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One-Sided Lit t lewood-Paley 
Theory 

Li l iana  de  Rosa  a n d  Car los  Segov ia  

ABSTRA C'£ In this article we develop the theory of one-sided versions of the g function of Linlewood 
and Paley, the area function S of Lusin and the g~ that admit weighted norm estimates with weights 
belonging to the classes A + of Sawyer. In Sections I and 2 we give definitions and some lemmas that 
shall be needed. Section 3 is devoted to the study of the one-sided version of the functions g and S. In 
Section 4 we obtain a good )~ estimate for the one-sided g~ function, and in Sections 5 and 6 we apply 
the results already obtained to fractional integrals and multiplier operators. 

1. Notations and Definitions 
As usual, ,.q(R) denotes the class of  all those C°°-functions ~0 defined on R such that 

sup '  . ~ a  ...,ixat~,.~0)(X)l <cx~,  
xER 

for all non-negative integers ~ and t3. Let B be a Banach space and let r be a positive integer. We 
shall consider the space C~(B) of all B-valued functions ~0 defined on R, with compact support and 

such that its derivatives D#~0, 1 < fl < r, are continuous. If  B = R, we simply write C~. Given 
a Lebesgue measurable set E ___ R, we denote its Lebesgue measure by ]EI and the characteristic 
function o f  E by Xe. Let f be a measurable function defined on R, the one-sided Hardy-Litt lewood 
maximal functions M -  f and M+ f , are given by 

l fxX i f  x +h M - f  (x)  = s u p -  I f ( t ) [  dt  and M + f ( x )  = s u p ~  If ( t ) l  d t .  
h>0 h -h  h>0 ax 

For 0 < c~ < 1, the one-sided fractional integrals of  f are defined as 

I ~ f ( x ) -  F(et) (x -_--~I-~ dy  and l+  f ( x ) =  ~ f ( Y )  co F(c0 (Y _ x ) l _  a dy  . 

We extend these definitions to the case ~ = 0, setting I o f ( X )  = l ~ f ( x )  = f ( x ) .  
As usual, a weight w is a measurable and non-negative function. If  E c R is a Lebesgue 

measurable set, we denote its w-measure by w ( E )  = fE  w( t )  dt.  A weight w belongs to the class 
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A +, 1 < p < ~ ,  see [12], if there exists a constant C such that 

sup w(t)  d t  w(t)-Tzr-~ dt  
h>o -h \h  A 

< C ,  

for all real number x, and w belongs to A + if M - w ( x )  < C w ( x )  holds for almost every x. Given 
w belonging to A +, 1 < p < ~ ,  we can define x-oo > - o o  and xoo < c~ such that 

(i) w(x)  ~ 0 
(ii)  w(x )  -- c~ 
(iii) O < w(x )  < oo 

in ( - c ~ ,  x-oo) , 
in (x~ ,  o~), and 

for almost every x ~ (x-o~, xoQ). 
(1.1) 

We always have x _ ~  < xoo. In order to avoid the non-interesting case of  x-c~ ---- x ~ ,  we assume 
that there exists a measurable set E satisfying 0 < w ( E )  < ~ .  

I f  (B, II • l iB) is a Banach space, we shall consider the Bochner-Lebesgue space LP(w) ,  1 < 
p < c~, consisting o f  all strongly measurable functions f : R --+ B for which 

llfllL§(w) = llf(x)U p w(x)  dx  , 

is finite. I f  B = R, the space LP(w)  shall be denoted by LP(w) .  

Given two Banach spaces, (A, II • IIA) and (B, II • l iB) ,  we denote by £,(A, B) the space of  all 
bounded linear operators T from A into B with the norm IITIIc(a,8) = SUPlIxlIA=I IIT(x)IIB. The 

Hilbert space H ---- L 2 (•+, -~) consists of  all measurable functions f defined on R + ---- (0, oo) 

such that I l f l l .  = ( f ~  f ( t )  2 ~ ) [ / 2  is finite. Let c be a real number, we shall say that f belongs to 

L:oc(C, o~) i f f a  b I f (x ) l  dx < oo for every c < a < b < ~ .  

2. Bas ic  L e m m a s  

The next lemma contains the results about fractional integrals that shall be needed in the sequel. 

L e m m a  1. 
Let  a be a continuous function defined on the real line and 7 > 1 such that, 
(a) s u p p ( a )  C ( - o o ,  0 ] ,  l i m x ~ - m  D S a ( x )  = O, f o r  every s, 0 < s < y, and 
(b) there exists t ,  0 < fl < 1 such that IDra (x ) l  < c/(1 - x)y+l+# holds for  x < O. 

These conditions on ~r imply that [DScr(x)[ < c/(1 - x) s+l+~ f o r  x < O, and 0 < s < 7. In 
addition to (a) and (b) we ask ¢r to satisfy 

(c) f°_oo or(x) dx  = O. 

Then, given 0 < ct < fl <_ 1 andany  fl', c~ < fl' < 3, we have that l+ (a )  satisfies: 
(O I + ( a ) ( x )  = 0 / f  x > 0 and l imx--,_~ DS l + ( a ) ( x )  = O, for  every s, 0 < s < y,  

(ii) [DSl+(a) (x )[  < c/(1 - x )  s+ l+# ' - a  for  x < 0, andO < s < ~,, and 

(iii) fo l + ( a ) ( x )  dx  = O. 

P r o o f .  We observe that if p is a bounded and integrable function, then the fractional integral I + (p) 
is a bounded and continuous function tending to zero at infinity. 

Let us estimate l+ (DSa) ,  1 < s < )I. Let x < - 2 .  Since supp(a)  C ( - o o ,  0], we have 

f -x~2 DStT(x Jr y)  f - x  DSa(x  + y) 
l + ( D S a ) ( x )  = dy  + dy  = I + I I .  y l -Ct J _  y l - a  

JO x/2 
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For the integral I we get, 

III < (1 - x )  s+l+~ 
C C 

- ( _ x ) ~ + l + ~ - ~  

In order to deal with I I ,  we define 

f x hs(x) = DS-la(z)  dz .  
OG 

- ( _ x ) , + l + t ~ , _ , ~  • 

c c 
Ih,(x)l < , IDhs(x)l = IDS-ta(x)l < 

(I - x) s - l+# '  (1 - x) s+f  

and c 
[D2hs(x)[ = lOSer(x)[ < for x < 0 .  

(1 - x) l+s+t¢ 

Moreover, Dhs(O) = DS-ltr(O) = 0 and hs(O) = f°oo_ DS-lcr(z) dz = O. Then, integrating I I  
by parts, we get 

1o 

f: x hs (x + y) 
+ (1 -- 00(2 - or) x/2 y3-a d y .  

! 

