Volume 3, Special Issue, 1997

One-Sided Littlewood-Paley Theory

Liliana de Rosa and Carlos Segovia

ABSTRACT. In this article we develop the theory of one-sided versions of the g function of Littlewood and Paley, the area function S of Lusin and the g_{λ}^{*} that admit weighted norm estimates with weights belonging to the classes A_{p}^{+} of Sawyer. In Sections 1 and 2 we give definitions and some lemmas that shall be needed. Section 3 is devoted to the study of the one-sided version of the functions g and S. In Section 4 we obtain a good λ estimate for the one-sided g_{λ}^{*} function, and in Sections 5 and 6 we apply the results already obtained to fractional integrals and multiplier operators.

1. Notations and Definitions

As usual, $\mathcal{S}(\mathbb{R})$ denotes the class of all those C^{∞} -functions φ defined on \mathbb{R} such that

$$\sup_{x\in R}|x^{\alpha}(D^{\beta}\varphi)(x)|<\infty\,,$$

for all non-negative integers α and β . Let B be a Banach space and let r be a positive integer. We shall consider the space $C_0^r(B)$ of all B-valued functions φ defined on \mathbb{R} , with compact support and such that its derivatives $D^{\beta}\varphi$, $1 \leq \beta \leq r$, are continuous. If $B = \mathbb{R}$, we simply write C_0^r . Given a Lebesgue measurable set $E \subseteq \mathbb{R}$, we denote its Lebesgue measure by |E| and the characteristic function of E by χ_E . Let f be a measurable function defined on \mathbb{R} , the one-sided Hardy-Littlewood maximal functions M^-f and M^+f , are given by

$$M^{-}f(x) = \sup_{h>0} \frac{1}{h} \int_{x-h}^{x} |f(t)| dt \text{ and } M^{+}f(x) = \sup_{h>0} \frac{1}{h} \int_{x}^{x+h} |f(t)| dt.$$

For $0 < \alpha < 1$, the one-sided fractional integrals of f are defined as

$$I_{\alpha}^{-}f(x) = \frac{1}{\Gamma(\alpha)} \int_{-\infty}^{x} \frac{f(y)}{(x-y)^{1-\alpha}} \, dy \text{ and } I_{\alpha}^{+}f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{\infty} \frac{f(y)}{(y-x)^{1-\alpha}} \, dy$$

We extend these definitions to the case $\alpha = 0$, setting $I_0^- f(x) = I_0^+ f(x) = f(x)$.

As usual, a weight w is a measurable and non-negative function. If $E \subseteq \mathbb{R}$ is a Lebesgue measurable set, we denote its w-measure by $w(E) = \int_E w(t) dt$. A weight w belongs to the class

Math Subject Classifications. Keywords and phrases.

© 1997 CRC Press LLC ISSN 1069-5869

The authors were supported by a grant from Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina.

 A_p^+ , 1 , see [12], if there exists a constant C such that

$$\sup_{h>0} \left(\frac{1}{h} \int_{x-h}^{x} w(t) dt\right) \left(\frac{1}{h} \int_{x}^{x+h} w(t)^{-\frac{1}{p-1}} dt\right)^{p-1} \leq C$$

for all real number x, and w belongs to A_1^+ if $M^-w(x) \leq Cw(x)$ holds for almost every x. Given w belonging to A_p^+ , $1 \le p < \infty$, we can define $x_{-\infty} \ge -\infty$ and $x_{\infty} \le \infty$ such that

We always have $x_{-\infty} \leq x_{\infty}$. In order to avoid the non-interesting case of $x_{-\infty} = x_{\infty}$, we assume that there exists a measurable set E satisfying $0 < w(E) < \infty$.

If $(B, \|\cdot\|_{R})$ is a Banach space, we shall consider the Bochner-Lebesgue space $L^{p}_{p}(w), 1 \leq 1$ $p < \infty$, consisting of all strongly measurable functions $f : \mathbb{R} \to B$ for which

$$\|f\|_{L^p_B(w)} = \left(\int_{-\infty}^{\infty} \|f(x)\|_B^p w(x) \, dx\right)^{1/p} \, ,$$

is finite. If $B = \mathbb{R}$, the space $L_{R}^{p}(w)$ shall be denoted by $L^{p}(w)$.

Given two Banach spaces, $(A, \|\cdot\|_A)$ and $(B, \|\cdot\|_B)$, we denote by $\mathcal{L}(A, B)$ the space of all bounded linear operators T from A into B with the norm $||T||_{\mathcal{L}(A,B)} = \sup_{||x||_A=1} ||T(x)||_B$. The Hilbert space $H = L^2\left(\mathbb{R}^+, \frac{dt}{t}\right)$ consists of all measurable functions f defined on $\mathbb{R}^+ = (0, \infty)$ such that $||f||_{H} = \left(\int_{0}^{\infty} f(t)^{2} \frac{dt}{t}\right)^{1/2}$ is finite. Let c be a real number, we shall say that f belongs to $L^{1}_{loc}(c,\infty)$ if $\int_{a}^{b} |f(x)| dx < \infty$ for every $c < a < b < \infty$.

2. **Basic Lemmas**

The next lemma contains the results about fractional integrals that shall be needed in the sequel.

Lemma 1.

Let σ be a continuous function defined on the real line and $\gamma \geq 1$ such that,

(a) $supp(\sigma) \subset (-\infty, 0]$, $\lim_{x \to -\infty} D^s \sigma(x) = 0$, for every s, $0 \le s < \gamma$, and

(b) there exists β , $0 < \beta \le 1$ such that $|D^{\gamma}\sigma(x)| \le c/(1-x)^{\gamma+1+\beta}$ holds for x < 0. These conditions on σ imply that $|D^{s}\sigma(x)| \le c/(1-x)^{s+1+\beta}$ for x < 0, and $0 \le s < \gamma$. In addition to (a) and (b) we ask σ to satisfy (c) $\int_{-\infty}^0 \sigma(x) \, dx = 0.$

Then, given
$$0 < \alpha < \beta \le 1$$
 and any β' , $\alpha < \beta' < \beta$, we have that $I_{\alpha}^{+}(\sigma)$ satisfies:
(i) $I_{\alpha}^{+}(\sigma)(x) = 0$ if $x > 0$ and $\lim_{x \to -\infty} D^{s} I_{\alpha}^{+}(\sigma)(x) = 0$, for every s , $0 \le s < \gamma$,
(ii) $|D^{s} I_{\alpha}^{+}(\sigma)(x)| \le c/(1-x)^{s+1+\beta'-\alpha}$ for $x < 0$, and $0 \le s \le \gamma$, and
(iii) $\int_{-\infty}^{0} I_{\alpha}^{+}(\sigma)(x) dx = 0$.

Proof. We observe that if ρ is a bounded and integrable function, then the fractional integral $I_{\alpha}^{+}(\rho)$ is a bounded and continuous function tending to zero at infinity.

Let us estimate $I_{\alpha}^{+}(D^{s}\sigma)$, $1 \leq s \leq \gamma$. Let x < -2. Since supp $(\sigma) \subset (-\infty, 0]$, we have

$$I_{\alpha}^{+}(D^{s}\sigma)(x) = \int_{0}^{-x/2} \frac{D^{s}\sigma(x+y)}{y^{1-\alpha}} \, dy + \int_{-x/2}^{-x} \frac{D^{s}\sigma(x+y)}{y^{1-\alpha}} \, dy = I + II \, .$$

For the integral I we get,

$$|I| \leq \frac{c}{(1-x)^{s+1+\beta}} \left(\frac{-x}{2}\right)^{\alpha} \leq \frac{c}{(-x)^{s+1+\beta-\alpha}} \leq \frac{c}{(-x)^{s+1+\beta'-\alpha}}$$

In order to deal with II, we define

$$h_s(x) = \int_{-\infty}^x D^{s-1}\sigma(z) \, dz \, .$$

Since $|D^{s-1}\sigma(z)| \le c/(1-z)^{s+\beta}$, then $|D^{s-1}\sigma(z)| \le c/(1-z)^{s+\beta'}$ and using this estimate for $D^{s-1}\sigma$ it follows that

$$|h_s(x)| \leq \frac{c}{(1-x)^{s-1+\beta'}}$$
, $|Dh_s(x)| = |D^{s-1}\sigma(x)| \leq \frac{c}{(1-x)^{s+\beta'}}$

and

$$|D^2h_s(x)| = |D^s\sigma(x)| \le \frac{c}{(1-x)^{1+s+\beta'}}$$
 for $x < 0$

Moreover, $Dh_s(0) = D^{s-1}\sigma(0) = 0$ and $h_s(0) = \int_{-\infty}^0 D^{s-1}\sigma(z) dz = 0$. Then, integrating II by parts, we get

$$II = -Dh_s\left(\frac{x}{2}\right)\left(\frac{2}{-x}\right)^{1-\alpha} - (1-\alpha)h_s\left(\frac{x}{2}\right)\left(\frac{2}{-x}\right)^{2-\alpha} + (1-\alpha)(2-\alpha)\int_{-x/2}^{-x}\frac{h_s(x+y)}{y^{3-\alpha}}\,dy\,.$$

The first two terms are bounded by $c/(-x)^{1+s+\beta'-\alpha}$. The third term is bounded by

$$c \int_{-x/2}^{-x} \frac{1}{y^{3-\alpha}} \frac{1}{(-x-y)^{s-1+\beta'}} \, dy = \frac{c}{(-x)^{1+s+\beta'-\alpha}} \int_{1/2}^{1} \frac{1}{y^{3-\alpha}} \frac{1}{(1-y)^{\beta'}} \, dy \, .$$

Therefore, we have shown that

$$|I_{\alpha}^{+}(D^{s}\sigma)(x)| \leq \frac{c}{(-x)^{1+s+\beta'-\alpha}}, \quad 1 \leq s \leq \gamma, \qquad (2.1)$$

for any β' , $\alpha < \beta' < \beta$.

Now, we shall show that

$$\int_{-\infty}^{x} I_{\alpha}^{+}(D^{s}\sigma)(z) dz = D^{s-1}I_{\alpha}^{+}(\sigma)(x), \quad 1 \leq s \leq \gamma .$$

$$(2.2)$$

By (2.1) we know that $I_{\alpha}^{+}(D^{s}\sigma)$ is integrable and by the observation at the beginning of the proof $I_{\alpha}^{+}(D^{s}\sigma)$ is also continuous. Then, if (2.2) holds, it follows that $I_{\alpha}^{+}(D^{s}\sigma) = D^{s}I_{\alpha}^{+}(D\sigma)$, $1 \leq s \leq \gamma$, and we obtain parts (i) and (ii) of this lemma. Let us prove (2.2). For x < 0, we have

$$\int_{-N}^{x} I_{\alpha}^{+}(D^{s}\sigma)(z) dz = \int_{-N}^{x} \left(\int_{0}^{-z} \frac{D^{s}\sigma(z+y)}{y^{1-\alpha}} dy \right) dz$$

= $\int_{0}^{-x} \frac{1}{y^{1-\alpha}} \left(\int_{-N}^{x} D^{s}\sigma(z+y) dz \right) dy + \int_{-x}^{N} \frac{1}{y^{1-\alpha}} \left(\int_{-N}^{-y} D^{s}\sigma(z+y) dz \right) dy$
= $I_{\alpha}^{+}(D^{s-1}\sigma)(x) - I_{\alpha}^{+}(D^{s-1}\sigma)(-N)$.

