)TE) <
1x1

Next, we show inductively that condition (3.6) of Theorem 3 holds. If x # 0, |h| < 5, and
0 <s <1, wehave |x + sh| > %—' Then, for 0 < £ < y, and applying (3.9),

11 h

i 27 (550) -2 ()
1

o e ()

1+8+8
!_e_l t
et ( ) ,
t+ |x|

O,

1
;[D“‘«pr(x +hy — D¥ gy (x)]

IA

A
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and thus,

Lr o -1 I e (X " g1 g et
;[ ¢i(x+h) =D ¢:(x>]—,—mD¢(7)15Cf’ <t+|x1) '

Squaring and integrating with respect to the measure d¢/¢, and applying Lebesgue’s Dominated
Convergence Theorem, our claim follows.
In order to prove condition (iii) of Theorem 1 we observe that hypothesis (iit) implies

r
dx| < c——————, 3.14
erer 7 xl = Une G149
see [2, page 363]. We have
[ okwas) <[ awas] ][ awax (3.15)
e<|x|<N H lxj<e u Ix|<N H
Since by (3.14) and a change of variables
r/t
d +
lx|<r ¢:(x) ¥ (1 + r/t)H-ﬁ

we get that | [, _, ¢(x) dx "H < C. Then, the right-hand side of (3.15) is bounded by 2C.

Condition (iv) of Theorem 1 is obvious for k(x) = }qb (f)
Finally, we shall prove the condition (v) of Theorem 2 for £(x) = ¢;(x). We want to show
that fore| < €

/ h(t) ( / ¢,(x)dx>—§_max f )| / 61 (x)dx
0 €1 <Ix|<ez t i=12Jp xl<e;

tends to zero with €, provided that 4(z) € L2 (R+, ’%) Let n > 0to be chosen. Then, splitting the
domain of integration into ¢ < 1 and ¢ > 7, and applying Schwarz inequality, we have

fi-tf (3.16)

0 dt
JTwor [ sma) S <
0 |xl<e t
n de\'2 [ o 2 g\
( / lh(2)]? —) ( / ¢ (x)dx| — (3.17)
Q t [4] lx{<e€ t
o0 di\V2 [ oo 2 4 172
+(/ ()2 —‘) f / sdx| Z)
0 t n x|<e€ t
By (3.14), we have
€/t
dx| < ¢ ————.
/;x;<e¢'(") = aFene
Thus,
o0 2 4 172 00 42B-1 1/2
/o e T SC(/O « + )22 dt) =
and 12
o0 2 4 o 281 2
x)dx, — < ce ———dt <c-—.
</:1 x| <€ ¢t( ) t) - (/:] (t+5)2+2ﬂ ) - n
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Now if we choose 7 small enough, and then € small enough, we get that the left-hand side of (3.17)
and therefore that of (3.16) is as small as we please.
Let us prove that (3.13) holds. Let f belong to C{, by Theorem 2,

Kf(x) = lim ¢ (x = y)f () dy = lim K f(x)

|[x—yl>€

exists weakly in H = L? (R*, £). Then, by a theorem of Banach and Sacks, [8, page 80] there
exists a sequence ¢, — 0 such that the means

Sa(x) = (Ke, f(X) + -+ + K¢, f(x))/n

converge strongly to K f(x) in H. Since f is bounded and ¢ 1s integrable, by applying Lebesgue’s
Dominated Convergence Theorem, for every fixed x we have

611% K fx) = Eh_% d(x =) dy = (¢ * fHx),

lx—y|>€

for every t > 0. Then K f(x) = (¢ * f)(x) as an element of H for every x.