The first two terms are bounded by c / ( - x )  l+s+# -a. The third term is bounded by 

- -x  1 1 c f l  1 I 
c y3-~ y)S-l+3' dy - , d y .  x/2 ( - - X -  (--X)I+s+fl-~ /2 y3-a ( 1 -  y)t¢ 

Therefore, we have shown that 

II~+(D~a)(x)l <_ ! , 

( _ x ) l + , + :  -,~ 
1 < s < y ,  (2 .1)  

' t ¢  for any fl , oe< < f t .  
Now, we shall show that 

f f  l+(DSa)(z)dz = DS-lI+(a)(x),  I < s < y .  
O0 

(2.2) 

By (2.1) we know that I+(DSa) is integrable and by the observation at the beginning of  the proof 
I+(DSa) is also continuous. Then, if (2.2) holds, it follows that I+(DSa) = DSl+(Da) , 1 < 
s < y,  and we obtain parts (i) and (ii) of  this lemma. Let us prove (2.2). For x < 0, we have 

f_  f :"  (fO -z Dsa(z + y) ) x l+(DSa)(z) dz = yl-~ dy dz 
N N 

fo-- 1 (f[# ) = yf--u DSa(z + y) dz dy + x ~ DSa(z + y) dz dy 

= l+(DS-lc:)(x) - l+(DS-la)(-N). 

/ 

Since IDs-la(z)l ~ c/(1 - z) s+#, then IDS-la(z)l ~ c/(1 - z) s+# and using this estimate for 
DS-lcr it follows that 
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Then taking the limit for N tending to infinity, we get that (2.2) holds. Let us prove (iii). From (2.1) 
and (2.2) we obtain 

c 
II+(cr)(x)l _< if x < 0 .  

( -x ) l+# ' -~  

By Fubini's Theorem, a change of variables, and (c) 

f] (L ) N N y l -a  dy dx 

N 1 ( f  a(z)dz) dy = --LN 1 ( :~  N÷ycr(z)dz) f d y .  
Jo ~ ~+y ~ - 

The absolute value of the last integral is bounded by a constant times 

fo N l 1 de = I _ _ _ ~ L 1  1 1 d e .  
y l - a  (1 + N - y)/¢ N¢¢_. y l - ,  (1 - y)#' 

Then taking the limit for N tending to infinity it follows that 

~_ l ~ + ( o ) ( x ) d x  = O .  
O0 

ending the proof of the lemma. [ ]  

L e m m a  2. 
Let ~p 6 S(R),  m a positive integer and p(x)  = xm~o(x). Then, for every t > O, holds 

Proof. The proof is simple and shall be omitted. 

d m 

[ ]  

L e m m a  3. # 
Let w E A +, 1 < q < ~ and 0 < t < 1. Then for every non-negative u E L q / t ( w )  there 

t 
exists a non-negative v ~ Lq /t (w) such that 

(a) u(x) < v(x) a. e., 
(b) IlVllLq, /t(w ) < 2[lu [ILqt / t (w)  a n d  

(c) vw E A + if p = ( 1 -  t)q + t. 

Proof .  This is the one-sided version of Lemma 5.17 of [5, page 447]. The sublinear function used 
in the proof of our lemma is S(u) = ( M - ( l u l l / t w ) w - 1 ) t .  []  

L e m m a  4. 
Let B be a Banach space and 1 < r < oo. Let Uj be a sequence of  linear operators such that 

( f  ,,Uj f(x)l,~ p ( x ) d x )  l/r ,1/r <_ Cr(p) ( f  l f (x) lr  p(x)  d x )  (2.3) 

holds for  every p ~ A + with a constant Cr(p) not depending on j. Then, for every 1 < p < 0o and 
1 < q < oo, we have that 

q/P 
1/q 

w(x)  d x )  (2.4) 
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1/q 

<Cp,q(ll~) t~j ,fj(x)IP ) to(x) dx 

holds for every w ~ A +. 

P r o o f .  We observe that by extrapolation, see [9], if (2.3) holds for a given r, 1 < r < oo, then it 
holds for every r, 1 < r < ~ .  If  p = q, the proof of  the theorem is trivial. Let p < q, by Lemma 3 

t 

with t = (q - p)/(q - 1) given 0 < u ~ L (q/p) (w) there exists v such that 

II v II L(qm' (w) ~ 2 II u II L(qlp)' (~) ' 

and 

( f  ':" 
where c does not depend on j .  Then proceeding as in Theorem 6. I of  [5, page 519] we get (2.4) for 
1 < p < q < o~. As for the case p > q we have 

(S(~ j )q/P )"vie . I IUs/ ) (x) l le  p w(x)  dx = IIU./fll8 gj(x) dx ,  

# t 

where {gj(x)} ~ L~p, (w -q/q). Now proceeding as in the proof of Theorem 6.4 of[5,  page 519] we 

obtain that (2.4) holds for p > q. [ ]  

3. One-Sided Littlewood-Paley and Lusin 
Area Functions 

In this section we shall develop the theory of  the one-sided versions of  the Littlewood-Paley 
and Lusin area functions using vector-valued methods. 

Theorem 1. 
Let H1 and H2 be Hilbert spaces and k a strongly measurable/:(HI, H2)-valued function 

defined for x ~ O, and strongly measurable. Assume that k satisfies the conditions 
(/) IIk(x)llC(,l.~2) < B1 t-~1' 

(ii) for x ~ 0, Dk(x) exists in the/~(H1, H2)-norm and 

1 
IIDk(x)llc(Hvu2 ) <_ B2 

ix f2 ' 

(iii) for any pair (~, N), 0 < ~ < N, 

[I f~ <,xl<N k(x ) dx li c(ni.u2) 
_< B3, and 

(iv)/fx > 0, then k(x) = O. 

Then, the operator 

~>0 -YI>~ H2 
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satisfies: 
if w e A +, 1 < p < oo, there exists a constant c such that 

f K* f (x )  p w ( x ) d x  < c f  ]l f(x)l l~w(x) dx 

holds, and if w e A +, there exists a constant c such that 

~. w ({x : K*(f ) (x)  > ~.}) < c f  Ilf(x)]lH~ to(x) dx 

holds for any )~ > O. The constants c depend on p, BI , B2, B3 and the constant of  the condition A + 
for to. 

Proof .  The proof is a straightforward generalization of the proof given in [1] for the scalar case, 
i.e., HI =/-/2 = C the complex numbers. [ ]  

Theorem 2. 
I f  in addition to conditions (i), (ii), (iii) and (iv) of Theorem I we assume that 
(v) For any u e HI and v e H2, 

exist, then 

K f ( x )  = lim : k(x - y ) f ( y ) d y  = lira K , f ( x )  (3.2) 
~ o  JIx-yl>~ ~ o  

exists weakly in H2for any f e C~(H1), 

f IlKf(x)llPu2 w(x )dx  < c p f  IIf(x)ll~l w(x) dx (3.3) 

holds for 1 < p < oo, w e A +, and 

~.w ({x : IIKf(x)ll,2 > ~.})_< el f ,lf(x)llM, w(x) dx (3.4) 

holds for any ). > O and w e A +. 
Moreover, K f can be extended to L PHI (w) and so that (3.3) and (3.4) hold and the limit in (3.2) 

exists weakly in 1-12 a.e. for a general f e L Pt_II (w), w ~ A +, 1 < p < oo. 