Then taking the limit for N tending to infinity, we get that (2.2) holds. Let us prove (iii). From (2.1) and (2.2) we obtain

$$|I_{\alpha}^{+}(\sigma)(x)| \leq \frac{c}{(-x)^{1+\beta'-\alpha}} \quad \text{if} \quad x \leq 0.$$

By Fubini's Theorem, a change of variables, and (c)

$$\int_{-N}^{0} I_{\alpha}^{+}(\sigma)(x) \, dx = \int_{-N}^{0} \left(\int_{0}^{-x} \frac{\sigma(x+y)}{y^{1-\alpha}} \, dy \right) \, dx$$
$$= \int_{0}^{N} \frac{1}{y^{1-\alpha}} \left(\int_{-N+y}^{0} \sigma(z) \, dz \right) \, dy = -\int_{0}^{N} \frac{1}{y^{1-\alpha}} \left(\int_{-\infty}^{-N+y} \sigma(z) \, dz \right) \, dy \, .$$

The absolute value of the last integral is bounded by a constant times

$$\int_0^N \frac{1}{y^{1-\alpha}} \frac{1}{(1+N-y)^{\beta'}} \, dy = \frac{1}{N^{\beta'-\alpha}} \int_0^1 \frac{1}{y^{1-\alpha}} \frac{1}{(1-y)^{\beta'}} \, dy$$

Then taking the limit for N tending to infinity it follows that

$$\int_{-\infty}^0 I_{\alpha}^+(\sigma)(x)\,dx = 0\,.$$

ending the proof of the lemma.

Lemma 2.

Let $\varphi \in S(\mathbb{R})$, m a positive integer and $\rho(x) = x^m \varphi(x)$. Then, for every t > 0, holds

$$\partial_t^m \varphi_t(x) = \partial_t^m \left[\frac{1}{t} \varphi\left(\frac{x}{t}\right) \right] = \frac{(-1)^m}{t^{m+1}} \left[\left(\frac{d}{dx} \right)^m \rho \right] \left(\frac{x}{t} \right) .$$

Proof. The proof is simple and shall be omitted.

Lemma 3.

Let $w \in A_q^+$, $1 < q < \infty$ and $0 < t \le 1$. Then for every non-negative $u \in L^{q'/t}(w)$ there exists a non-negative $v \in L^{q'/t}(w)$ such that

- (a) $u(x) \le v(x) a. e.,$
- (b) $\|v\|_{L^{q'/t}(w)} \le 2\|u\|_{L^{q'/t}(w)}$ and (c) $vw \in A_p^+$ if p = (1-t)q + t.

Proof. This is the one-sided version of Lemma 5.17 of [5, page 447]. The sublinear function used in the proof of our lemma is $S(u) = (M^{-}(|u|^{1/t}w)w^{-1})^{t}$.

Lemma 4.

Let B be a Banach space and $1 < r < \infty$. Let U_j be a sequence of linear operators such that

$$\left(\int \|U_j f(x)\|_B^r \rho(x) \, dx\right)^{1/r} \le c_r(\rho) \, \left(\int |f(x)|^r \rho(x) \, dx\right)^{1/r} \tag{2.3}$$

holds for every $\rho \in A_r^+$ with a constant $c_r(\rho)$ not depending on j. Then, for every 1 and $1 < q < \infty$, we have that

$$\left(\int \left(\sum_{j} \|U_{j}f_{j}(x)\|_{B}^{p}\right)^{q/p} w(x) dx\right)^{1/q}$$
(2.4)

$$\leq c_{p,q}(w) \left(\int \left(\sum_{j} |f_j(x)|^p \right)^{q/p} w(x) \, dx \right)^{1/q}$$

holds for every $w \in A_a^+$.

Proof. We observe that by extrapolation, see [9], if (2.3) holds for a given $r, 1 < r < \infty$, then it holds for every $r, 1 < r < \infty$. If p = q, the proof of the theorem is trivial. Let p < q, by Lemma 3 with t = (q - p)/(q - 1) given $0 \le u \in L^{(q/p)'}(w)$ there exists v such that

$$\|v\|_{L^{(q/p)'}(w)} \leq 2 \|u\|_{L^{(q/p)'}(w)},$$

and

$$\left(\int \|U_j f\|_B^p u(x)w(x) \, dx\right)^{1/p} \le \left(\int |f(x)|^p v(x)w(x) \, dx\right)^{1/p}$$

where c does not depend on j. Then proceeding as in Theorem 6.1 of [5, page 519] we get (2.4) for 1 . As for the case <math>p > q we have

$$\left(\int \left(\sum_{j} \|U_{j}f_{j}(x)\|_{B}^{P}\right)^{q/p} w(x) \, dx\right)^{1/q} = \int \sum_{j} \|U_{j}f\|_{B} \, g_{j}(x) \, dx \, dx$$

where $\{g_j(x)\} \in L^{q'}_{\ell^{p'}}(w^{-q'/q})$. Now proceeding as in the proof of Theorem 6.4 of [5, page 519] we obtain that (2.4) holds for p > q.

3. One-Sided Littlewood-Paley and Lusin Area Functions

In this section we shall develop the theory of the one-sided versions of the Littlewood-Paley and Lusin area functions using vector-valued methods.

Theorem 1.

Let H_1 and H_2 be Hilbert spaces and k a strongly measurable $\mathcal{L}(H_1, H_2)$ -valued function defined for $x \neq 0$, and strongly measurable. Assume that k satisfies the conditions

 $(i) ||k(x)||_{\mathcal{L}(H_1,H_2)} \leq B_1 \frac{1}{|x|},$

(ii) for $x \neq 0$, Dk(x) exists in the $\mathcal{L}(H_1, H_2)$ -norm and

$$||Dk(x)||_{\mathcal{L}(H_1,H_2)} \leq B_2 \frac{1}{|x|^2},$$

(iii) for any pair (ϵ, N) , $0 < \epsilon < N$,

$$\left\|\int_{\epsilon<|x|$$

(iv) if x > 0, then k(x) = 0.

Then, the operator

$$K^*f(x) = \sup_{\epsilon>0} \left\| \int_{|x-y|>\epsilon} k(x-y)f(y) \, dy \right\|_{H_2},$$

satisfies: if $w \in A_p^+$, 1 , there exists a constant c such that

$$\int K^* f(x)^p w(x) \, dx \leq c \int \|f(x)\|_{H_1}^p w(x) \, dx$$

holds, and if $w \in A_1^+$, there exists a constant c such that

$$\lambda w\left(\left\{x: K^*(f)(x) > \lambda\right\}\right) \leq c \int \|f(x)\|_{H_1} w(x) dx$$

holds for any $\lambda > 0$. The constants c depend on p, B₁, B₂, B₃ and the constant of the condition A_p^+ for w.

Proof. The proof is a straightforward generalization of the proof given in [1] for the scalar case, i.e., $H_1 = H_2 = \mathbb{C}$ the complex numbers.

Theorem 2.

If in addition to conditions (i), (ii), (iii) and (iv) of Theorem 1 we assume that (v) For any $u \in H_1$ and $v \in H_2$,

$$\lim_{\epsilon \to 0} \left\langle v, \left(\int_{\epsilon < |x| < 1} k(x) \, dx \right) u \right\rangle \tag{3.1}$$

exist, then

$$Kf(x) = \lim_{\epsilon \to 0} \int_{|x-y| > \epsilon} k(x-y)f(y) \, dy = \lim_{\epsilon \to 0} K_{\epsilon}f(x) \tag{3.2}$$

exists weakly in H_2 for any $f \in C_0^1(H_1)$,

$$\int \|Kf(x)\|_{H_2}^p w(x) \, dx \leq c_p \int \|f(x)\|_{H_1}^p w(x) \, dx \tag{3.3}$$

holds for $1 , <math>w \in A_p^+$, and

$$\lambda w \left(\left\{ x : \|Kf(x)\|_{H_2} > \lambda \right\} \right) \le c_1 \int \|f(x)\|_{H_1} w(x) \, dx \tag{3.4}$$

holds for any $\lambda > 0$ and $w \in A_1^+$.

Moreover, Kf can be extended to $L_{H_1}^p(w)$ and so that (3.3) and (3.4) hold and the limit in (3.2) exists weakly in H_2 a.e. for a general $f \in L_{H_1}^p(w), w \in A_p^+, 1 \le p < \infty$.

Proof. Assumption (v) is equivalent to assume that there exists $l \in \mathcal{L}(H_1, H_2)$ such that the limit in (3.1) is equal to $\langle v, lu \rangle$. Then, if $f \in C_0^1(H_1)$ and $v \in H_2$

$$\lim_{\epsilon \to 0} \langle v, K_{\epsilon} f(x) \rangle = \left\langle v, \int_{|x-y|<1} k(x-y) [f(y) - f(x)] \, dy \right\rangle + \left\langle v, \int_{|x-y|>1} k(x-y) f(y) \, dy \right\rangle + \left\langle v, lf(x) \right\rangle = \left\langle v, Kf(x) \right\rangle.$$

Now, Theorem 1 and standard arguments (see, for instance [3, page 110]), allow us to extend K to a general $f, f \in L^p_{H_1}(w)$, remaining valid (3.2), (3.3), and (3.4).

Given an integer $\gamma \ge 1$ and $x \in \mathbb{R}$, we shall say that a C_0^{∞} -function ψ belongs to the class $\Phi_{\gamma}(x)$ if there exists a bounded interval $I_{\psi} = [x, \beta]$ containing the support of ψ such that $D^{\gamma}\psi$ satisfies

$$|I_{\psi}|^{\gamma+1} ||D^{\gamma}\psi||_{\infty} \leq 1$$
.

Let F be a distribution on $\mathcal{D}'(r,\infty), -\infty \leq r < \infty$. We define the one-sided maximal function $F^*_{+,\gamma}(x)$ as

$$F^*_{+,\gamma}(x) = \sup\{| < F, \psi > | : \psi \in \Phi_{\gamma}(x)\}$$

for every x > r.

Fixed $w \in A_q^+$, $q \ge 1$, we shall consider $x_{-\infty}$ and x_{∞} as in (1.1). Given 0 < p, and $\gamma \ge 1$ satisfying

$$(\gamma + 1)p \ge q > 1 \text{ or } (\gamma + 1)p > q = 1,$$
 (3.5)

we shall say that the distribution F in $\mathcal{D}'(x_{-\infty},\infty)$, belongs to $H^p_{+,\gamma}(w)$ if

$$\|F\|_{H^{p}_{+,\gamma}(w)} = \left(\int_{x_{-\infty}}^{\infty} F^{*}_{+,\gamma}(x)^{p} w(x) \, dx\right)^{1/p}$$

is finite.

Remark 1.

We observe that if γ_1 and γ_2 satisfy the condition (3.5) and $\gamma_1 \leq \gamma_2$, then, taking into account the definition of $F^*_{+,\gamma}$, we have the inclusion $H^p_{+,\gamma_1}(w) \subseteq H^p_{+,\gamma_2}(w)$. On the other hand, in virtue of the decomposition into atoms obtained in Theorem 2.2 of [11], it follows that $H^p_{+,\gamma_2}(w) \subseteq H^p_{+,\gamma_1}(w)$, and therefore $H^{p}_{+,\gamma_{1}}(w) = H^{p}_{+,\gamma_{2}}(w)$. Finally, we remark that the set of all bounded functions f with bounded support belonging to $H^p_{+,\gamma}(w)$ is dense in $H^p_{+,\gamma}(w)$. Also, it can be shown that the set of C_0^1 -functions f belonging to $H_{+,v}^p(w)$ is dense in $H_{+,v}^p(w)$.