Given f a distribution in D (x—_c0, 00), let ¢ belong to D(x_q,, 00) such that the support of
¢ is contained in an interval I = [a, b]. Since x_q < 4, there exists a’, x_» < @’ < a, such that
a—a' <|I| =b—a. Therefore, if I = [d’, a], by the definition of f%.y» we have that

1foo)l < 27 1 DY lleo 1, (%),

holds for every x € I. Taking the p—power and averaging on I, we obtain

|[|y+l

j 2y+1 L
I

Y
1D7plloo 1 f iz ) -

Now, let ¢ be a function with continuous derivatives up to the order y, with support contained
in the halffine [a, 00), where a > x_,, and such that

Hellly,y+1+8 = sgpIqu)(x)l(l + xP 1+ < o0
For simplicity and without loss of generality we assume thata = 0 > x_.
Let (Y« )k>0 be a sequence of non-negative C3°-functions, satisfying:
For k > 1, support(yy) C [2¥~1, 2¥+1], and support(¥o) C [—1, 2],
> k>0 ¥r(x) = Lifx > 0, and
ID°Yillo <C27%, 1 <5 < y.

Thus,
p(x) = Y W)
k>0
We choose an interval J = (max(x—o, —1), 0] and for each x € J and k > 0, we denote Ji
to the interval [x, 2k*1). Therefore, for every k > 0 we get

177 DY (0¥l < Cy l@lllyysi4s D 27
k>0



944 Liliana de Rosa and Carlos Segovia

Then, we can extend the distribution f to these functions ¢ as

(fro) = Y (o),

k>0

and we have that
oM < D If el < Cy £, @ Melllyyses Y 272
k=0 k>0
< Gy fLy 0 Hiellly.y+148 (3.18)
holds for every x € J. Taking the p—power and the average on J, we obtain
o0

1 1/p
KoM = Cyplllollly,y+148 (w_(.l—)- Fi, )P wx) dX) . (3.19)

By Remark 1, if f belongs to H. f_y (w) there exists a sequence (fp)n>1 of Cé—functions such that
fn tends to f in HY  (w). Taking into account Theorem 3

| UKA@ = Kinl wrdx sc [ (= fa (07 i) dx

X—00

which implies that there exists Kf = lims—c0 K fs in L5 (w).
Since for every A > 0, we have

w({x > x-00 : 1KF &) = Kfm(lly > 2}) >0,

then there exists a subsequence of (K f,),>1 that converges in H for almost every x. Let xq be a point
for which the subsequence converges in H = L? (R"', -d‘—’) Then, there exists a new subsequence,
depending on xg, such that we shall denote (K fr (x0))m>1. satisfying

Kf(xg) = mli_l;noo Kfm(xp) ae.int>0.

On the other hand, since f,, € Cé we know that K f, (x0) = & * fm(x0). Taking into account (3.19)

19 * fm(x0) — ¢ * f(x0)l

o

1 1/p
< Cyp lllgellly,y+1+8 (m (fm — )%, ()P wx) dx) .

Then, ¢ * fm(xo) tends to ¢; * f(xp), and in consequence K f(x) = ¢, * f(x) for almost every x
and almost every ¢ > 0.

Let ¢ belong to S(R) supported on (—o0, 0]. Let m and n non—negative integers such that
m+n>1,and0 < a < 1. We define

+ *® n4m—a an am r+ 2dt 172
gH(H)x) = fo [ o o 1 o HEOP S

‘ 172
dzdt
ST (e = ( f f e 31 o 1 (% )+ D S ) ,
0<z<at t

where 0 < a < 0.
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In order to apply Theorem 4, we observe that
A I (p)(x) = I (37 3 pr)(x) (3.20)

and, by Lemma 2,

-nm d\" /x

Ry wx) = —r (i) P (7>

GO AN (%)

nntl |\ g% p Pl
where p(x) = x™@(x). Then, (3.20) is equal to

(_ l)m + d n+m x
i e |\ 25) P (?) :

Therefore, g (f) and S} (f) are defined as in Theorem 4 for

d n+m
p(x)= (=D 1 [(E) x”’(p} . 3.2

Applying Lemma 1 to ¢ = (—1)"D"+™(x™¢) and by Theorem 4, we have the following theorem:

Theorem 5.
Let @ belong to S(R) supported on (—00, 0]. Let m and n non—negative integers such that
n+m>1l,and0<a<1If