Proof.  Assumption (v) is equivalent to assume that there exists I e/:(H1,/-/2) such that the limit 
in (3.1) is equal to (v, lu). Then, if f e C~(HI) and v e/-/2 

l i m ( v , K , f ( x ) ) = ( v ,  f l  x k ( x - y ) [ f ( y ) - f ( x ) ] d y )  r"°'0 -yl<l 

+ ( flxO' -yl>l k ( x - y ) f ( y ) d y ) + ( v ,  l f (x ) )=(o ,  Kf(x)) .  

Now, Theorem 1 and standard arguments (see, for instance [3, page 110]), allow us to extend K to 
a general f ,  f e LP l (w), remaining valid (3.2), (3.3), and (3.4). [ ]  

Given an integer y > 1 and x e R, we shall say that a C~-funct ion  ~ belongs to the class 
cpr(x) if there exists a bounded interval I~ = Ix, fl] containing the support of ~ such that D~'~ 
satisfies 

II¢l)'+lllDr gtlloo < 1. 
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Let F be a distribution on 79'(r, o o ) , - o o  < r < oo. We define the one-sided maximal 
function F~_,× (x) as 

F~_,v(x) = sup{I < F, ~ > I : ~ ~ ~ , (x )}  

for every x > r. 
Fixed w 6 A +,  q > 1, we shall consider x _ ~  and x ~  as in (1.1). Given 0 < p, and y > 1 

satisfying 
( Y + l ) p > q  > 1 or ( y + l ) p > q = l ,  (3.5) 

we shall say that the distribution F in ~D'(x-oo, eo), belongs to HP, r (w) if 

is finite. 

fxOO ) l/p IlfllH~.y(w) = F~..×(x)Pto(x) dx , 
- - 0 0  

R e m a r k  1. 
We observe that if ?q and y2 satisfy the condition (3.5) and YI < ~ ,  then, taking into account 

the definition of F_~,~,, we have the inclusion H~_ y~ (w) c HP, m (w). On the other hand, in virtue of 

the decomposition into atoms obtained in Theorem 2.2 of[11], it follows that H p, y2 (w) cc_ HP, y I (w), 
and therefore HP+,rl (w ) = H~_ m (w). Finally, we remark that the set of  all bounded functions f 
with bounded support belonging to HP+,y(w) is dense in HP, y(w). Also, it can be shown that the 

set of C~-functions f belonging to H~.,y (w) is dense in H~_ × (w). 

Theorem 3. 
Let ?' be a positive integer and 0 < p < oo such that p (y  + 1) > 1. Let K be a singular 

integral operator as in Theorem l for H1 = C and 1-12 = H, a Hilbert space. Moreover, we assume 
that the kernel k of  K satisfies 

1 
[[Dek(x)llL~c.H~ < B2,e (3.6) 

Ixle+l ' 

for every e, 0 < e < y. 
+ 

Then, if w ~ Ap(y+l ) we have 

fx IIKf(x)ll p w(x)  dx ~ c f~.×(x) p w(x) dx 
- - 0 0  - - 0 0  

(3.7) 

and 
(iv) f ( x )  = Y~i 2i ~-,j ai,j(x) in L 2. 
Thus, 

K f ( x )  = 2 i ~ Kai,j(x) 
i j 

with a constant c not depending on f . 

P r o o f .  Let f be a bounded function with bounded support. Since f induces a distribution in 
D ' ( - o o ,  oo), then we consider the maximal function f~_.y(x) defined for every real number x. The 
sets 

f2i = {x : f~_ ×(x) > 2 i } ,  i E Z ,  

are open and bounded. Then, applying Theorem 2.2 of [11], with respect to w -- I, if li,j stands for 
the connected components of f2i, there exist functions ai.j (x) such that 

(i) Ilai,j Iloo -< C, 
(ii) supp(ai,j) c li,j, 
(iii) f a i , j ( x ) x  s dx = 0 for every s, 0 < s < y - 1, 
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in the sense of  L2H , and therefore 

IlKf(x)llH <_ ~-~2i ~-~. IIKai,j(x)llH • 
i j 

Given a bounded interval I = [~,/~], we denote I = [3a - 2/~,/~]. Since (3.6) holds, it can 
be shown, as usual, that for x ¢ ~, j  we have 

ttKai,j(x)]} u < c [M+(xt l . i ) (x)]  ~'+l . (3.8) 

I f  x e ~ , j  and II Kai. j  (x)[lit < 1 we see that (3.8) holds with a constant which is a fixed multiple of  

the former  c. Finally, i f x  ~ ~,j  and IIKai,j(x)[lx > 1, then 

[IKai,j(x)[[~ ~ [IKai.j(x)ll~ +l • 

Thus, we have shown that for any x 

IIKai,j(x)llu ~ c [M+(xz~.j)(x) v+l + IlKai,j(x)ll~ +l] 

holds. Then, 

f tjK:<x)1: w<x).x (EM+(Ri/(Y+')xI )(X)Y+l~ 
i,j i,j : 

w(x)  dx 

Since w E A + p( r+D'  by Lemma 4 applied to the operators M + and K, we obtain 

i j 

:( ), c: < c ~ 2ixai (x) w(x)  dx  < f_~,y(x) p w(x)  d x .  
i 

By Remark  I,  (3.7) holds for every f e HP.r (w). [] 

T h e o r e m  4. 
Let y be a positive integer and 0 < p < oo such that p ( y  + 1) > 1. Let (p be a function 

satisfying 
(i) q~(x) = 0 i f  x > 0 and l imx~_oo De $(x )  = O for every e, 0 < e < y,  
(ii) DY-lq~ is continuously differentiable on ( - o ¢ ,  0), and for a ~, 0 < ~ < 1 

¢y 
ID×cb(x)[ _< /f x < 0 .  

(1 - x ) l + × + / ~  

These conditions imply 

Cl 
IDe~b(x)]< /f x < 0 a n d 0 < g < y .  (3.9) 

- (1  - x ) l + e + / ~  
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In addition to (i) and (ii), let us assume 
(iii) f-~oo ¢ (Y) dy = o. 

Then, i f  we define 

g + ( f ) ( x )  = t(q~t * f ) ( x ) [  2 , 

there exists a constant c such that 

IIg+(f)llLp~,) _< c IIf-;,yllLp~w~ (3.10) 

+ In consequence, i f p  > 1 and w E A +, there exists a constant c I such that holds if  w ~ Ap(r+1). 

Ilg+(f)llzp(w) < c' IlfllL,tw) • (3.11) 

Moreover, for  )~ > 0 
). w ({x : g + ( f ) ( x )  > ;.}) < c [[fllL'(w) (3.12) 

holds if w E A +. 