Theorem 3.

and

Let y be a positive integer and 0 such that <math>p(y + 1) > 1. Let K be a singular integral operator as in Theorem 1 for $H_1 = \mathbb{C}$ and $H_2 = H$, a Hilbert space. Moreover, we assume that the kernel k of K satisfies

$$\|D^{\ell}k(x)\|_{\mathcal{L}(C,H)} \leq B_{2,\ell} \frac{1}{|x|^{\ell+1}}, \qquad (3.6)$$

for every ℓ , $0 \le \ell \le \gamma$. Then, if $w \in A_{p(\gamma+1)}^+$ we have

$$\int_{x_{-\infty}}^{\infty} \|Kf(x)\|_{H}^{p} w(x) \, dx \leq c \, \int_{x_{-\infty}}^{\infty} f_{+,\gamma}^{*}(x)^{p} \, w(x) \, dx \tag{3.7}$$

with a constant c not depending on f.

Proof. Let f be a bounded function with bounded support. Since f induces a distribution in $\mathcal{D}(-\infty,\infty)$, then we consider the maximal function $f_{+,y}^*(x)$ defined for every real number x. The sets

$$\Omega_i = \{x : f^*_{+,\gamma}(x) > 2^i\}, \quad i \in \mathbb{Z}$$

are open and bounded. Then, applying Theorem 2.2 of [11], with respect to $w \equiv 1$, if $I_{i,j}$ stands for the connected components of Ω_i , there exist functions $a_{i,j}(x)$ such that

(i) $||a_{i,j}||_{\infty} \leq C$, (ii) $supp(a_{i,j}) \subseteq I_{i,j}$, (iii) $\int a_{i,j}(x)x^s dx = 0$ for every $s, 0 \le s \le \gamma - 1$, (iv) $f(x) = \sum_{i} 2^{i} \sum_{j} a_{i,j}(x)$ in L^{2} . Thus, i,j(x)

$$Kf(x) = \sum_{i} 2^{i} \sum_{i} Ka_{i}$$

in the sense of L_H^2 , and therefore

$$||Kf(x)||_{H} \leq \sum_{i} 2^{i} \sum_{j} ||Ka_{i,j}(x)||_{H}$$

Given a bounded interval $I = [\alpha, \beta]$, we denote $\tilde{I} = [3\alpha - 2\beta, \beta]$. Since (3.6) holds, it can be shown, as usual, that for $x \notin \tilde{I}_{i,j}$ we have

$$\|Ka_{i,j}(x)\|_{H} \leq c \left[M^{+}(\chi_{I_{i,j}})(x)\right]^{\gamma+1}.$$
(3.8)

If $x \in \tilde{I}_{i,j}$ and $||Ka_{i,j}(x)||_H \le 1$ we see that (3.8) holds with a constant which is a fixed multiple of the former c. Finally, if $x \in \tilde{I}_{i,j}$ and $||Ka_{i,j}(x)||_H > 1$, then

$$||Ka_{i,j}(x)||_{H} \leq ||Ka_{i,j}(x)||_{H}^{\gamma+1}.$$

Thus, we have shown that for any x

$$\|Ka_{i,j}(x)\|_{H} \leq c \, [M^{+}(\chi_{I_{i,j}})(x)^{\gamma+1} + \|Ka_{i,j}(x)\|_{H}^{\gamma+1}]$$

holds. Then,

$$\begin{split} \int \|Kf(x)\|_{H}^{p} w(x) \, dx &\leq c_{p} \int \left(\sum_{i,j} M^{+} (2^{i/(\gamma+1)} \chi_{I_{i,j}})(x)^{\gamma+1} \right)^{\frac{p(\gamma+1)}{\gamma+1}} w(x) \, dx \\ &+ c_{p} \int \left(\sum_{i,j} \|K(2^{i/(\gamma+1)} a_{i,j})(x)\|_{H}^{\gamma+1} \right)^{\frac{p(\gamma+1)}{\gamma+1}} w(x) \, dx \; . \end{split}$$

Since $w \in A_{p(\gamma+1)}^+$, by Lemma 4 applied to the operators M^+ and K, we obtain

$$\int \|Kf(x)\|_{H}^{p} w(x) dx \leq c \int \left(\sum_{i} 2^{i} \sum_{j} \chi_{I_{i,j}}(x)\right)^{p} w(x) dx$$
$$\leq c \int \left(\sum_{i} 2^{i} \chi_{\Omega_{i}}(x)\right)^{p} w(x) dx \leq c' \int f_{+,\gamma}^{*}(x)^{p} w(x) dx.$$

By Remark 1, (3.7) holds for every $f \in H^p_{+,\gamma}(w)$.

Theorem 4.

Let γ be a positive integer and $0 such that <math>p(\gamma + 1) > 1$. Let ϕ be a function satisfying

(i) $\phi(x) = 0$ if x > 0 and $\lim_{x \to -\infty} D^{\ell} \phi(x) = 0$ for every $\ell, 0 \le \ell < \gamma$, (ii) $D^{\gamma-1} \phi$ is continuously differentiable on $(-\infty, 0)$, and for a $\beta, 0 < \beta \le 1$

$$|D^{\gamma}\phi(x)| \leq \frac{c_{\gamma}}{(1-x)^{1+\gamma+\beta}} \quad if \quad x < 0 \, .$$

These conditions imply

$$|D^{\ell}\phi(x)| \leq \frac{c_{\ell}}{(1-x)^{1+\ell+\beta}} \quad if \quad x < 0 \text{ and } 0 \leq \ell \leq \gamma.$$
(3.9)

In addition to (i) and (ii), let us assume

(iii) $\int_{-\infty}^{\infty} \phi(y) \, dy = 0.$

Then, if we define

$$g^{+}(f)(x) = \left(\int_{0}^{\infty} |(\phi_{t} * f)(x)|^{2} \frac{dt}{t}\right)^{1/2}$$

there exists a constant c such that

$$\|g^{+}(f)\|_{L^{p}(w)} \leq c \|f^{*}_{+,\gamma}\|_{L^{p}(w)}$$
(3.10)

holds if $w \in A_{p(\gamma+1)}^+$. In consequence, if p > 1 and $w \in A_p^+$, there exists a constant c' such that

$$\|g^{+}(f)\|_{L^{p}(w)} \leq c' \|f\|_{L^{p}(w)}.$$
(3.11)

Moreover, for $\lambda > 0$

$$\lambda w \left(\left\{ x : g^+(f)(x) > \lambda \right\} \right) \le c \| f \|_{L^1(w)}$$
(3.12)

holds if $w \in A_1^+$.

If for a > 0, we define

$$S_a^+(f)(x) = \left(\int \int_{0 \le z < at} |(\phi_t * f)(x+z)|^2 \frac{dzdt}{t^2} \right)^{1/2}$$

we obtain that (3.10), (3.11), and (3.12) hold substituting $S_a^+(f)$ for $g^+(f)$.

Proof. We give the proof for $g^+(f)$. The proof for $S_a^+(f)$ is similar. Let $H_1 = \mathbb{C}$, the complex numbers, and $H_2 = H = L^2(\mathbb{R}^+, \frac{dt}{t})$. We shall show that the kernel $k(x) = \phi_t(x) = t^{-1}\phi(x/t)$ satisfies the hypotheses of Theorem 2 and therefore the conclusions of that theorem. Moreover, in this case the operator K can be given explicitly as

$$Kf(x) = (\phi_t * f)(x),$$
 (3.13)

almost everywhere on the halfline $x_{-\infty} < x$.

We observe that an operator $M \in \mathcal{L}(\mathbb{C}, H)$ coincides with a function m(t) in the sense Mu = m(t).u for any complex number u, and $||M||_{\mathcal{L}(\mathbb{C},H)} = ||m||_{H}$.

Let us prove that condition (i) of Theorem 1 holds for $k(x) = \phi_t(x)$. If $x \neq 0$, then

$$\begin{split} \|k(x)\|_{\mathcal{L}(\mathbb{C},H)} &= \left(\int_0^\infty |\phi_t(x)|^2 \frac{dt}{t}\right)^{1/2} \le c \left(\int_0^\infty \left(\frac{t}{t+|x|}\right)^{2+2\beta} \frac{dt}{t^3}\right)^{1/2} \\ &= \frac{c}{|x|} \left(\int_0^\infty \left(\frac{t}{t+1}\right)^{2+2\beta} \frac{dt}{t^3}\right)^{1/2} < \infty \,. \end{split}$$

Next, we show inductively that condition (3.6) of Theorem 3 holds. If $x \neq 0$, $|h| < \frac{|x|}{2}$, and $0 \le s \le 1$, we have $|x + sh| \ge \frac{|x|}{2}$. Then, for $0 < \ell \le \gamma$, and applying (3.9),

$$\begin{aligned} \left| \frac{1}{h} [D^{\ell-1} \phi_t(x+h) - D^{\ell-1} \phi_t(x)] \right| &= \left| \frac{1}{h} \frac{1}{t^{\ell-1}} \left[D^{\ell-1} \phi\left(\frac{x+h}{t}\right) - D^{\ell-1} \phi\left(\frac{x}{t}\right) \right] \right| \\ &\leq \frac{1}{t^{\ell+1}} \int_0^1 \left| D^\ell \phi\left(\frac{x+sh}{t}\right) \right| ds \\ &\leq c'_\ell t^{-\ell-1} \left(\frac{t}{t+|x|} \right)^{1+\ell+\beta} , \end{aligned}$$

and thus,

$$\left|\frac{1}{h}\left[D^{\ell-1}\phi_t(x+h) - D^{\ell-1}\phi_t(x)\right] - \frac{1}{t^{\ell+1}}D^{\ell}\phi\left(\frac{x}{t}\right)\right| \le c_{\ell}''t^{-\ell-1}\left(\frac{t}{t+|x|}\right)^{1+\ell+\beta}$$

Squaring and integrating with respect to the measure dt/t, and applying Lebesgue's Dominated Convergence Theorem, our claim follows.

In order to prove condition (iii) of Theorem 1 we observe that hypothesis (iii) implies

$$\left| \int_{|x| < r} \phi(x) \, dx \right| \leq c \frac{r}{(1+r)^{1+\beta}} \,, \tag{3.14}$$

see [2, page 363]. We have

$$\left\| \int_{\epsilon < |x| < N} k(x) \, dx \right\|_{H} \le \left\| \int_{|x| < \epsilon} \phi_t(x) \, dx \right\|_{H} + \left\| \int_{|x| < N} \phi_t(x) \, dx \right\|_{H} \,. \tag{3.15}$$

Since by (3.14) and a change of variables

$$\left|\int_{|x|< r} \phi_t(x) \, dx\right| \leq c \, \frac{r/t}{(1+r/t)^{1+\beta}}$$

we get that $\left\| \int_{|x| < r} \phi_t(x) \, dx \right\|_H \leq C$. Then, the right-hand side of (3.15) is bounded by 2C.