+ *® n+m—a qn am r+ 2dt 172
g (fHlx) = ./; It 3y 3" Iy (e * f)(x)] - ,

there exists a constant ¢ such that

Ig* (e = ¢ Iff,leew) (3.22)
holds if p(y + 1) > land w € A;(VH)' In consequence, if p > 1 and w € A}, there exists a
constant ¢ such that
et (Olrawy = ¢l fllLew) - (3.23)
Moreover, for L > 0
rw({x:gt(HE) > 1)) < clifliLiw (3.24)

holds if w € AT.
Besides, if fora > 0

dzdt\ /?
HOIOE ( [ [ emeaar i e+ 0f %) :
<z<at

we obtain that (3.22), (3.23), and (3.24) hold substituting S} (f) for g*(f).
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4. One-Sided g, Function

‘We begin this section stating a known result of the auxiliary T)L+ function, see [7, page 97].
The Tf‘ function generalizes the T function introduced by Fefferman and Stein in [4, page 178].
Let @ be an integrable function and A > 1. We define

1 h px+h 172
T5 (f)(x) = sup (,7 f / 22D, * f)(y)lzdydt) .
h>0 Q0 Jx

The function 7, has been studied in [10]. In that paper, we proved the following theorem:

Theorem 6.
Let p > %, y be a positive integer such that y + 1 > % and w € AZL' If ® € S(R) with
2

support contained in (—o0, 0}, then

1T (A ey < e If5, L)

holds with a finite constant ¢ depending on i, ®, w, y, and p.
The following technical lemma shall be needed in the proof of Theorem 7.

Lemma 5.
Let J = (a, B) be a bounded interval and F C J a closed subset. Given 1,0 < u < 1, we
define
D={xeF:|FNx—t,x}j>unt, Vi:0<t<|J}}.

IfW = U,cpTi(x), where T1(x) = {(z,1) : 0 2 z—x <tfand R ={(z,)) ra < z <
B+I|Jl, 0 <t < |J|}, then

(D) [ SN dx 2 it [ fraw 100 % f (1 £2
and
(ii) IF\D| < 15u |J|.

Proof. By Fubini’s Theorem we have that

[ SF(f)(x)? dx
F

dzd
=/f!<¢t*f>(z>|2 |F Az =2, 7] %‘t

Thus,

/ S () dx
F

2 dzdt
// (@ * FYN"|F N[z —2t, 2] ——.
(z.t)eROW t

v

We observe that if (z,¢) € RN W, then the pair (z, ¢) belongs to I'; (x) for some x in D, and this
implies that [x — ¢, x] C {z — 21, z]. Therefore, since 0 < ¢ < |J|, we have that | F N[z — 21, z}| >
|FN{x—t,x]| > wut and

dzd
f SHAW? dx = u / / @ = PR EE
F ROAW t

which proves (i).



One-Sided Littlewood—Paley Theory 947

Now, let us prove (ii). We choose an open set D C G such that
IG\D| < 3ul|J]|. 4.1
If x € F\G, then x € F\D and this implies that there exists ¢y, 0 < ¢, < |J| such that
IFO[x —te, x)] < it
Then, we can choose €,, 0 < ¢, < ¢, satisfying
IFNx—ty,x+ 6l < 2ut;.
The compact set F\G is covered by the family {(x — fr, x + €,)}xer\G. Then, there exists a finite
subcover {(x; — tr;, X; + €x;)}1<i<, such that
r
Z Xigi-t b)) = 2 X priag ) »
i=1

which implies that
.
Doty <611
i=1

Thus,
r r
IF\G| < Y IFN[xi—tg.xi+egll < 24 ) 1y < 120 ).

By these inequalities and (4.1) we obtain (ii). d

Let ¢ belong to S(R) supported on (—oo, 0]. Let m and n non—negative integers such that
n+m>1,and 0 < a < 1. We denote as in (3.21)

n+m
P(x) = (1" 1 [(d%) xmw:l ,

N 12
+ _ e ®© t 2dZdt
& (f)(x)-(/o / (——Hz_x) (@ HOP ) ,

where A > 1. Explicitly

0 oo A 1/2
+ — ! n+m—a qnam g+ 2 dzdt
& (f)(x)—</0 / (——Hz_x) [ 81 [ ¢ P e ) .