I f  for  a > O, we define 

(ffo d z d t ~ l ' 2  S + ( f ) ( x )  = I(q~t * f ) ( x  -FZ)I 2 t2 ,] <z<at 
we obtain that (3.10), (3.11), and (3.12) hold substituting S + ( f )  for  g + ( f ) .  

P r o o f .  We give the proof  for g + ( f ) .  The proof for S + ( f )  is similar. Let H1 = C, the complex 
numbers, and H2 = H = L 2 (R +, -~). We shall show that the kernel k(x)  = q~t(x) = t - l~b(x / t )  
satisfies the hypotheses of  Theorem 2 and therefore the conclusions of that theorem. Moreover, in 
this case the operator K can be given explicitly as 

K f ( x )  = (~bt * f ) ( x )  , (3.13) 

almost everywhere on the hairline x-oo < x. 
We observe that an operator M ~ £ (C ,  H)  coincides with a function m(t)  in the sense M u  = 

m(t) .u  for any complex number u, and IIMIIc(c,n) = lira II n .  
Let us prove that condition (i) of  Theorem 1 holds for k(x)  = qbt(x). I f x  ¢ 0, then 

Ilk ( x )  II ~:(c.,v ) = (fo°°ldpt(x)121t) 1 /2-  <c (fo°O( t )2+2fldt) -~ 

C ( f o ~ (  t ~2+2' d t ) l / 2  
- Ixl \t--+--T} ~ < oo .  

Next, we show inductively that condition (3.6) of  Theorem 3 holds. I f  x ~ 0, Ihl < !~!, and 

0 < s < I, we have Ix + shl > ~ .  Then, for 0 < e < y,  and applying (3.9), 

<  Z'lo,o(x+ts )r.s 
< c,'t-'-I ( t + - ~ )  1+'+# 
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and thus, 

I 1 [De-'~t(x +h)-De_lq~t(x)] - t -~'~" D 1  ,~b ( t ) l  < c,t"-,-l(~t ) l+,+/~ 

Squaring and integrating with respect to the measure dt/t, and applying Lebesgue's Dominated 
Convergence Theorem, our claim follows. 

In order to prove condition (iii) of Theorem 1 we observe that hypothesis (iii) implies 

Ifx~<r4,(x) d x r < c(1 + r ) l + #  , (3.14) 

see [2, page 363]. We have 

]f~<lxl<Nk(X) dx]u < fxl< ?pt(x)dxlu q- tlfxl<NdPt(x) dx (3.15) 

Since by (3.14) and a change of variables 

tf~,(x)ax r/t < c (1 + r/t) 1+# ' I<r 

we get that ]lflxl<r (~t(x) dx ~t < C. Then, the right-hand side of (3.15)is bounded by 2C. 

Condition (iv) of Theorem 1 is obvious for k(x) = 7~b (7) . I  x 
Finally, we shall prove the condition (v) of Theorem 2 for k(x) = qbt(x). We want to show 

that for E l < 62 

/o ~ (f, )~' f5 If, o,~x~x~, h(t) q~t(x)dx < max [h(t)l t (3.16) 
l<lxl<E2 "T - -  i = 1 , 2  ]<Ei  

tends to zero with E2 provided that h(t) ~ L 2 (~+, -~). Let 7/> 0 to be chosen. Then, splitting the 
domain of integration into t < r/and t > q, and applying Schwarz inequality, we have 

fo °° flx dPt(x) dx dt Ih(t)l "T < 
I<E 

(fo°]h(t)12d-~)l/2(fo~ fxl< (bt(x)dxl2 d-~) 1/2 (3.17) 

q-(foC~lh(t),2d~tt)l/2(fo°° flxl< (bt(x)dxl2 d~tt)l/2 

By (3.14), we have 

Thus, 

and 

IL I ,,t qbt(x) dx < c 
t<" - (1 q- E / t )  1+# " 

),,2 c + t2 _11 2+2, dt/1'2 <oo 

(LE~ ~x~) ''2 I~ +t2"~2+2, j~"2 oo 2 t oo E 
qbt(x) -- < C~ dtl <_ c-  . 

I<E (t r/ 
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Now if we choose rl small enough, and then E small enough, we get that the left-hand side of  (3.17) 
and therefore that of  (3.16) is as small as we please. 

Let us prove that (3.13) holds. Let f belong to C~, by Theorem 2, 

K f ( x )  = lim f dDt (X  - -  y ) f ( y )  dy = lim K , f ( x )  
e~O Jix_y[> ~ E~O 

exists weakly in H = L ;  (R +, -~). Then, by a theorem of Banach and Sacks, [8, page 80] there 
exists a sequence ek "+ 0 such that the means 

Sn(x) = (K, l f ( x )  + " "  + K , , f ( x ) ) / n  

converge strongly to K f ( x )  in H.  Since f is bounded and ~b is integrable, by applying Lebesgue's 
Dominated Convergence Theorem, for every fixed x we have 

lira KEf(x)  = lira f qSt(x -- y ) f ( y )  dy = ((~t * f ) ( x ) ,  
~ o  E---~o ,]lx-yl>~ 

for every t > 0. Then K f ( x )  = (qSt * f ) ( x )  as an element of  H for every x. 
Given f a distribution in D'(x_~ ,  c~), let ~0 belong to D(x-oo, oe) such that the support of  

~o is contained in an interval I = [a, b]. Since x-oo < a, there exists d ,  x -az  < a t < a,  such that 
a - a t < III = b - a. Therefore, if [ = [a t, a], by the definition of  f~.y,  we have that 

I(f,~o)l < 2 v+l II1 ×+1 IlOV~oll~ f+ ,y (x ) ,  

holds for every x 6 [. Taking the p-power and averaging on [, we obtain 

I(f,~0)l < 2 v+l IllV+l _ w(7)l/-------- ~ IlOV~oll~ Ilftln~_.v(w ) • 

Now, let ~0 be a function with continuous derivatives up to the order y,  with support contained 
in the halfline [a, c~), where a > x _ ~  and such that 

Itl~olllv,×+l+t3 = sup [D×~o(x)l(1 + Ixl) v÷l+t~ < o e .  
X 

For simplicity and without loss of  generality we assume that a = 0 > x-oo. 
Let (~k)k>_0 be a sequence of  non-negative C~-funct ions,  satisfying: 

For k > 1, support(~k) C [2 k- l ,  2k+l], and support(O0) C [ - 1 ,  2], 

~k>_O ~'k(X) = 1 i fx  >_ O, and 

IlOS~kl[oo < C 2 -ks, 1 < s < y. 