Condition (iv) of Theorem 1 is obvious for $k(x) = \frac{1}{t}\phi(\frac{x}{t})$. Finally, we shall prove the condition (v) of Theorem 2 for $k(x) = \phi_t(x)$. We want to show that for $\epsilon_1 < \epsilon_2$

$$\int_0^\infty h(t) \left(\int_{\epsilon_1 < |x| < \epsilon_2} \phi_t(x) dx \right) \frac{dt}{t} \le \max_{i=1,2} \int_0^\infty |h(t)| \left| \int_{|x| < \epsilon_i} \phi_t(x) dx \right| \frac{dt}{t}$$
(3.16)

tends to zero with ϵ_2 provided that $h(t) \in L^2(\mathbb{R}^+, \frac{dt}{t})$. Let $\eta > 0$ to be chosen. Then, splitting the domain of integration into $t < \eta$ and $t \ge \eta$, and applying Schwarz inequality, we have

$$\int_{0}^{\infty} |h(t)| \left| \int_{|x| < \epsilon} \phi_{t}(x) dx \right| \frac{dt}{t} \leq \left(\int_{0}^{\eta} |h(t)|^{2} \frac{dt}{t} \right)^{1/2} \left(\int_{0}^{\infty} \left| \int_{|x| < \epsilon} \phi_{t}(x) dx \right|^{2} \frac{dt}{t} \right)^{1/2} + \left(\int_{0}^{\infty} |h(t)|^{2} \frac{dt}{t} \right)^{1/2} \left(\int_{\eta}^{\infty} \left| \int_{|x| < \epsilon} \phi_{t}(x) dx \right|^{2} \frac{dt}{t} \right)^{1/2} .$$

$$(3.17)$$

By (3.14), we have

$$\left|\int_{|x|<\epsilon}\phi_t(x)\,dx\right| \leq c\,\frac{\epsilon/t}{(1+\epsilon/t)^{1+\beta}}\,.$$

Thus,

$$\left(\int_0^\infty \left|\int_{|x|<\epsilon}\phi_t(x)\,dx\right|^2\,\frac{dt}{t}\right)^{1/2} \le c\left(\int_0^\infty \frac{t^{2\beta-1}}{(t+1)^{2+2\beta}}\,dt\right)^{1/2} < \infty$$

and

$$\left(\int_{\eta}^{\infty} \left|\int_{|x|<\epsilon} \phi_t(x) \, dx\right|^2 \, \frac{dt}{t}\right)^{1/2} \le c\epsilon \left(\int_{\eta}^{\infty} \frac{t^{2\beta-1}}{(t+\epsilon)^{2+2\beta}} dt\right)^{1/2} \le c\frac{\epsilon}{\eta}$$

Now if we choose η small enough, and then ϵ small enough, we get that the left-hand side of (3.17) and therefore that of (3.16) is as small as we please.

Let us prove that (3.13) holds. Let f belong to C_0^1 , by Theorem 2,

$$Kf(x) = \lim_{\epsilon \to 0} \int_{|x-y| > \epsilon} \phi_t(x-y) f(y) \, dy = \lim_{\epsilon \to 0} K_\epsilon f(x)$$

exists weakly in $H = L^2(\mathbb{R}^+, \frac{dt}{t})$. Then, by a theorem of Banach and Sacks, [8, page 80] there exists a sequence $\epsilon_k \to 0$ such that the means

$$S_n(x) = (K_{\epsilon_1} f(x) + \dots + K_{\epsilon_n} f(x))/n$$

converge strongly to Kf(x) in H. Since f is bounded and ϕ is integrable, by applying Lebesgue's Dominated Convergence Theorem, for every fixed x we have

$$\lim_{\epsilon \to 0} K_{\epsilon} f(x) = \lim_{\epsilon \to 0} \int_{|x-y| > \epsilon} \phi_t(x-y) f(y) \, dy = (\phi_t * f)(x) \,,$$

for every t > 0. Then $Kf(x) = (\phi_t * f)(x)$ as an element of H for every x.

Given f a distribution in $\mathcal{D}'(x_{-\infty}, \infty)$, let φ belong to $\mathcal{D}(x_{-\infty}, \infty)$ such that the support of φ is contained in an interval I = [a, b]. Since $x_{-\infty} < a$, there exists $a', x_{-\infty} < a' < a$, such that $a - a' \leq |I| = b - a$. Therefore, if $\tilde{I} = [a', a]$, by the definition of $f_{+,\gamma}^*$, we have that

$$|\langle f, \varphi \rangle| \leq 2^{\gamma+1} |I|^{\gamma+1} ||D^{\gamma}\varphi||_{\infty} f^*_{+,\gamma}(x),$$

holds for every $x \in \tilde{I}$. Taking the p-power and averaging on \tilde{I} , we obtain

$$|\langle f, \varphi \rangle| \leq 2^{\gamma+1} \frac{|I|^{\gamma+1}}{w(\tilde{I})^{1/p}} \|D^{\gamma}\varphi\|_{\infty} \|f\|_{H^{p}_{+,\gamma}(w)}.$$

Now, let φ be a function with continuous derivatives up to the order γ , with support contained in the halffine $[a, \infty)$, where $a > x_{-\infty}$ and such that

$$|||\varphi|||_{\gamma,\gamma+1+\beta} = \sup_{x} |D^{\gamma}\varphi(x)|(1+|x|)^{\gamma+1+\beta} < \infty$$

For simplicity and without loss of generality we assume that $a = 0 > x_{-\infty}$.

Let $(\psi_k)_{k\geq 0}$ be a sequence of non-negative C_0^{∞} -functions, satisfying:

For
$$k \ge 1$$
, support $(\psi_k) \subset [2^{k-1}, 2^{k+1}]$, and support $(\psi_0) \subset [-1, 2]$,

 $\sum_{k>0} \psi_k(x) = 1$ if $x \ge 0$, and

 $\|D^s\psi_k\|_{\infty}\leq C\ 2^{-ks},\ 1\leq s\leq \gamma.$

Thus,

$$\varphi(x) = \sum_{k\geq 0} \psi_k(x)\varphi(x) .$$

We choose an interval $J = (\max(x_{-\infty}, -1), 0]$ and for each $x \in J$ and $k \ge 0$, we denote J_k to the interval $[x, 2^{k+1}]$. Therefore, for every $k \ge 0$ we get

$$|J_k|^{\gamma+1} \|D^{\gamma}(\varphi \psi_k)\|_{\infty} \leq C_{\gamma} \||\varphi\||_{\gamma,\gamma+1+\beta} \sum_{k\geq 0} 2^{-k\beta}$$

Then, we can extend the distribution f to these functions φ as

$$\langle f, \varphi \rangle = \sum_{k \ge 0} \langle f, \varphi \psi_k \rangle$$

and we have that

$$|\langle f, \varphi \rangle| \leq \sum_{k \geq 0} |\langle f, \varphi \psi_k \rangle| \leq C_{\gamma} f^*_{+,\gamma}(x) |||\varphi|||_{\gamma,\gamma+1+\beta} \sum_{k \geq 0} 2^{-k\beta}$$
$$\leq C_{\gamma,\beta} f^*_{+,\gamma}(x) |||\varphi|||_{\gamma,\gamma+1+\beta}, \qquad (3.18)$$

holds for every $x \in J$. Taking the p-power and the average on J, we obtain

$$|\langle f, \varphi \rangle| \leq C_{\gamma,\beta} |||\varphi|||_{\gamma,\gamma+1+\beta} \left(\frac{1}{w(J)} \int_{x_{-\infty}}^{\infty} f_{+,\gamma}^*(x)^p w(x) \, dx \right)^{1/p}$$
 (3.19)

By Remark 1, if f belongs to $H^p_{+,\gamma}(w)$ there exists a sequence $(f_n)_{n\geq 1}$ of C^1_0 -functions such that f_n tends to f in $H^p_{+,\gamma}(w)$. Taking into account Theorem 3

$$\int_{x_{-\infty}}^{\infty} \|Kf_n(x) - Kf_m(x)\|_{H}^{p} w(x) \, dx \leq c \, \int_{x_{-\infty}}^{\infty} (f_n - f_m)_{+,\gamma}^{*}(x)^{p} w(x) \, dx$$

which implies that there exists $Kf = \lim_{n \to \infty} Kf_n$ in $L_H^p(w)$.

Since for every $\lambda > 0$, we have

$$w\left(\left\{x > x_{-\infty} : \|Kf(x) - Kf_m(x)\|_H > \lambda\right\}\right) \to 0$$

then there exists a subsequence of $(Kf_n)_{n\geq 1}$ that converges in H for almost every x. Let x_0 be a point for which the subsequence converges in $H = L^2(\mathbb{R}^+, \frac{dt}{t})$. Then, there exists a new subsequence, depending on x_0 , such that we shall denote $(Kf_m(x_0))_{m\geq 1}$, satisfying

$$Kf(x_0) = \lim_{m \to \infty} Kf_m(x_0) \quad a.e. \text{ in } t > 0.$$

On the other hand, since $f_m \in C_0^1$ we know that $K f_m(x_0) = \phi_t * f_m(x_0)$. Taking into account (3.19)

$$\begin{aligned} &|\phi_t * f_m(x_0) - \phi_t * f(x_0)| \\ &\leq C_{\gamma,\beta} |||\phi_t|||_{\gamma,\gamma+1+\beta} \left(\frac{1}{w(J)} \int_{x-\infty}^{\infty} (f_m - f)^*_{+,\gamma}(x)^p w(x) \, dx \right)^{1/p} \end{aligned}$$

Then, $\phi_t * f_m(x_0)$ tends to $\phi_t * f(x_0)$, and in consequence $Kf(x) = \phi_t * f(x)$ for almost every x and almost every t > 0.

Let φ belong to $\mathcal{S}(\mathbb{R})$ supported on $(-\infty, 0]$. Let *m* and *n* non-negative integers such that $m + n \ge 1$, and $0 \le \alpha < 1$. We define

$$g^+(f)(x) = \left(\int_0^\infty |t^{n+m-\alpha} \partial_x^n \partial_t^m I_\alpha^+(\varphi_t * f)(x)|^2 \frac{dt}{t}\right)^{1/2}$$

and

$$S_a^+(f)(x) = \left(\int \int_{0 \le z < at} |t^{n+m-\alpha} \partial_x^n \partial_t^m I_\alpha^+(\varphi_t * f)(x+z)|^2 \frac{dzdt}{t^2}\right)^{1/2} ,$$

where $0 < a < \infty$.

In order to apply Theorem 4, we observe that

$$\partial_x^n \partial_t^m I_\alpha^+(\varphi_t)(x) = I_\alpha^+(\partial_x^n \partial_t^m \varphi_t)(x)$$
(3.20)

and, by Lemma 2,

$$\partial_x^n \partial_t^m \varphi_t(x) = \frac{(-1)^m}{t^{m+1}} \partial_x^n \left[\left(\frac{d}{dx} \right)^m \rho \left(\frac{x}{t} \right) \right] \\ = \frac{(-1)^m}{t^{m+n+1}} \left[\left(\frac{d}{dx} \right)^{n+m} \rho \right] \left(\frac{x}{t} \right)$$

where $\rho(x) = x^m \varphi(x)$. Then, (3.20) is equal to

$$\frac{(-1)^m}{t^{n+m-\alpha+1}} I_{\alpha}^+ \left[\left(\frac{d}{dx} \right)^{n+m} \rho \right] \left(\frac{x}{t} \right) .$$

Therefore, $g^+(f)$ and $S^+_a(f)$ are defined as in Theorem 4 for

$$\phi(x) = (-1)^m I_{\alpha}^+ \left[\left(\frac{d}{dx} \right)^{n+m} x^m \varphi \right].$$
(3.21)

Applying Lemma 1 to $\sigma = (-1)^m D^{n+m}(x^m \varphi)$ and by Theorem 4, we have the following theorem: Theorem 5.