With these notations we have the following theorem:

and define

Theorem 7.

Let p > 2y be a positive integer such thaty + 1 > 2andw € AY,. Then
X . 1 2 ﬂz_

ley (Merw) < clIfi e »

holds with a finite constant ¢ depending on )., ¢, w, y, and p.

The proof of this theorem consists of obtaining a good A estimate for the g;’ function and
follows the lines of the proof of Theorem 2 in [7].
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Proof. For any given N > 1 we define

+ Nl t A (o 42 v
87 N (H)X) = /0 f x~<z,z>(m> (@ AP 5

where xn(z, t) is the characteristic function of the rectangle {(z,?) : [z] £ N, N-l <t <N} Itis
enough to prove Theorem 7 for g{  instead of g;' with a constant ¢ not depending on N. Then, by
Fatou’s Lemma we get Theorem 7.

We shall assume that f is a bounded function with bounded support, in H f‘y(w). Then,

g;' ~{(f)(x) is a continuous function and moreover if x > x_, we have that

gEN(N(x) < Cyp NYHHH 2 (x) 4.2)

for any 8,0 < B < 1. In fact, by part (ii) of Lemma 1, there exists 8,0 < 8 < 1 such that

c .
|DV¢(x)i < Zl—_—x)—y—m, ifx <0.

Givenz > x and ¢, N~! <t < N, the support of ¢, (z — -) is contained in the halfline [x, co) and

6@ = Nlly,y+148 = supy |DY ¢z~ NI+ [y ++°

1+ y+1+8 ,
< P sup, (lel'-%) < ¢ NAr+D+38

Therefore, by (3.18), forevery y € J = (max(x_, x — 1), x}], we have

If *&r (@] = I(f. dr(z =)
< Cpp 1M bz = Mlyys148 < C,p 1, () NEFFIEE

Applying this estimate for y = x, we obtain that

dzdt) 12

sxldsN 12

N
gin(N@) < C, 4 fr,(x) NI (/,:, /
-1 J,

< C;,ﬂ N2y+36+4 f-:y(x) .

We observe that by (4.2), gZ‘_ N (f)(x) belongs to LP(w).
Since the weight w satisfies the AZ condition, then by Theorem 1 in [6], there exist K > 1

and 1 > O such that
n
wE) (1B
w((a, ) ~ c—b

holds for every a < b < ¢ and every measurable set E C (a, b).
Let M = (2P*2K)~1/7 and 0 < & < 1 to be chosen later. We shall prove that

w({x:gfn (N > 2, SFHE + TFNE) < a))

<2 w({x:gf (N > a}) 4.3)

holds for every 0 < o < oo.
If we denote by A, the set {x : g{N(f)(x) > a}, 0 < @ < oo, since g;f‘N(f)(x) isa
continuous function and by the estimate (4.2), it turns out that A, is an open bounded set. Let
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Ay = UI;, where the 1,.’ s denote the connected components of A,. We choose any /; and assume
that I; = (a, b). We define the sequence (xp)s>0 as
b-a
2n
Then, x,, — xp—1 = 2(xn4+1 — Xn). Let us denote by J, the interval [x,_1, x,] and let E, be the set

(x: gty (N > 2, SF(HE) +TFHHR) < da).

Given a non—negative integer n such that |E, N J,| > 0, we consider the rectangle

,n>0.

Xp=b—

Ry={(zg,t) ixp—1<2<b,0=<t<|]]}.

Then, if x belongs to E4 N J,,, we have

Qa)? < gf p(H)? =

(z, x)eR,. (z.0)¢Rn
>x

A dzd
Xz ) (——’—_—x) @ x NP S (4.4)

r+z
=A+B.