Thus, 
~o(x) = ~ ~k(x)~o(x). 

k>O 

We choose an interval J = (max(x_oo, - 1 ) ,  0] and for each x ~ J and k > 0, we denote Jk 
to the interval [x, 2k+1]. Therefore, for every k > 0 we get 

IJkl v+l IIDr(tP~k)ll~ < Cr IIl~olll×,r+l+~ ~-'-~ 2-k/~ - 
k>0 
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Then, we can extend the distribution f to these functions 9 as 

(f ,  ~o) = ~"]~(f, ~o~rk), 
k>_O 

and we have that 

I(f,~P)l < ~-"]l(f,~o~k)l < C×f~_,y(x) lll~ollly,v+l+# E 2  -k# 
k>0 k>0 

< C×,~ f~ . y (x )  IIl~ollly, y + l + p ,  (3.18) 

holds for every x e J .  Taking the p-power  and the average on J ,  we obtain 

I(f ,  ~o)1 _< Cr,/~ I[l~olll~,,y+l+/~ f~_~,(x) w(x)  dx (3.19) 
- - C ~  

By Remark  1, if f belongs to Hg~,(w) there exists a sequence (fn)n>l of  Col-functions such that 

fn tends to f in H+Py (w). Taking into account Theorem 3 

/: // ]lKfn(x) Kfm(x)l l~ w(x)  dx  < c (fn - * P - fm)+,~,(x)  w ( x )  dx 
- o o  - o o  

which implies that there exists K f  = limn--,~ Kfn in LPH(w). 
Since for every ~. > 0, we have 

w({x > x-oo : llKf(x)- Kfm(x)]Is > X}) --+ O, 

then there exists a subsequence of  (Kfn)n>l that converges in H for almost every x. Letx0 be a point 
for which the subsequence converges in H = L 2 (R +, -~). Then, there exists a new subsequence, 
depending on x0, such that we shall denote (Kfm (x0))m__.l, satisfying 

K f (xo )  = lim Kfm(xo) a.e. in t > 0 .  
m ....h o o  

On the other hand, since f m e  C 1 we know that Kfm(XO) = dpt *fm(XO). Taking into account (3.19) 

I~Pt * fm(xo) - #bt * f (x0) l  )", 
- f )+ . r ( x )  w(x)  dx <_ C~, : IIlCtllb,,×+l+/~ ~ (fro * P 

- - 0 0  

Then, Ct * fm(XO) tends to Ct * f ( xo) ,  and in consequence K f ( x )  = ~Pt * f ( x )  for almost every x 
and almost every t > 0. [ ]  

Let ~p belong to ,S(R) supported on ( - o o ,  0]. Let m and n non-negative integers such that 
m + n > 1, and 0 < ca < 1. We define 

(f: g + ( f ) ( x )  = It n+m-a O n O~ n I+(~ot * f ) ( x ) l  2 

and 

(ffo .z.,a: s+(f)(x) = I: +m-" a~ a:" I+(~o, • f)(x + z)l 2 ---~-I , 
<z<at 

where 0 < a < oo. 
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In order to apply Theorem 4, we observe that 

a~ a? I~+(~,)(x) + " " = 1,; (a~ a;" ~o,)(x) 

and, by Lemma  2, 

ax ~ a t  ~o,(x) 
(-l)m [(d) m (t)] 

- -  t m+-------f-an -~x P 

(-Dm F/d V +m ] 
- -  tm+n+--~ I Lk-d~x) "J (ft) 

where p(x) = xm~o(x). Then, (3.20) is equal to 

(3.20) 

Moreover, for k > 0 

holds if  w E A +. 
Besides, if for a > 0 

( f r o  dzdt~'/2 S+( f ) (x )  = It " + m - "  O~ 07 l+(et * f ) ( x  + z)l 2 - -~ -1  , 
<z<at 

we obtain that (3.22), (3.23), and (3.24) hold substituting S+ ( f )  for g+ ( f) .  

IIg+(f)llLP(w) < C IlfllLP(w). (3.23) 

Z w ({x : g+(f ) (x)  > ,k}) < c IlfllL~(w) (3.24) 

(-lr ,: Ft. (x) 
,.+--°+, L Txj - - -  

Therefore, g+(f )  and S+(f )  are defined as in Theorem 4 {'or 

r t" ;  +" ] o(x)=(-D m1+Lk~) xm~ . (3.21) 

Applying Lemma 1 to cr = (-1)mDn+m(xm~o) and by Theorem 4, we have the following theorem: 

Theorem 5. 
Let ~o belong to S(•) supported on (-oo,  0]. Let m and n non-negative integers such that 

n + m  > 1, andO <ot < 1. If 

(f? i) g+( f ) (x )  = ttn+m_ a an at  l+(~ot • f ) (x ) ]  2 t 1/2 , 

there exists a constant c such that 

IIg+(f)llLP(w) <_ c IIf~, rllLp(w) (3.22) 

+ In consequence, if p > 1 and w ~ A +, there exists a h o l d s i f p ( y +  I) > l a n d w  ~ Ap(y+l ). 

constant c' such that 
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4. One-Sided gx Function 

We begin this section stating a known result of  the auxiliary T + function, see [7, page 97]. 
The T + function generalizes the Tx function introduced by Fefferman and Stein in [4, page 178]. 

Let • be an integrable function and ~. > 1. We define 

T~(f)(x) sup(L fh fx+h )1/2 = tx-2l(~p t . f ) (y )12dydt  
h>0 \ hx J0 Jx 

The function T + has been studied in [10]. In that paper, we proved the following theorem: 

T h e o r e m  6. 
Let  p > 2, y be a positive integer such that y + I > ~ and w E m+e3.. I f  • ~ S ( R )  with 

2 
support contained in ( - o o ,  0], then 

II Z+ (f)llLp(w) <_ c IIf-~,r IlLp(w) 

holds with a finite constant c depending on )~, ~ ,  w, y, and p. 

The following technical lemma shall be needed in the proof of  Theorem 7. 

L e m m a  5. 
Let J = (or,/~) be a bounded interval and F c_. J a closed subset. Given Iz, 0 < Iz < 1, we 

define 
D = { x ~ F : l F n [ x - - t , x ] l > I z t ,  Y t : O < t < l J I } .  

l f W  = Ux~DFl(X) ,  where Fl(x)  = {(z,t)  : 0 < z - x  < t } a n d R  = {(z,t)  : ot < z < 
fl + [JI, 0 < t < IJI}, then 

(i) fF  S~ ( f ) ( x ) 2  dx > IX ffRnw Iqbt * f ( z ) l  2 d zdt. 
and 

(ii) IF \DI  < 15 tz IJl. 