Let φ belong to $S(\mathbb{R})$ supported on $(-\infty, 0]$. Let m and n non-negative integers such that $n + m \ge 1$, and $0 \le \alpha < 1$. If

$$g^+(f)(x) = \left(\int_0^\infty |t^{n+m-\alpha} \partial_x^n \partial_t^m I_\alpha^+(\varphi_t * f)(x)|^2 \frac{dt}{t}\right)^{1/2},$$

there exists a constant c such that

$$\|g^{+}(f)\|_{L^{p}(w)} \leq c \|f^{*}_{+,\gamma}\|_{L^{p}(w)}$$
(3.22)

holds if $p(\gamma + 1) > 1$ and $w \in A_{p(\gamma+1)}^+$. In consequence, if p > 1 and $w \in A_p^+$, there exists a constant c' such that

$$\|g^{+}(f)\|_{L^{p}(w)} \leq c \|f\|_{L^{p}(w)}.$$
(3.23)

Moreover, for $\lambda > 0$

$$\lambda w \left(\left\{ x : g^+(f)(x) > \lambda \right\} \right) \le c \|f\|_{L^1(w)}$$
(3.24)

holds if $w \in A_1^+$. Besides, if for a > 0

$$S_a^+(f)(x) = \left(\int \int_{0 \le z < at} |t^{n+m-\alpha} \partial_x^n \partial_t^m I_\alpha^+(\varphi_t * f)(x+z)|^2 \frac{dzdt}{t^2}\right)^{1/2} ,$$

we obtain that (3.22), (3.23), and (3.24) hold substituting $S_a^+(f)$ for $g^+(f)$.

4. One-Sided g_{λ} Function

We begin this section stating a known result of the auxiliary T_{λ}^{+} function, see [7, page 97]. The T_{λ}^{+} function generalizes the T_{λ} function introduced by Fefferman and Stein in [4, page 178].

Let Φ be an integrable function and $\lambda > 1$. We define

$$T_{\lambda}^{+}(f)(x) = \sup_{h>0} \left(\frac{1}{h^{\lambda}} \int_{0}^{h} \int_{x}^{x+h} t^{\lambda-2} |(\Phi_{t} * f)(y)|^{2} dy dt \right)^{1/2} .$$

The function T_{λ}^{+} has been studied in [10]. In that paper, we proved the following theorem:

Theorem 6.

Let $p > \frac{2}{\lambda}$, γ be a positive integer such that $\gamma + 1 > \frac{\lambda}{2}$ and $w \in A_{\frac{p\lambda}{2}}^+$. If $\Phi \in S(\mathbb{R})$ with support contained in $(-\infty, 0]$, then

$$||T_{\lambda}^{+}(f)||_{L^{p}(w)} \leq c ||f_{+,\gamma}^{*}||_{L^{p}(w)}$$

holds with a finite constant c depending on λ , Φ , w, γ , and p.

The following technical lemma shall be needed in the proof of Theorem 7.

Lemma 5.

Let $J = (\alpha, \beta)$ be a bounded interval and $F \subseteq J$ a closed subset. Given $\mu, 0 < \mu < 1$, we define

$$D = \{x \in F : |F \cap [x - t, x]| \ge \mu t, \quad \forall t : 0 < t \le |J|\}$$

 $\begin{aligned} If \ W &= \bigcup_{x \in D} \Gamma_1(x), \ where \ \ \Gamma_1(x) = \{(z,t) : 0 \le z - x < t\} \ and \ R = \{(z,t) : \alpha < z < \beta + |J|, \ 0 < t < |J|\}, \ then \\ (i) \ \int_F S_2^+(f)(x)^2 \ dx \ge \mu \ \int_{R \cap W} |\phi_t * f(z)|^2 \ \frac{dzdt}{t} \end{aligned}$

and

$$(ii) |F \setminus D| \leq 15 \mu |J|.$$

Proof. By Fubini's Theorem we have that

$$\int_{F} S_{2}^{+}(f)(x)^{2} dx$$

= $\int \int |(\phi_{t} * f)(z)|^{2} |F \cap [z - 2t, z]| \frac{dzdt}{t^{2}}$

Thus,

$$\int_F S_2^+(f)(x)^2 dx$$

$$\geq \int \int_{(z,t)\in R\cap W} |(\phi_t * f)(z)|^2 |F \cap [z - 2t, z]| \frac{dzdt}{t^2}$$

We observe that if $(z, t) \in R \cap W$, then the pair (z, t) belongs to $\Gamma_1(x)$ for some x in D, and this implies that $[x - t, x] \subset [z - 2t, z]$. Therefore, since $0 < t \le |J|$, we have that $|F \cap [z - 2t, z]| \ge |F \cap [x - t, x]| \ge \mu t$ and

$$\int_F S_2^+(f)(x)^2 dx \geq \mu \iint_{R \cap W} |(\phi_t * f)(z)|^2 \frac{dzdt}{t},$$

which proves (i).

Now, let us prove (ii). We choose an open set $D \subset G$ such that

$$|G \setminus D| < 3 \mu |J|. \tag{4.1}$$

If $x \in F \setminus G$, then $x \in F \setminus D$ and this implies that there exists $t_x, 0 < t_x \leq |J|$ such that

$$|F\cap [x-t_x,x]| < \mu t_x.$$

Then, we can choose ϵ_x , $0 < \epsilon_x < t_x$ satisfying

$$|F \cap [x - t_x, x + \epsilon_x]| < 2 \mu t_x.$$

The compact set $F \setminus G$ is covered by the family $\{(x - t_x, x + \epsilon_x)\}_{x \in F \setminus G}$. Then, there exists a finite subcover $\{(x_i - t_{x_i}, x_i + \epsilon_{x_i})\}_{1 \le i \le r}$ such that

$$\sum_{i=1}^{r} \chi_{[x_i - i_{x_i}, x_i + \epsilon_{x_i}]}(x) \leq 2 \chi_{[\alpha - |J|, \beta + |J|]}(x) ,$$

which implies that

$$\sum_{i=1}^r t_{x_i} \leq 6 |J|.$$

Thus,

$$|F \setminus G| \leq \sum_{i=1}^{r} |F \cap [x_i - t_{x_i}, x_i + \epsilon_{x_i}]| < 2 \mu \sum_{i=1}^{r} t_{x_i} \leq 12 \mu |J|.$$

By these inequalities and (4.1) we obtain (ii).

Let φ belong to $\mathcal{S}(\mathbb{R})$ supported on $(-\infty, 0]$. Let *m* and *n* non-negative integers such that $n + m \ge 1$, and $0 \le \alpha < 1$. We denote as in (3.21)

$$\phi(x) = (-1)^m I_{\alpha}^+ \left[\left(\frac{d}{dx} \right)^{n+m} x^m \varphi \right] \,,$$

and define

$$g_{\lambda}^{+}(f)(x) = \left(\int_{0}^{\infty} \int_{x}^{\infty} \left(\frac{t}{t+z-x}\right)^{\lambda} \left|(\phi_{t} * f)(z)\right|^{2} \frac{dzdt}{t^{2}}\right)^{1/2}$$

where $\lambda > 1$. Explicitly

$$g_{\lambda}^{+}(f)(x) = \left(\int_{0}^{\infty} \int_{x}^{\infty} \left(\frac{t}{t+z-x}\right)^{\lambda} \left|t^{n+m-\alpha} \partial_{x}^{n} \partial_{t}^{m} I_{\alpha}^{+}(\varphi_{t} * f)(z)\right|^{2} \frac{dzdt}{t^{2}}\right)^{1/2} \,.$$

With these notations we have the following theorem:

Theorem 7.

Let $p > \frac{2}{\lambda}$, γ be a positive integer such that $\gamma + 1 > \frac{\lambda}{2}$ and $w \in A_{\frac{p\lambda}{2}}^+$. Then

$$\|g_{\lambda}^{+}(f)\|_{L^{p}(w)} \leq c \|f_{+,\gamma}^{*}\|_{L^{p}(w)},$$

holds with a finite constant c depending on λ , ϕ , w, γ , and p.

The proof of this theorem consists of obtaining a good λ estimate for the g_{λ}^+ function and follows the lines of the proof of Theorem 2 in [7].

Proof. For any given N > 1 we define

$$g_{\lambda,N}^+(f)(x) = \left(\int_0^\infty \int_x^\infty \chi_N(z,t) \left(\frac{t}{t+z-x}\right)^\lambda \left|(\phi_t * f)(z)\right|^2 \frac{dzdt}{t^2}\right)^{1/2}$$

where $\chi_N(z, t)$ is the characteristic function of the rectangle $\{(z, t) : |z| \le N, N^{-1} \le t \le N\}$. It is enough to prove Theorem 7 for $g_{\lambda,N}^+$ instead of g_{λ}^+ with a constant c not depending on N. Then, by Fatou's Lemma we get Theorem 7.

We shall assume that f is a bounded function with bounded support, in $H^p_{+,\gamma}(w)$. Then, $g^+_{\lambda,N}(f)(x)$ is a continuous function and moreover if $x > x_{-\infty}$, we have that

$$g_{\lambda,N}^+(f)(x) \leq C_{\gamma,\beta} N^{2\gamma+3\beta+4} f_{+,\gamma}^*(x)$$
 (4.2)

for any β , $0 < \beta \le 1$. In fact, by part (ii) of Lemma 1, there exists β , $0 < \beta \le 1$ such that

$$|D^{\gamma}\phi(x)| \le \frac{c}{(1-x)^{\gamma+1+\beta}}, \quad \text{if } x < 0.$$

Given $z \ge x$ and $t, N^{-1} < t < N$, the support of $\phi_t(z - \cdot)$ is contained in the halfline $[x, \infty)$ and

$$\begin{aligned} |||\phi_t(z-\cdot)|||_{\gamma,\gamma+1+\beta} &= \sup_{y} |D^{\gamma}\phi_t(z-y)|(1+|y|)^{\gamma+1+\beta} \\ &\leq t^{\beta} \sup_{y} \left(\frac{1+|y|}{t+|z-y|}\right)^{\gamma+1+\beta} \leq c' N^{2(\gamma+1)+3\beta} . \end{aligned}$$

Therefore, by (3.18), for every $y \in J = (\max(x_{-\infty}, x - 1), x]$, we have

$$\begin{split} |f * \phi_t(z)| &= |\langle f, \phi_t(z - \cdot) \rangle| \\ &\leq C_{\gamma,\beta} \; f^*_{+,\gamma}(y) \; |||\phi_t(z - \cdot)|||_{\gamma,\gamma+1+\beta} \; \leq \; C_{\gamma,\beta}' \; f^*_{+,\gamma}(y) \; N^{2(\gamma+1)+3\beta} \; . \end{split}$$

Applying this estimate for y = x, we obtain that

$$g_{\lambda,N}^{+}(f)(x) \leq C_{\gamma,\beta}' f_{+,\gamma}^{*}(x) N^{2(\gamma+1)+3\beta} \left(\int_{N^{-1}}^{N} \int_{z \geq x, |z| \leq N} \frac{dz dt}{t^{2}} \right)^{1/2} \\ \leq C_{\gamma,\beta}'' N^{2\gamma+3\beta+4} f_{+,\gamma}^{*}(x) .$$

We observe that by (4.2), $g_{\lambda,N}^+(f)(x)$ belongs to $L^p(w)$.