If (z,t) ¢ R, and x < z < b then, 0 < z — x < 2¢. Therefore,

’ dzdt
_ » dzdt
‘['/<;r>¢xn i (t+z—x> e * (DI 2 <
X<z<b
//o , [(¢r * f)(z)lz Z dt _ s;f(f)(x)z < ()2, “s)
<z—-x<2t

Ifb<gz, thent4+z—x >1t+2z—bandwehave

t 2 Zdt
// xn(z, t) (‘t-f-z——) [(@ * DI ——

(2.1)¢ Rn
b=z

< &N (HB)? < o, (4.6)

The estimates (4.5) and (4.6) show that B < (1 + §2) < 2. Then, by (4.4) we obtain that

202 < / / ( ) e * P2 L Z‘” @7

(z.1)€Rn
zx

holds for every x belonging to E4 N J,.
Choose a closed set F,, , C Ey N J, such that

M
[(Eq N Jp)\Fanl < §(Xn+1 —Xn), (4.8)
and we define

M
Doypn={x € Fan:|FagnN[x—t,xl| > Zfiit’ Vi:0<t<|Jnl}.

We observe that D, , is closed. By Lemma 5, we have

5
|Fan\Danl = oM(Xnt1 — Xn) . (4.9)
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Let us assume D, , % @. Since Dy, C E, N Jy, then integrating both sides of (4.7) with respect to
x over Dy ,, we have

A
202|Dynl < f/ f (H; ) dx | (6 * /)@
n xeDq,

X<Z

LetW = UxeD,,_,, Ii(x), where I'1(x) = {(z, 1) : 0 < z — x < t}. By (4.10), we have

t
|2 Z (4.10)

2a% |Dgal <

— ! g 2 dzdt
(/./Iennw+//n\w) ‘[eDa_n (t+Z-x) dx { |(¢: * f)(DI _tz_ 4.11)

x5z

=I1+1I.

Let us estimate I. Since

A X
t 4
[ () o2 [ () =15
t+z—x o \IF+272—x A—-1

x€Da.n
1 5 dzdt
ISX—_—I//;nnWl(@*f)(Z)I -

Applying Lemma 5, we have
I 48

we obtain that

1 48
) 2
I<— % . ST (Hx)dx < =7 77 69" [Fanl
1 96
s 52 02 (Fng 1 — %) - (4.12)

Let us estimate /1. Since the set Dy , is not empty then m = min(Dy,,) exists. Denote
{Ci}k>1 the connected componentes of (m, b)\Dgy 5. Then,

il (I

k>1 (2. r)eR,;\W x€Dg n
2eCy x=z

t A dzdt
(t_;——;) dx | (g * H@)? —7 - (4.13)

Choose any C; = (c,d) and consider a sequence (ds)s>0 such that dy = d and d;_| — d; =
d; — ¢, s > 1. For any given non—negative integer s, if d; < z < ds—1,x < zand x € D, ,, then

x < c¢. Thus,
A A 1-A
t t ds—1 —d.
(____) dx_<_/ Adx=tl£3_l_i__
t+z—x 2—x>dsy—d; (2—X) A1

In consequence, we obtain that

Al

x=z
(z.0)€R\W x€Da,n
ds<z2dg_y x<z

A—Z 2
s —d)—— [ [ |60+ @I dzds .

(z.NeR\W
ds<z<dg_)

d
(:‘zt-_—) ax | 10« NP
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If(z,t) e Ry\Wandd; <z <ds;-),then0 <z —c¢ <2(d;—) —d;) and 0 <t < 2(d;—| — d).
Therefore, since ¢ belongs to E,, we get

A y
L; = ds—1 —ds) TF()(0)* < sy —d5) (Ba)? .
A-l A—1
Then,
Y
3 dzdt
// / (t+ ) dx 190 x NI =5
@nerRa\W \ YxeDan z—x t
ZECk X<z
2* 5
=Y L < ICil (Ba)? .
A -1
s>1

Summing up in k, and taking into account (4.13) we obtain that

I < &5 ey |0m, b\ Dl = 225 (5022104

A+2
< 25 (Ba)? (X1 = xn) -

Taking into account these inequalities, (4.12) and (4.11) we have that

96 (bx)?
20% | Dl < (—Aﬁzm) 2 (g =)