P r o o f .  By Fubini's Theorem we have that 

F s t ( f ) ( x ) 2  d x  

ff dzdt = I(~bt * f ) (z ) l  2 IF  N [z -- 2t, z]l t2 

Thus, 

fr s~(f)(x)2 dx 
~-f£,,)~,ow I(¢t*f)(z)12lFN[z-2t'zll-- 

dzd t  
t 2 

We observe that if (z, t) ~ R n W, then the pair (z, t) belongs to l"t(x) for some x in D, and this 
implies that Ix - t, x] C [z -- 2t, z]. Therefore, since 0 < t < IJI, we have that IF  n [z - 2t, z]l > 
I F n [ x  - t ,x] l  > izt and 

fF S ~ ( f ) ( x )  2 d x  
/ ' f  dzd t  

f ) (z) l  2 Ix I I  I(~t * 
- , / J R n w  t 

which proves (i). 
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Now, let us prove (ii). We choose an open set D C G such that 

IGXDI < 3 / z l J I .  (4.1) 

I f x  ~ F \ G ,  then x ~ F \ D  and this implies that there exists tx, 0 < tx < IJ[ such that 

[ F N [ x - t x , X ] t  < I z tx .  

Then, we can choose ~x, 0 < Ex < tx satisfying 

I F M [ x - - t x , X  +Ex]l < 2 t Z t x .  

The compact  set F \ G  is covered by the family {(x - tx, x + ex)}x~F\G. Then, there exists a finite 
subcover { (xi - txi , xi + E xi ) } ~ <_i <_r such that 

r 

X[xi_txi,xi+¢xi] (x)  ~ 2 Xt,_IjL,+IjI 1 ( x ) ,  
i = 1  

which implies that 

ThLIS, 

IF\GI 

~ t~; < 6 1 J I .  

i=1  

r r 

f f - ~ l F A [ x i - t x , , x i + ~ x i ] l <  21z ~-'~txi ~ 1 2 / z l J I .  
i=l i=l 

By these inequalities and (4.1) we obtain (ii). [ ]  

Let ~0 belong to S (R)  supported on ( - o o ,  0]. Let m and n non-negative integers such that 
n + m > 1, and 0 < ot < 1. We denote as in (3.21) 

F I d \ n+m "] 
- -  < - - l ) m  xm ], 

and define 

g + ( f ) ( x ) =  ( f o ° ° f x ° ° ( t  

where 3. > 1. Explicitly 

t ) x  d z d t ~  1/2 
+ z - x  I (~b/*f)(z) l  2 t2 ] , 

(fo f/(  ,dzd'  ''2 g + ( f ) ( x )  = t tt n+m-a O~O'~l+(qgt * f ) ( z ) l  2 ---7v-,  
t + Z - - X  

With these notations we have the following theorem: 

T h e o r e m  7. 
Let p > 2, y be a positive integer such that y -4- 1 > ~ and w E 3 2 .  Then 

2 

IIg+(f)llLp(w) < c I f - :  yllL,(w), 

holds with a finite constant c depending on L, of, w, y, and p. 

The proof of  this theorem consists of  obtaining a good ). estimate for the g+ function and 
follows the lines of  the proof  of  Theorem 2 in [7]. 



948 Liliana de Rosa and Carlos Segovia 

P r o o f .  For  any given N > 1 we define 

(fo ( co at t I(q~t * f ) ( z ) (  2 dzdt~l/2 
g~N(f ) (x)  = XN(Z, t) t + Z -- x "-'~-} 

where XN(Z, t) is the characteristic function of  the rectangle {(z, t) : Izl ~ N, N -1 < t < N}. It is 
enough to prove Theorem 7 for g~,N instead of  g+ with a constant c not depending on N.  Then, by 
Fatou 's  Lemma we get Theorem 7. 

We shall assume that f is a bounded function with bounded support, in H~,~,(w). Then, 

g~N ( f ) (x)  is a continuous function and moreover i f x  > x _ ~ ,  we have that 

g~,,N(f)(x) < C~,,~ N 2y+3~+4 f~_.y(x) (4.2) 

for any fi, 0 < fl < 1. In fact, by part (ii) of  Lemma 1, there exists fi, 0 < fi < 1 such that 

c 
ID~'¢(x)l  < i f x  < 0 .  

( 1  - x)r+l+#' 

Given z > x and t, N -  1 < t < N,  the support of  ~t (z - .) is contained in the halfline [x, oo) and 

Illq~t(z - ")lllr,r+l+fl = SUpy IDrqbt(z - y)l(1 + lyl) v+l+# 

/ l+lYl ~Y+I+# ,N2(y+l)+3# 
< t # SUpy ~, t+lz-yl f l  < c . 

Therefore, by (3.18), for every y 6 J = (max(x - to ,  x - 1), x],  we have 

I f  * q~t(z)l = I(f ,  q~t(z - .))1 
t 

< Cy,# f~_r(y) IIl~t(z - -) l l l~, , j ,+l+# <- C~,~ f.~,y(y) N z(y+I)+3g • 

Apply ing  this estimate for y = x,  we obtain that 

' ( fN  v fz dzdt~l/2 g+N(f)(x)  < C×,# f~. y(x) N 2(r+1)+3/~ 
• -- " -l >_x,lzI<N "~ /I 

< Cy,# " N 2y+3#+4 f .~ ,v (x ) .  

We observe that by (4.2), g~,N ( f)(x)  belongs to LP(w). 
Since the weight w satisfies the A + condition, then by Theorem 1 in [6], there exist K > 1 

and t7 > 0 such that 

w(E) < K (c[E[b) ' 7 -  
w((a, c)) - 

holds for every a < b < c and every measurable set E C (a,  b). 
Let  M = (2p+2K) -I/n and 0 < 8 < 1 to be chosen later. We shall prove that 

(4.3) 

holds for every 0 < a < oo. 
I f  we denote by Aa the set {x : g~,,N(f)(x) > ~}, 0 < ot < o¢, since g~..N(f)(x) is a 

continuous function and by the estimate (4.2), it turns out that A:, is an open bounded set. Let  
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Aa = Uli, where the l[s denote the connected components  of As.  We choose any Ii and assume 

that Ii = (a, b). We define the sequence (Xn)n>_O as 

b - a  
x n = b - ~  , n>_O. 2 n 

Then,  Xn - xn-1 = 2(Xn+l - xn). Let us denote by Jn the interval [Xn-1, Xn] and let E~ be the set 

{x : g ~N ( f ) ( x )  > 2or, S f ( f ) ( x )  + T+(f)(x) <_ 8~}. 
Given  a non-nega t ive  integer n such that ] Ect O ,In [ > 0, we consider  the rectangle 

Rn = {(z, t) : Xn-I < Z < b ,  0 < t < IJ~l} • 

Then,  i f  x be longs  to E~ n Jn, we have 

(2~)  2 < g~,N(f)(x) 2 = 

(II  fl ( ' 7 + XN(Z,t) t + Z - - X  
'2~" :'21" 

= A + B .  

dzdt  
[(~t * f ) ( z ) l  2 

t 2 
(4.4) 

If  (z, t) q~ Rn and x < z < b then, 0 < z - x < 2t.  Therefore,  

ff,  , , , ,~  ( t _ ) x  ----w- dzdt  XN(Z, t) [(qbt * f ) (Z)I  2 < 
t + Z - -  x t "  -- 

x<z<b 

f r o  dzdt  S+(f) (x)  2 < (8~) 2 <_.z-x<_2t [(~bt * f ) ( z ) [  2 t2 - _ • (4.5) 