Since the weight w satisfies the A_{∞}^+ condition, then by Theorem 1 in [6], there exist $K \ge 1$ and $\eta > 0$ such that

$$\frac{w(E)}{w((a,c))} \leq K\left(\frac{|E|}{c-b}\right)^{\eta}$$

holds for every a < b < c and every measurable set $E \subset (a, b)$.

Let $M = (2^{p+2}K)^{-1/\eta}$ and $0 < \delta < 1$ to be chosen later. We shall prove that

$$w\left(\left\{x:g_{\lambda,N}^{+}(f)(x) > 2\alpha, S_{2}^{+}(f)(x) + T_{\lambda}^{+}(f)(x) \le \delta\alpha\right\}\right)$$
$$\le 2^{-(p+1)} w\left(\left\{x:g_{\lambda,N}^{+}(f)(x) > \alpha\right\}\right), \tag{4.3}$$

holds for every $0 < \alpha < \infty$.

If we denote by A_{α} the set $\{x : g_{\lambda,N}^+(f)(x) > \alpha\}$, $0 < \alpha < \infty$, since $g_{\lambda,N}^+(f)(x)$ is a continuous function and by the estimate (4.2), it turns out that A_{α} is an open bounded set. Let

 $A_{\alpha} = \bigcup I_i$, where the I'_i s denote the connected components of A_{α} . We choose any I_i and assume that $I_i = (a, b)$. We define the sequence $(x_n)_{n \ge 0}$ as

$$x_n = b - \frac{b-a}{2^n} \quad , \ n \ge 0$$

Then, $x_n - x_{n-1} = 2(x_{n+1} - x_n)$. Let us denote by J_n the interval $[x_{n-1}, x_n]$ and let E_{α} be the set $\{x : g_{\lambda,N}^+(f)(x) > 2\alpha, S_2^+(f)(x) + T_{\lambda}^+(f)(x) \le \delta\alpha\}$. Given a non-negative integer n such that $|E_{\alpha} \cap J_n| > 0$, we consider the rectangle

$$R_n = \{(z, t) : x_{n-1} \le z \le b, \ 0 \le t \le |J_n|\}$$

Then, if x belongs to $E_{\alpha} \cap J_n$, we have

$$(2\alpha)^2 < g^+_{\lambda,N}(f)(x)^2 = \left(\iint_{\substack{(z,t) \notin R_n \\ z \ge x}} + \iint_{\substack{(z,t) \notin R_n \\ z \ge x}} \right) \chi_N(z,t) \left(\frac{t}{t+z-x} \right)^{\lambda} |(\phi_t * f)(z)|^2 \frac{dzdt}{t^2}$$
(4.4)
$$= A + B .$$

If $(z, t) \notin R_n$ and $x \le z < b$ then, $0 \le z - x \le 2t$. Therefore,

$$\iint_{\substack{(z,t)\notin R_n\\x\leq z < b}} \chi_N(z,t) \left(\frac{t}{t+z-x}\right)^{\lambda} |(\phi_t * f)(z)|^2 \frac{dzdt}{t^2} \leq \\ \iint_{0\leq z-x\leq 2t} |(\phi_t * f)(z)|^2 \frac{dzdt}{t^2} = S_2^+(f)(x)^2 \leq (\delta\alpha)^2.$$
(4.5)

If $b \le z$, then t + z - x > t + z - b and we have

$$\iint_{\substack{(z,t)\notin R_n\\b\leq z}} \chi_N(z,t) \left(\frac{t}{t+z-x}\right)^{\lambda} \left|(\phi_t * f)(z)\right|^2 \frac{dzdt}{t^2} \leq g_{\lambda,N}^+(f)(b)^2 \leq \alpha^2 .$$
(4.6)

The estimates (4.5) and (4.6) show that $B \le \alpha^2(1 + \delta^2) < 2\alpha^2$. Then, by (4.4) we obtain that

$$2\alpha^2 < \iint_{\substack{(z,t)\in R_n\\z\geq x}} \left(\frac{t}{t+z-x}\right)^{\lambda} |(\phi_t*f)(z)|^2 \frac{dzdt}{t^2}, \qquad (4.7)$$

holds for every x belonging to $E_{\alpha} \cap J_n$.

Choose a closed set $F_{\alpha,n} \subset E_{\alpha} \cap J_n$ such that

$$|(E_{\alpha} \cap J_n) \setminus F_{\alpha,n}| < \frac{M}{8} (x_{n+1} - x_n) , \qquad (4.8)$$

and we define

$$D_{\alpha,n} = \{ x \in F_{\alpha,n} : |F_{\alpha,n} \cap [x - t, x]| \ge \frac{M}{48}t , \ \forall t : 0 < t \le |J_n| \}.$$

We observe that $D_{\alpha,n}$ is closed. By Lemma 5, we have

$$|F_{\alpha,n} \setminus D_{\alpha,n}| \leq \frac{5}{8} M(x_{n+1} - x_n) .$$

$$(4.9)$$

Let us assume $D_{\alpha,n} \neq \emptyset$. Since $D_{\alpha,n} \subset E_{\alpha} \cap J_n$, then integrating both sides of (4.7) with respect to x over $D_{\alpha,n}$, we have

$$2\alpha^{2}|D_{\alpha,n}| \leq \iint_{R_{n}} \left(\int_{\substack{x \in D_{\alpha,n} \\ x \leq z}} \left(\frac{t}{t+z-x} \right)^{\lambda} dx \right) |(\phi_{t} * f)(z)|^{2} \frac{dzdt}{t^{2}} .$$
(4.10)

Let $W = \bigcup_{x \in D_{\alpha,n}} \Gamma_1(x)$, where $\Gamma_1(x) = \{(z, t) : 0 \le z - x < t\}$. By (4.10), we have

$$2\alpha^{2}|D_{\alpha,n}| \leq \left(\iint_{\substack{x\in D_{\alpha,n}\\x\leq z}} + \iint_{\substack{x\in D_{\alpha,n}\\x\leq z}} \left(\frac{t}{t+z-x}\right)^{\lambda} dx\right) |(\phi_{t}*f)(z)|^{2} \frac{dzdt}{t^{2}} \qquad (4.11)$$

Let us estimate I. Since

$$\int_{\substack{x\in D_{\alpha,n}\\x\leq z}} \left(\frac{t}{t+z-x}\right)^{\lambda} dx \leq \int_{-\infty}^{z} \left(\frac{t}{t+z-x}\right)^{\lambda} dx = \frac{t}{\lambda-1},$$

we obtain that

$$I \leq \frac{1}{\lambda - 1} \int \int_{R_n \cap W} |(\phi_t * f)(z)|^2 \frac{dzdt}{t} .$$

Applying Lemma 5, we have

$$I \leq \frac{1}{\lambda - 1} \frac{48}{M} \int_{F_{\alpha,n}} S_2^+(f)(x)^2 \, dx \leq \frac{1}{\lambda - 1} \frac{48}{M} \left(\delta \alpha\right)^2 |F_{\alpha,n}|$$

$$\leq \frac{1}{\lambda - 1} \frac{96}{M} \, \delta^2 \, \alpha^2 \left(x_{n+1} - x_n\right) \,. \tag{4.12}$$

Let us estimate *II*. Since the set $D_{\alpha,n}$ is not empty then $m = \min(D_{\alpha,n})$ exists. Denote $\{C_k\}_{k\geq 1}$ the connected componentes of $(m, b) \setminus D_{\alpha,n}$. Then,

$$II = \sum_{k \ge 1} \iint_{\substack{(z,t) \in R_n \setminus W\\z \in C_k}} \left(\int_{\substack{x \in D_{\alpha,n} \\x \le z}} \left(\frac{t}{t+z-x} \right)^{\lambda} dx \right) \left| (\phi_t * f)(z) \right|^2 \frac{dzdt}{t^2} .$$
(4.13)

Choose any $C_k = (c, d)$ and consider a sequence $(d_s)_{s\geq 0}$ such that $d_0 = d$ and $d_{s-1} - d_s = d_s - c, s \geq 1$. For any given non-negative integer s, if $d_s \leq z \leq d_{s-1}, x \leq z$ and $x \in D_{\alpha,n}$, then $x \leq c$. Thus,

$$\int_{\substack{x\in D_{\alpha,n}\\x\leq z}} \left(\frac{t}{t+z-x}\right)^{\lambda} dx \leq \int_{z-x\geq d_{s-1}-d_s} \frac{t^{\lambda}}{(z-x)^{\lambda}} dx = t^{\lambda} \frac{(d_{s-1}-d_s)^{1-\lambda}}{\lambda-1}.$$

In consequence, we obtain that

$$L_{s} = \iint_{\substack{(z,t) \in R_{n} \setminus W \\ d_{s} \leq z \leq d_{s-1}}} \left(\int_{\substack{x \in D_{\alpha,n} \\ x \leq z}} \left(\frac{t}{t+z-x} \right)^{\lambda} dx \right) |(\phi_{t} * f)(z)|^{2} \frac{dzdt}{t^{2}}$$

$$\leq \frac{1}{\lambda - 1} (d_{s-1} - d_{s}) \frac{1}{(d_{s-1} - d_{s})^{\lambda}} \iint_{\substack{(z,t) \in R_{n} \setminus W \\ d_{s} \leq z \leq d_{s-1}}} t^{\lambda - 2} |(\phi_{t} * f)(z)|^{2} dzdt .$$

If $(z, t) \in R_n \setminus W$ and $d_s \le z \le d_{s-1}$, then $0 \le z - c \le 2(d_{s-1} - d_s)$ and $0 \le t \le 2(d_{s-1} - d_s)$. Therefore, since c belongs to E_{α} , we get

$$L_s \leq \frac{2^{\lambda}}{\lambda-1} (d_{s-1}-d_s) T_{\lambda}^+(f)(c)^2 \leq \frac{2^{\lambda}}{\lambda-1} (d_{s-1}-d_s) (\delta \alpha)^2.$$

Then,

$$\iint_{\substack{(z,t)\in R_n\setminus W\\z\in C_k}} \left(\int_{\substack{x\in D_{\alpha,n}\\x\leq z}} \left(\frac{t}{t+z-x} \right)^{\lambda} dx \right) \left| (\phi_t * f)(z) \right|^2 \frac{dzdt}{t^2}$$
$$= \sum_{s\geq 1} L_s \leq \frac{2^{\lambda}}{\lambda-1} \left| C_k \right| (\delta\alpha)^2.$$

Summing up in k, and taking into account (4.13) we obtain that

$$II \leq \frac{2^{\lambda}}{\lambda-1} (\delta \alpha)^2 |(m,b) \setminus D_{\alpha,n}| = \frac{2^{\lambda}}{\lambda-1} (\delta \alpha)^2 2|J_n|$$

$$\leq \frac{2^{\lambda+2}}{\lambda-1} (\delta \alpha)^2 (x_{n+1} - x_n) .$$

Taking into account these inequalities, (4.12) and (4.11) we have that

$$2 \alpha^2 |D_{\alpha,n}| \leq \left(\frac{96}{M} + 2^{\lambda+2}\right) \frac{(\delta \alpha)^2}{\lambda - 1} (x_{n+1} - x_n).$$

Since $\delta < 1$, this shows that

$$|D_{\alpha,n}| \leq \left(\frac{48}{M}+2^{\lambda+1}\right) \frac{\delta}{\lambda-1} (x_{n+1}-x_n) \leq 2^{\lambda+2} \frac{48}{M} \frac{\delta}{\lambda-1} (x_{n+1}-x_n).$$

Besides, if we choose δ such that $0 < \delta < (\lambda - 1) \frac{M^2}{2^{\lambda+4}48}$, by (4.8) and (4.9) we obtain for every $n \ge 0$,

$$|E_{\alpha} \cap J_n| \leq M(x_{n+1}-x_n) .$$

Taking into account that w satisfies the condition A_{∞}^+ and since $M = (2^{p+2}K)^{-1/\eta}$ we get

$$w(E_{\alpha} \cap J_{n}) \leq K \left(\frac{|E_{\alpha} \cap J_{n}|}{x_{n+1} - x_{n}} \right)^{\eta} w(x_{n-1}, x_{n+1})$$

= $2^{-(p+2)} w(x_{n-1}, x_{n+1}).$

Summing these inequalities for every $n \ge 0$, we have that

$$w(E_{\alpha} \cap I_i) \leq 2^{-(p+1)} w(I_i)$$
,

holds for every connected component I_i of A_{α} , which implies (4.3). Now, applying Theorem 5, Theorem 6 and standard arguments (see [7, page 108]) it follows the theorem.