Since § < 1, this shows that

48 3 48 3
Dol < (ﬁ+2*+‘) T Gt —xn) 5 29— ——

Besides, if we choose § such that0 < & < (A — 1)2,\’;4248, by (4.8) and (4.9} we obtain for every
n>0,

(Xns1 — Xn) .

|Eq NJp] < M(Xp41 — Xn) -

Taking into account that w satisfies the condition AX and since M = PHIKY=11 we get

Ey, N TN\
K(-——-——————l !) W(xa—1, Xasg1)

w(Ey N Jn) Yool — X
n+1 — An

IA

2= (P2 W{Xn-1, Xn+1) -
Summing these inequalities for every n > 0, we have that
w(Ee N L) < 27D w(ly,

holds for every connected component /; of A,, which implies (4.3). Now, applying Theorem 35,
Theorem 6 and standard arguments (see [7, page 108]) it follows the theorem.

5. Application to Fractional Integrals
We begin this section by showing that the reverse inequality of (3.23) holds. More precisely:
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Proposition 1.

Let ¢ belong to S(R) supported on (—00, 0). Let m and n non-negative integers such that

n+m=>1l,and0<a<lIf

e de\'?
T HR) = ([o (g * £H(0)I? 7) ,

where ¢ is defined as in (3.21), then there exists a constant c such that

clflierwy < 18 (e »
holds if 1 < p < 0o, f € LP(w) and w € Af.

If we consider S} (f) as in Theorem 5, then (5.1) holds substituting ST (f) for g*(f).

5.1

Proof. Let f e LI N L2, f(x) = f(—x). Since the inequality (3.11) is valid for p = 2 and

w =1, we get
* d
f/o (@ * £ Ttdx < c/ If(x)?dx < o0.

Then, by Plancherel’s theorem

/ f @ % DR Lax = / / B0 Feolr Lax

0 t 0 t
o _ dt % o _ dt [

- / Bnp & f \Foo) P dx + / Bor L f \FeoP dx .
0 —=t Jooo 0 t Jo

Thus, i
[BOF e

- 1 -

Let ¥ (x) = ¢(—x). Then ¥ (x) =0 if x < 0 and we have

o0 —— dt P = =—d!
//0 (¢ * /XY * A)(x) de = //(; dx)Y(tx) f(x)h(x) de'

T e

Since ¥ (x) = ¢(x), we get that (5.3) is equal to

00 A 2 —
/ ( / ‘P('tx) dt) FOR) dx .
0

[y 2 00 Hr+\2
/ o (tx) dr =f o(t) dr
0 ¢ 0 t

We have thatif x > 0O

andif x <0

00 7 2 0 T2
[FR [ B,
0

4 —00

(5.2)

(5.3)

(5.4)

(5.5)

By (5.2) we know that 'i(:i' is integrable. On the other hand, $ can be extended to the upper

half-plane as

-

0
P(2) = f e g (x) dx .

This function $(z) is analytic for Zmz > 0 and

l9(2)| = e
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2
Then "’(f) is an analytic function on the upper half-plane and for z = x + iy,

172 c 1 c

$2)’ -
T L+l 22 T A+ D2

<

YRY YRV a2
Thus, we have that g2y € H'/2 and since 10 € L! we get that 2° € H!. Therefore,
Fe 1 g Z

oo I

Then the integrals (5.4) and (5.5) have the same value ¢ and we get
—_— -~ = o0 —  d
[ rerw as = [ Foeyax= [ fo G0x HEOTTRE Tdx