I f b < z ,  t h e n t W z - x > t + z - b a n d w e h a v e  

XN(Z, t) [(~bt * f ) ( z ) l  2 t2 
t + Z - - X  

z,t)qtRn 
b<z 

< g~.N(f)(b) 2 < o~ 2 . (4.6) 

The est imates (4.5) and (4.6) show that B < c~2(I + 8 2) < 2oe 2. Then,  by (4.4) we obtain that 

f f z  ( t ) z dzdt  (4.7) 2or 2 < [(~bt * f ) ( z ) [  2 t--- T -  , 
t + z - - x  

,t)ERn 
z>_x 

holds for every x be longing  to E~ n Jn. 
Choose  a closed set Fa,n C Eu O Jn such that 

M 
[(E~ n Jn)\Fa,nl < -~(Xn+l - x,)  , (4.8) 

and we define 

M 
Dam = {x e Fa,n : IFg,n n [x - t , x ] l  >_ ~-~t ,  Vt : 0 < t < IJn l} .  

We observe  that Da,n is closed. By L e m m a  5, we have 

5 
[Fa,n\Da,nl < "~M(Xn+l - Xn) . (4.9) 
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Let us assume Du,n # 0. Since Du.n C E~ fq Jn, then integrating both sides of  (4.7) with respect to 
x over Dam, we have 

2"'I°""i:-li..(i.oo:.(t+.<_: dx l(¢t * f ) (z ) l  2 dzd t  
Z - -  x t 2 

Let W = [..Jxso... I ' l (x) ,  where Fl (x)  = {(z, t) : 0 < z - x  < t}. By (4.10), we have 

20t 2 I D~,n I < 

( i S R  SS. )(f ( t )X ](dpt*f)(z)] 2 dzd t  
. n w W  \w ,~ . .  t + Z - X t 2 

Let us estimate I .  Since 

= I + I I .  

we obtain that 

f~ ( t ) x  f _ ~ ( t ) x  t dx  < dx  = , 
~D~.. t + Z- -  X oo t + Z -- X X - I 

X<_Z 

l f f .  I < - -  I(~t * f ) (z ) l  2 dzd t  
- X -  1 . n w  t 

Applying Lemma 5, we have 

(4.10) 

(4.11) 

1 48  1 "  1 48  
I < JF= S ~ ( f ) ( x ) 2 d x  < - ( 8 0 0 2  IFa,n[ 

- L - 1 M  .. - L  1 M  

1 96  82 O~2 
< (xn+l - xn) • (4.12) 
- ~.--1 M 

Let us estimate I I .  Since the set Dam is not empty then m = min(D,~,n) exists. Denote 
{Ck}k>__l the connected componentes of (m, b)\Du,n. Then, 

I I = Z t 1(4't * / ) ( z ) l  2 t2 
k> l .t)~Rn\W z~ck ]~z'" t + z -- x 

Choose any Ck = (c, d) and consider a sequence (ds)s>_O such that do = d and ds- i  - ds = 
ds - c, s > 1. For any given non-negative integer s, i fds < z < ds-1, x < z and x ~ Du,n, then 
x < c. Thus, 

fx ( t ) x  fz  tx _ 
~o~,n t + z x dx  < - -  = 

-x>__ds-l-as (Z x)~. dx  t~ " (ds-1 ds) l-x 
- - - -  ~ . - 1  

X~Z 

In consequence, we obtain that 

L s -~ S,~)~.\w t -I- Z - -  x dx  I(~bt • f ) ( z ) l  2 t2 

, 1 // 
< - - ( d s - I  - ds) (ds-i  - tx-2 (~t * f ) (z ) l  2 d z d t .  

as <_=<_d~_ l 
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If  (z, t) E Rn\W andds < z < ds-l, then0 < z - c < 2(ds-1 -ds)  and0 < t < 2(ds_l -ds) .  
Therefore, since c belongs to Ea, we get 

2 x 2 x 
Ls < ~ (ds-1 -ds )  T+(f)(c) 2 < - -  (ds-1 -ds )  (300 2 .  

- ) ~ - 1  - ~ - t  

Then, 

2 x 
= Z t s  < - -  lCkt (~ct) 2- 

s>l 

Summing up in k, and taking into account (4.13) we obtain that 

2 x 2 x I I  < ~ (3a) 2 I(m,b)\D~,nJ = 2zq (Sa) z 2JJnJ 
2x+2 

< X_--Z-i" (Set) 2 (Xn+l --Xn) • 

Taking into account these inequalities, (4.12) and (4.11) we have that 

2cz2lDa,n[ < ( - ~ + 2  ~'+2) (~CX)2 _ ~ (x.+l - x . ) .  

Since 8 < 1, this shows that 

iDa,hi < (48M + 2X+I) ~1 (xn+l_xn) < 2~+2 48 - - M ~. - ' ~  ( x n + l  - -  x n )  • 

M 2 
Besides, if we choose ~ such that 0 < 8 < 0- - 1) 2~+-;z-~48, by (4.8) and (4.9) we obtain for every 
n>_0,  

lEa nJnl <_ M(Xn+l -Xn) . 

Taking into account that w satisfies the condition A + and since M = (2p+2K)-I/n we get 

w(e~ n J.) 
\ Xn+ l --  Xn ] 

= 2 -(p+2) w(xn-l,xn+~). 

Summing these inequalities for every n > 0, we have that 

w ( E a  A I i )  <~ 2 -(p+D w ( l i )  , 

holds for every connected component li of Aa, which implies (4.3). Now, applying Theorem 5, 
Theorem 6 and standard arguments (see [7, page 108]) it follows the theorem. [ ]  

5.  A p p l i c a t i o n  t o  F r a c t i o n a l  I n t e g r a l s  

We begin this section by showing that the reverse inequality of (3.23) holds. More precisely: 
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Propos i t i on  1. 
Let  ~o belong to S(R) supported on ( - o z ,  0]. Let m and n non-negative integers such that 

n + m  > l, andO <cr < 1. I f  

( f o  °° d t )  1/2 g + ( f ) ( x )  = I(q~t * f ) (x ) l  2 - -  , 

where q~ is defined as in (3.21), then there exists a constant c such that 

c IlfllLv(w) < Ilg+(f)llLp(w), (5.1) 

h o l d s i f l  < p < oo, f E LP(w)  a n d w  ~ A +. 

I f  we consider S+ ( f )  as in Theorem 5, then (5.1) holds substituting S+ ( f )  for  g+ ( f ) .  

Proof ,  Let f ~ L l A L 2, f ( x )  = f ( - x ) .  Since the inequality (3.11) is valid for p = 2 and 
w = 1, we get 

f/o f [(q~t * f ) (x) l  2 dt  dx  < c If(x)l  2 dx  < e e .  
t 

Then, by Plancherel's theorem 

f fo°°l(~'*f)(x)12atdx=f fo t 
fo dtf fo ~ dtfo°~ = oo 18( -Ot '  --7 iT(x)l'  dx + I~(t)l' t IT(x)i' d x .  