5. Application to Fractional Integrals

We begin this section by showing that the reverse inequality of (3.23) holds. More precisely:

Proposition 1.

Let φ belong to $S(\mathbb{R})$ supported on $(-\infty, 0]$. Let m and n non-negative integers such that $n+m \geq 1$, and $0 \leq \alpha < 1$. If

$$g^{+}(f)(x) = \left(\int_{0}^{\infty} |(\phi_{t} * f)(x)|^{2} \frac{dt}{t}\right)^{1/2}$$

where ϕ is defined as in (3.21), then there exists a constant c such that

$$c ||f||_{L^{p}(w)} \leq ||g^{+}(f)||_{L^{p}(w)}, \qquad (5.1)$$

,

holds if $1 , <math>f \in L^{p}(w)$ and $w \in A_{p}^{+}$. If we consider $S_{a}^{+}(f)$ as in Theorem 5, then (5.1) holds substituting $S_{a}^{+}(f)$ for $g^{+}(f)$.

Proof. Let $f \in L^1 \cap L^2$, f(x) = f(-x). Since the inequality (3.11) is valid for p = 2 and w = 1, we get

$$\int_0^\infty \int_0^\infty |(\phi_t * f)(x)|^2 \frac{dt}{t} dx \le c \int |f(x)|^2 dx < \infty.$$

Then, by Plancherel's theorem

$$\int \int_0^\infty |(\phi_t * f)(x)|^2 \frac{dt}{t} dx = \int \int_0^\infty |\widehat{\phi}(tx)\widehat{f}(x)|^2 \frac{dt}{t} dx$$
$$= \int_0^\infty |\widehat{\phi}(-t)|^2 \frac{dt}{-t} \int_{-\infty}^0 |\widehat{f}(x)|^2 dx + \int_0^\infty |\widehat{\phi}(t)|^2 \frac{dt}{t} \int_0^\infty |\widehat{f}(x)|^2 dx .$$

Thus,

$$\int_{-\infty}^{\infty} \frac{|\widehat{\phi}(t)|^2}{|t|} dt \le C.$$
(5.2)

Let $\psi(x) = \phi(-x)$. Then $\psi(x) = 0$ if x < 0 and we have

$$\int \int_0^\infty (\phi_t * f)(x) \overline{(\psi_t * h)(x)} \, \frac{dt}{t} dx = \int \int_0^\infty \widehat{\phi}(tx) \overline{\widehat{\psi}(tx)} \, \widehat{f}(x) \overline{\widehat{h}(x)} \, \frac{dt}{t} dx \,. \tag{5.3}$$

Since $\overline{\widehat{\psi}(x)} = \widehat{\phi}(x)$, we get that (5.3) is equal to

$$\int \left(\int_0^\infty \frac{\widehat{\phi}(tx)^2}{t} dt\right) \widehat{f}(x) \overline{\widehat{h}(x)} \, dx \, .$$

We have that if x > 0

$$\int_0^\infty \frac{\widehat{\phi}(tx)^2}{t} dt = \int_0^\infty \frac{\widehat{\phi}(t)^2}{t} dt$$
(5.4)

and if x < 0

$$\int_{0}^{\infty} \frac{\widehat{\phi}(tx)^{2}}{t} dt = -\int_{-\infty}^{0} \frac{\widehat{\phi}(t)^{2}}{t} dt .$$
 (5.5)

By (5.2) we know that $\left|\frac{\widehat{\phi}(t)^2}{t}\right|$ is integrable. On the other hand, $\widehat{\phi}$ can be extended to the upper half-plane as

$$\widehat{\phi}(z) = \int_{-\infty}^{0} e^{-2\pi i z x} \phi(x) \, dx \, .$$

This function $\widehat{\phi}(z)$ is analytic for $\mathcal{I}mz > 0$ and

$$|\widehat{\phi}(z)| \leq \frac{C}{1+|z|} \, .$$

Then $\frac{\widehat{\phi}(z)^2}{z}$ is an analytic function on the upper half-plane and for z = x + iy,

$$\left|\frac{\widehat{\phi}(z)^2}{z}\right|^{1/2} \leq \frac{C}{1+|z|} \frac{1}{|z|^{1/2}} \leq \frac{C}{(1+|x|)|x|^{1/2}}$$

Thus, we have that $\frac{\widehat{\phi}(z)^2}{z} \in H^{1/2}$ and since $\frac{\widehat{\phi}(t)^2}{t} \in L^1$ we get that $\frac{\widehat{\phi}(z)^2}{z} \in H^1$. Therefore,

$$\int_{-\infty}^{\infty} \frac{\widehat{\phi}(t)^2}{t} \, dt = 0 \, .$$

Then the integrals (5.4) and (5.5) have the same value c and we get

$$c\int f(x)\overline{h(x)}\,dx = c\int \widehat{f(x)}\overline{\widehat{h(x)}}\,dx = \int \int_0^\infty (\phi_t * f)(x)\overline{(\psi_t * h)(x)}\,\frac{dt}{t}dx \;.$$

Since $w \in A_p^+$ implies that $w^{-p'/p} \in A_{p'}^-$, by the part of this theorem that we have already proved we have

$$|c| \left| \int f(x)\overline{h(x)} \, dx \right| \leq \int g^+(f)(x)g^-(h)(x)dx$$

$$\leq \left(\int g^+(f)(x)^p w(x) \, dx \right)^{1/p} \left(\int g^-(h)(x)^{p'} w(x)^{-p'/p} \, dx \right)^{1/p}$$

$$\leq \left(\int g^+(f)(x)^p w(x) \, dx \right)^{1/p} C \|h\|_{L^{p'}(w^{-p'/p})}.$$

We observe that $c = \int_0^\infty \frac{\widehat{\phi}(t)^2}{t} dt$ is different from zero. In fact, since $\left|\frac{\widehat{\phi}(z)^2}{z}\right| \le \frac{C}{(1+|z|)^2|z|}$ then

$$I = \int_0^\infty \frac{\widehat{\phi}(iy)^2}{iy} \, diy = \int_0^\infty \frac{\widehat{\phi}(t)^2}{t} \, dt = c \, .$$

Now, if we assume that c = 0, we have

$$\widehat{\phi}(iy) = \int_{-\infty}^{0} e^{2\pi y\xi} \phi(\xi) d\xi$$

and

$$I = \int_0^\infty \frac{1}{y} \left(\int_{-\infty}^0 e^{2\pi y\xi} \phi(\xi) \, d\xi \right)^2 \, dy = 0 \, .$$

This implies that for every y > 0, $\hat{\phi}(iy) = 0$. Then, since $\hat{\phi}(z)$ is analytic for $\mathcal{I}mz > 0$ we get that $\hat{\phi} = 0$ and thus $\phi = 0$ by the unicity of the Fourier Transform.

Lemma 6.

Let $0 < \beta < \infty$, $-\infty \le c < \infty$ and $f(x) \ge 0$ a function belonging to $L^1_{loc}(c, \infty)$. Assume that there exists a pair $(a, b), c < a < b < \infty$ such that

$$\int_{b}^{\infty} \frac{f(y)}{(y-a)^{\beta}} \, dy \quad < \quad \infty \,. \tag{5.6}$$

Then (5.6) holds for every pair (a, b), c < a < b.

Proof. The proof is easy and shall not be given. \Box

Proposition 2.

Let $0 < \alpha < 1$, $1 and <math>w(x) \ge 0$ such that $w(x)^{-p'/p} \in L^1_{loc}(c, \infty)$ where $-\infty \le c < \infty$. Then, the following statements are equivalent:

(i) For every non-negative f(x), $f \in L^{p}(w)$, we have that $I^{+}_{\alpha}(f)(x)$ is finite a.e. on (c, ∞) . (ii) There exists a pair (a, b), $c < a < b < \infty$, such that

$$\int_{b}^{\infty} \frac{w(y)^{-p'/p}}{(y-a)^{(1-\alpha)p'}} \, dy \quad < \quad \infty \,.$$
 (5.7)

Proof. (i) implies (ii). Since

$$\int_{x+1}^{\infty} \frac{f(y)}{(y-x)^{1-\alpha}} \, dy \leq I_{\alpha}^{+}(f)(x) < \infty \quad \text{a.e. on } (c,\infty) \,,$$

by Lemma 6, with $\beta = 1 - \alpha$, given a pair (a, b), $c < a < b < \infty$, the integral (5.6) is finite for every $f \in L^p(w)$. Then by the Principle of Uniform Boundedness it turns out that (ii) holds.

(ii) implies (i). By Lemma 6 since $w(x)^{-p'/p} \in L^1_{loc}(c, \infty)$ it follows that for every (a, b), c < a < b, (5.7) holds. In particular, if d > 0 and x > c, by Hölder's inequality we obtain

$$\int_{x+d}^{\infty} \frac{f(y)}{(y-x)^{1-\alpha}} dy \leq \|f\|_{L^{p}(w)} \left(\int_{x+d}^{\infty} \frac{w(y)^{-p'/p}}{(y-x)^{(1-\alpha)p'}} dy \right)^{1/p} < \infty.$$
(5.8)

Let $c < x_1 < x_2 < \infty$. By simple changes of variables and Hölder's inequality we get

$$\int_{x_{1}}^{x_{2}} \left(\int_{x}^{x+d} \frac{f(y)}{(y-x)^{1-\alpha}} \, dy \right) dx \le \frac{d^{\alpha}}{\alpha} \int_{x_{1}}^{x_{2}+d} f(z) \, dz$$
$$\le \frac{d^{\alpha}}{\alpha} \, \|f\|_{L^{p}(w)} \, \left(\int_{x_{1}}^{x_{2}+d} \frac{w(y)^{-p'/p}}{(y-x)^{(1-\alpha)p'}} \, dy \right)^{1/p'} < \infty \,. \tag{5.9}$$

The estimates (5.8) and (5.9) show that (i) holds.