Since w € A;’,‘ implies that w PP e A;,, by the part of this theorem that we have already proved
we have

lel

< /8+(f)(X)g_(h)(X)dx

/ Fh(x) dx
t/p , , 1/p
= (/ gt (NHX)Pw(x) dx) (/ g~ (M) w(x)~ PP dx)

l/p
< ( f gH(Hx)Pw(x) dx) ClBN Lo (s 17 -

8(2)?
b4

Y . .
We observe that ¢ = f0°° 88 4y is different from zero. In fact, since <3 +Izcl) o then

t
00 32 00 Fre\2
1=/ ¢(fy) diy = (1) dt = ¢
0 ty 0 4

Now, if we assume that ¢ = 0, we have

0
Ply) = f P p(&) di

© 1 0 2
1=/ —([ e2"-vf¢<s)ds) dy=0.
o Y —00

This implies that for every y > 0, $(i y) = 0. Then, since () is analytic for Zmz > 0 we get that
¢ = 0 and thus ¢ = 0 by the unicity of the Fourier Transform. O

Lemma 6.
LetO < B8 <00, —00 < ¢ <00 and f(x) = 0 a function belonging to L}DC(C, 00). Assume

that there exists a pair (a, b), ¢ < a < b < o0 such that

® _fO)

Then (5.6) holds for every pair (a,b), ¢ <a < b.

and

Proof. The proof is easy and shall not be given. U
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Proposition 2.

Let0 <a < 1,1 < p < oo and w(x) > 0 such that w(x)~? P e L}OC(C, 00) where
—00 < ¢ < 00. Then, the following statements are equivalent:

(i) For every non-negative f(x), f € LP(w), we have that 1} (f)(x) is finite a.e. on (c, o).

(ii) There exists a pair (a, b), ¢ < a < b < 0o, such that

00 -p/p
/ 2OTTT 4 < . .7
b (y— a)(l—a)p

Proof. (i) implies (ii). Since
/‘oo —-—i(y)—dy < IFAHE) <o a.e. on (c, 00) ,
x+1 - x)l—a

by Lemma 6, with 8 = 1 — o, given a pair (a, b), ¢ < a < b < o0, the integral (5.6) is finite for
every [ € LP(w). Then by the Principle of Uniform Boundedness it turns out that (ii) holds.

(it) implies (i). By Lemma 6 since w(x)""/ PelL 110 (¢, oo) it follows that for every (a, ), ¢ <

a < b, (5.7) holds. In particular, if d > 0 and x > ¢, by Holder’s inequality we obtain

, 1/p
00 00 -p/p
] IO 4y < 1 fleew ( f —“’—”’————dy) <. (58

+d (y =)@ +d (y — x){-)p’
Let¢ < x1 < x2 < 0. By simple changes of variables and Holder’s inequality we get

x; x+d o x2+d
[ L9 Yo < £ [ 0

| (y —x)l-e x

, 1/p
@ +d ~p /P
< £l (92222 0) 7 <oo. (59)

The estimates (5.8) and (5.9) show that (i) holds. d

Let0 <« < 1, f € LP(w), w a weight in Aj; that satisfies (ii) of Proposition 2. By that
proposition, the difference If (f)(x+y)— I} (f)(x) is well defined for almost every y > 0, provided
I} (f)(x) is finite. Then

il ) — It 2 1/2
Da(f)(x) = ( /0 IF (NG +y) = IFHNH@) dy)

yl+2a

is well defined for almost every x, x_o, < x. For this Dy (f) we have the following theorem:

Theorem 8.
Let0 <a < 1,1 < p<ooandw € A;‘ satisfying condition (5.7). Then, there exists a
constant ¢y depending on a, p and w only, such that

ci 1 fllerwy < NDa(PllLrqw) - (5.10

On the other hand, there exists another constant c; depending on «, p and w only, such that
(a) ifa > 1/2
HDa(lLeewy < 2 1 fllLeqw) - (5.11)

(b)if0<a<1/2and p > 1—4_223 then (5.11) holds provided that w € A;’lizz_a£ - A;.
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Proof. Let fbea C&—function with support contained in (X_q0, Xoo). We are going to show that

forO0<pu <1
Da()(x) < ¢ {gH(HX) + STHE) + g1 (HX)} . (5.12)

holds with A = 2a + p. The functions g* and g} correspond to a kernel ¢ (x) = 3; I} [xe(x)] and
S has the kernel ¢ (x) = 31} [p(x)], where p(x) € C° and [ ¢ = 1. In fact, we have
IFH@ - IFHE+y) = [LHHE = @y * 15 (M ®)]+
[Coy * IF () = @y * IF (N + N] + [0y * IF N+ y) = IF(SHx +y)]
= Ii(x,y) + I(x, y) + I3(x, y) ,

thus,
et N
Du(f)x) <Y </ -’—Hirdy) =) 4.
— 0 y o
Jj=1 Jj=1
Procceding as in [13, page 162], we obtain

A(x) <cgt(NHx) . Ax) < e Si(fH(x)
and A3(x) < c gy (fHx),

with A = 2a + u, 1 — 2 < u < 1. Therefore, (5.12) holds. Then, in virtue of Theorems 5 and 7,
we get (5.11) for f in CJ.

If f is any function in L?(w), let { f,} be a sequence of Cé-—functions with support contained
in (x_go, Xoo) converging to f in LP(w) substituting | f — f»| by f in (5.8) and (5.9) we see that
I} (fu)(x) tends to IF(f)(x) ae. in (x—g0, ©0). Thus, if g(x, y) > O satisfies

I3

' 1
Xoo 00 dy /2 , /p
f (fo g(x,y)zylm) w@ P Pdx | <1,
X0

then, by Fatou’s Lemma and Holder’s inequality,

Xoo 0O d
/ /0 sGNNI +9) = LN = ds

.. Yoo OO + + dy
< lim mf/ /0 g, WG (fu)(x +y) — 1y (fp)(x)] e dx
< liminf | De(f)llLr(wy < ¢ Wiminf | follrwy = c I fllLe)

which implies that (5.11) holds for any f.
As for (5.10), procceding as in [13, page 162], we get

g (N = ¢ D))

for x_oo < x. Thus, (5.10) follows by integration and Proposition 1. O

6. Application to Multipliers

Let m(x) be a bounded measurable function defined on R. The operator
T £ (x) = m(x) f(x)

is well defined if f € S(R). With this notation we have the following theorem:
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Theorem 9.
Let m(x) (x € R) be the boundary value of an analytic and bounded function on the upper
half-plane. We assume that its derivative Dm(x) exists for every x # 0 and

X{iDm(x)] < ¢ , x#0.

Ifwe A;‘ .1 < p < 00, then there exists a constant ¢ depending on p and w only, such that

ITa(Pleewy < € 1f o) -
Proof. Let ¢ be a function with the following properties:

(i) ¢eSRandg >0,
@ii)  supp () C (—o0, 0] and 6.1
(iiiy f[edx>0.

We define ¢ (x) = —x¢(x) and ¥ (x) = ¢ * ¢(x)/x%. These functions ¢ and ¥ satisfy the
same conditions (6.1) that ¢ does. Since x2y(x) = (¢ * ¢)(x) it follows that

D¥(x) = [DF)P . 6.2)

Let M(x, t) bedefine by M (x, ) = m(x)@(tx). By (i) and (ii) we get that $(x) is the boundary
value of the function p(z) = ffm e~ 2712y y(y) dy, where Tm(z) > 0 and [3(z)| < ¢/1z**2. Then,
since |m(z)| < ¢, by the Cauchy’s Theorem it follows that

M(x,t)=0 for 0<x and £t >0. 6.3)
We define

U(x,1) = m(x) fx)Px) = Tn f(x)P (2x) and
Wx, 1) = FOP(x) .

Taking into account (6.2) it follows that
32U (x,t) = 3, M(x, 1) 3,0(x, 1) .

Thus,

[o0]

32U (x,1) =/ My, 1) qu(x —y, 1) dy.

-0

By a change of variables and (6.3) we have
o0
U (x,1) = f AM(=y, 1) du(x +y, t)dy.
Q

Following [13, page 961, we have that
gFTm(MNE) = cg(NHE).
Appealing to Proposition 1 and Theorem 7, and recalling that [ ¥ > 0, we get
ITn(POllerwy = € 1flLow)

whenever w € A;," .1 <p<oo. d
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