Let $0 < \alpha < 1$, $f \in L^{p}(w)$, w a weight in A_{p}^{+} that satisfies (ii) of Proposition 2. By that proposition, the difference $I_{\alpha}^{+}(f)(x+y) - I_{\alpha}^{+}(f)(x)$ is well defined for almost every y > 0, provided $I_{\alpha}^{+}(f)(x)$ is finite. Then

$$D_{\alpha}(f)(x) = \left(\int_0^{\infty} \frac{|I_{\alpha}^+(f)(x+y) - I_{\alpha}^+(f)(x)|^2}{y^{1+2\alpha}} \, dy\right)^{1/2}$$

is well defined for almost every x, $x_{-\infty} < x$. For this $D_{\alpha}(f)$ we have the following theorem:

Theorem 8.

Let $0 < \alpha < 1, 1 < p < \infty$ and $w \in A_p^+$ satisfying condition (5.7). Then, there exists a constant c_1 depending on α , p and w only, such that

$$c_1 \| f \|_{L^p(w)} \leq \| D_{\alpha}(f) \|_{L^p(w)} .$$
(5.10)

On the other hand, there exists another constant c_2 depending on α , p and w only, such that (a) if $\alpha > 1/2$

$$\|D_{\alpha}(f)\|_{L^{p}(w)} \leq c_{2} \|f\|_{L^{p}(w)}.$$
(5.11)

(b) if
$$0 < \alpha \le 1/2$$
 and $p > \frac{2}{1+2\alpha}$, then (5.11) holds provided that $w \in A_p^+ \xrightarrow{1+2\alpha} CA_p^+$.

Proof. Let f be a C_0^1 -function with support contained in $(x_{-\infty}, x_{\infty})$. We are going to show that for $0 < \mu < 1$

$$D_{\alpha}(f)(x) \le c \left\{ g^{+}(f)(x) + S_{1}^{+}(f)(x) + g_{\lambda}^{*}(f)(x) \right\}, \qquad (5.12)$$

holds with $\lambda = 2\alpha + \mu$. The functions g^+ and g^*_{λ} correspond to a kernel $\phi(x) = \partial_x I^+_{\alpha}[x\varphi(x)]$ and S_1 has the kernel $\phi(x) = \partial_x I^+_{\alpha}[\varphi(x)]$, where $\varphi(x) \in C_0^{\infty}$ and $\int \varphi = 1$. In fact, we have

$$I_{\alpha}^{+}(f)(x) - I_{\alpha}^{+}(f)(x+y) = \left[I_{\alpha}^{+}(f)(x) - (\varphi_{y} * I_{\alpha}^{+}(f))(x)\right] + \left[(\varphi_{y} * I_{\alpha}^{+}(f))(x) - (\varphi_{y} * I_{\alpha}^{+}(f))(x+y)\right] + \left[(\varphi_{y} * I_{\alpha}^{+}(f))(x+y) - I_{\alpha}^{+}(f)(x+y)\right] \\ = I_{1}(x, y) + I_{2}(x, y) + I_{3}(x, y) ,$$

thus,

$$D_{\alpha}(f)(x) \leq \sum_{j=1}^{3} \left(\int_{0}^{\infty} \frac{|I_{j}(x, y)|^{2}}{y^{1+2\alpha}} \, dy \right)^{1/2} = \sum_{j=1}^{3} A_{j}(x) \, .$$

Proceeding as in [13, page 162], we obtain

$$A_1(x) \le c g^+(f)(x)$$
, $A_2(x) \le c S_1(f)(x)$
and $A_3(x) \le c g_{\lambda}^*(f)(x)$,

with $\lambda = 2\alpha + \mu$, $1 - 2\alpha < \mu < 1$. Therefore, (5.12) holds. Then, in virtue of Theorems 5 and 7, we get (5.11) for f in C_0^1 .

If f is any function in $L^{p}(w)$, let $\{f_{n}\}$ be a sequence of C_{0}^{1} -functions with support contained in $(x_{-\infty}, x_{\infty})$ converging to f in $L^{p}(w)$ substituting $|f - f_{n}|$ by f in (5.8) and (5.9) we see that $I_{\alpha}^{+}(f_{n})(x)$ tends to $I_{\alpha}^{+}(f)(x)$ a.e. in $(x_{-\infty}, \infty)$. Thus, if $g(x, y) \geq 0$ satisfies

$$\left[\int_{x_{-\infty}}^{x_{\infty}} \left(\int_{0}^{\infty} g(x, y)^{2} \frac{dy}{y^{1+2\alpha}}\right)^{p'/2} w(x)^{-p'/p} dx\right]^{1/p'} \leq 1,$$

then, by Fatou's Lemma and Hölder's inequality,

$$\int_{x_{-\infty}}^{x_{\infty}} \int_{0}^{\infty} g(x, y) |I_{\alpha}^{+}(f)(x + y) - I_{\alpha}^{+}(f)(x)| \frac{dy}{y^{1+2\alpha}} dx$$

$$\leq \liminf \int_{x_{-\infty}}^{x_{\infty}} \int_{0}^{\infty} g(x, y) |I_{\alpha}^{+}(f_{n})(x + y) - I_{\alpha}^{+}(f_{n})(x)| \frac{dy}{y^{1+2\alpha}} dx$$

$$\leq \liminf \|D_{\alpha}(f_{n})\|_{L^{p}(w)} \leq c \liminf \|f_{n}\|_{L^{p}(w)} = c \|f\|_{L^{p}(w)},$$

which implies that (5.11) holds for any f.

As for (5.10), proceeding as in [13, page 162], we get

$$g^+(f)(x) \leq c D_{\alpha}(f)(x)$$

for $x_{-\infty} < x$. Thus, (5.10) follows by integration and Proposition 1.

6. Application to Multipliers

Let m(x) be a bounded measurable function defined on \mathbb{R} . The operator

$$\widehat{T_m f}(x) = m(x)\widehat{f}(x)$$

is well defined if $f \in \mathcal{S}(\mathbb{R})$. With this notation we have the following theorem:

Theorem 9.

Let m(x) $(x \in \mathbb{R})$ be the boundary value of an analytic and bounded function on the upper half-plane. We assume that its derivative Dm(x) exists for every $x \neq 0$ and

$$|x||Dm(x)| \leq c \quad , \quad x \neq 0$$

If $w \in A_p^+$, 1 , then there exists a constant <math>c' depending on p and w only, such that

$$||T_m(f)||_{L^p(w)} \leq c' ||f||_{L^p(w)}$$

Proof. Let φ be a function with the following properties:

(i)
$$\varphi \in S(\mathbb{R}) \text{ and } \varphi \ge 0$$
,
(ii) $\sup (\varphi) \subset (-\infty, 0] \text{ and}$ (6.1)
(iii) $\int \varphi dx > 0$.

We define $\phi(x) = -x\varphi(x)$ and $\psi(x) = \phi * \phi(x)/x^2$. These functions ϕ and ψ satisfy the same conditions (6.1) that φ does. Since $x^2\psi(x) = (\phi * \phi)(x)$ it follows that

$$D^2 \widehat{\psi}(x) = [D\widehat{\varphi}(x)]^2 . \tag{6.2}$$

Let M(x, t) be define by $\widehat{M}(x, t) = m(x)\widehat{\varphi}(tx)$. By (i) and (ii) we get that $\widehat{\varphi}(x)$ is the boundary value of the function $\widehat{\varphi}(z) = \int_{-\infty}^{0} e^{-2\pi i z y} \varphi(y) dy$, where $\mathcal{I}m(z) > 0$ and $|\widehat{\varphi}(z)| \le c/|z|^{k+2}$. Then, since $|m(z)| \le c$, by the Cauchy's Theorem it follows that

$$M(x, t) = 0$$
 for $0 \le x$ and $t > 0$. (6.3)

We define

$$\widehat{U}(x,t) = m(x)\widehat{f}(x)\widehat{\psi}(tx) = \widehat{T_m f}(x)\widehat{\psi}(tx) \text{ and}$$
$$\widehat{u}(x,t) = \widehat{f}(x)\widehat{\psi}(tx).$$

Taking into account (6.2) it follows that

$$\partial_t^2 \widehat{U}(x,t) = \partial_t \widehat{M}(x,t) \, \partial_t \widehat{u}(x,t)$$

Thus,

$$\partial_t^2 U(x,t) = \int_{-\infty}^{\infty} \partial_t M(y,t) \, \partial_t u(x-y,t) \, dy \, .$$

By a change of variables and (6.3) we have

$$\partial_t^2 U(x,t) = \int_0^\infty \partial_t M(-y,t) \,\partial_t u(x+y,t) \,dy \,.$$

Following [13, page 96], we have that

$$g^+(T_m(f))(x) \leq c g_2^*(f)(x).$$

Appealing to Proposition 1 and Theorem 7, and recalling that $\int \psi > 0$, we get

$$||T_m(f)||_{L^p(w)} \leq c' ||f||_{L^p(w)},$$

whenever $w \in A_p^+$, 1 .

References

- [1] Aimar, H., Forzani, L. and Martín-Reyes, F. On weighted inequalities for one-sided singular integrals, to appear in *Proceedings of the Amer. Math. Soc.*.
- [2] Benedek, A., Calderón, A.P. and Panzone, R. (1962). Convolution operators on Banach-space valued functions, Proc. Nat. Acad. Sci. U.S.A., 48, 356-365.
- [3] Duoandikoetxea, J. (1991). Análisis de Fourier, Ediciones de la Universidad Autónoma de Madrid, Madrid.
- [4] Fefferman, C. and Stein, E.M. (1972). H^p spaces of several variables, Acta Math. 129, 137-193.
- [5] García-Cuerva, J. and Rubio de Francia, J.L. (1985). Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam.
- [6] Martín-Reyes, F.J., Pick, L. and de la Torre, A. (1993). A⁺₀ condition, Canad. J. Math. 45, 1231-1244.
- [7] Muckenhoupt, R. and Wheeden, R. (1974). Norm inequalities for the Littlewood-Paley function g^{*}_{\lambda}, Trans. Amer. Math. Soc. 191, 95-111.
- [8] Riesz, F. and Sz-Nagy, B. (1966). Functional Analysis, Ungar, New York.
- [9] Riveros, S. (1994). Extrapolación para pesos laterales, Doctoral Dissertation, Universidad Nacional del Litoral, Santa Fe, Argentina.
- [10] de Rosa, L. and Segovia, C. A substitute of harmonic majorization, preprint.
- [11] de Rosa, L. and Segovia, C. (1995). Weighted H^p spaces for one sided maximal functions, Contemporary Mathematics (AMS series), 189, 161-183.
- [12] Sawyer, E. (1986). Weighted inequalities for the one sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc., 297, 53-61.
- [13] Stein, E.M. (1970). Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ.

Depto. de Matemática, Univ. de Buenos Aires, 1428-Buenos Aires, Argentina. e-mail:segovia@iamba.edu.ar

Depto. de Matemáticas, Univ. Autónoma de Madrid, 28049-Madrid, Spain. e-mail:lderosa@mate.dm.uba.ar

Current address: Instituto Argentino de Matemática, Viamonte 1636, 1055-Buenos Aires, Argentina.