OQ 

ThUS, 

f _  x~ I~(t)l---~2 at  < C .  (5.2) 
¢0 Itl - 

Let ~ (x )  = 4~(-x). Then ~(x)  = 0 if x < 0 and we have 

f fo °° atdx= f fff ~(tx)T(tx)T(x)'~(x)atdx. (5.3) (q~t * f ) ( x ) ( ~ t  * h ) (x )  t t 

Since ~ ( x )  = ~'(x), we get that (5.3) is equal to 

We have that if x > 0 

fo" fo ~(tX)----~2 dt  = ~ dt  
t t 

(5.4) 

and i f  x < 0 

d t = -  t d t .  (5.5) 

By (5.2) we know that is integrable. On the other hand, ~ can be extended to the upper 

half-plane as 

f; ~(Z) = e-2~izX ~ ( x )  dx  . 

This function q~(z) is analytic for Z m z  > 0 and 

C 
I~(z)l _< 

I + {zl 
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Then ~-~(~)-----~ is an analytic function on the upper half-plane and for z = x + iy, 

Z) 2 1/2 C 1 C 
- -  < < 

- l + [ z l l z l  1/2 - ( l + l x l ) l x l i / 2 "  

Thus, we have that ~-~(z z)-----~2 ~ H 1/2 and since ~-~(tt)---~2 ~ L l we get that ~-~(~)----~2 E H 1. Therefore, 

L ~ ~ ( t ) 2 d t = 0 .  
oo t 

Then the integrals (5.4) and (5.5) have the same value c and we get 

f ffi( ffo c f ( x ) h ( x )  dx  = c x )h ( x )  dx  = (~Pt * f ) (x ) (~ t t  * h) (x )  t 

Since w ~ A + implies that w-P' /P ~ Ap,, by the part of this theorem that we have already proved 
we have 

,c, l f  f(x)h(x)dxI <_ f g+(f)(x)g-(h)(x)dx 

(fg+ ( f ) (x)Pw(x)dx) l /p  _ , , l/p' <_ , J  / ( f g  (h)(x) p w(x) -p/p dx) 

(f g+ ( f ) ( x ) P w ( x ) d x ) l / p  <- C IIh ll L,' <w-,' /p) • 

We observe that c = f o  ~-~(tt)2 dt  is different from zero. Infact,  since _ _ < ~ c  then 

fo fo °° ~(t)2 
oo ~(iy)2 diy  = dt  c 

I = ty t 

Now, if we assume that c = 0, we have 

f? ~( iy )  = e 27ryt d~(~) d~ 

and 

fo e° 1 e27rv~ I =  Y - $ ( ~ ) d ~  d y = O .  

This implies that for every y > 0, ~(iy)  = 0. Then, since SA(z) is analytic for I m z  > 0 we get that 
~b = 0 and thus tp = 0 by the unicity of the Fourier Transform. []  

L e m m a  6. 
Let 0 < ~ < oo ,  - o o  < c < oo and f ( x )  > 0 a function belonging to L]oc(C, oo). Assume 

that there exists a pair (a, b), c < a < b < oo such that 

( # dy < cx~. (5.6) 

Then (5.6) holds f o r  every pair (a, b), c < a < b. 

P roof .  The proof is easy and shall not be given. [ ]  
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Proposi t ion 2. 

Let O < ct < 1 , 1 < p < co and to(x) >_ O such that to(x) -p  /p E L]oc(C, CO) where 
- ~  <_ c < co. Then, the following statements are equivalent: 

(i) For every non-negative f ( x ) ,  f E LP(w),  we have that l + ( f ) ( x )  is finite a.e. on (c, co). 
(ii) There exists a pair (a, b), c < a < b < co, such that 

! 

fb c~ w(Y)-P /P dy < oo.  
(y -- a)(1-a)p '  

(5.7) 

P r o o f .  (i) implies (ii). Since 

fx  ° f ( Y )  +1 (Y _~-~i-a dy < l + ( f ) ( x )  < ¢~ a.e. on (c, oo ) ,  

by L e m m a  6, with fl = 1 - or, given a pair (a, b), c < a < b < ~ ,  the integral (5.6) is finite for 
every f ~ LP(w) .  Then by the Principle of Uniform Boundedness it turns out that (ii) holds. 

J 

(ii) implies (i). By Lemma 6 since to(x) - p / P  ~ Llo c (c, oo) it follows that for every (a, b), c < 
a < b, (5.7) holds. In particular, if d > 0 and x > c, by H61der's inequality we obtain 

! 

, 1/p 

(Sx +d ( Y - - ' ~ 1 - ~  ay < IIflIL~(~) , < +d  ( y  - -  X) ( l - a ) p  
(5.8) 

Let c < xl  < x2 < oo. By simple changes of variables and H61der's inequality we get 

f x x 2 ( f x  x+d f ( Y )  ) d ~ f  x2+a 
i (Y __ X ) I _  a dy dx < --ot oxl f ( z )  dz  

I 

, ) 1/p 
d ~ (fx2+d w(y)-P/P, dy  co < ~ IlfllLp(w) < • --  ~,,'Xl (y__x)(l-a)p 

(5.9) 

The estimates (5.8) and (5.9) show that (i) holds. [ ]  

Let 0 < ot < 1, f ~ LP(w),  to a weight in A + that satisfies (ii) of  Proposition 2. By that 
proposition, the difference I + ( f )  (x + y ) -  1 + ( f )  (x) is well defined for almost every y > 0, provided 
l + ( f ) ( x )  is finite. Then 

D a ( f ) ( x )  = ( f o  e~ I I+( f ) ( x  +yl+2ct y) - I+(f)(x)12 dy)'~ l/2 

is well defined for almost every x, x-oo < x. For this D a ( f )  we have the following theorem: 

Th e o rem  8. 
Let 0 < ot < 1, 1 < p < oo and w ~ A + satisfying condition (5. 7). Then, there exists a 

constant cl depending on ct, p and w only, such that 

ci I l f l lL,  o~) ~ IID,~(f)IILpO,,). (5.10) 

On the other hand, there exists another constant c2 depending on ct, p and w only, such that 
(a) ifot > 1/2 

IlOa(f)llLP(~) < C2 IlfllLp(w) . (5.11) 

2 (b) if O < oe _< 1/2  and p > rg~ ,  then (5.11)holdsprovidedthat w e A +17~ C A +p . 
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Proof .  Let f be a Col-function with support contained in (x_~,  Xoo). We are going to show that 
for0  < / z  < 1 

Oa(f ) (x)  < c {g+(f)(x)  + S+(f)(x)  + g~(f)(x)} , (5.12) 

holds with L = 2ta +/z .  The functions g+ and g~ correspond to a kernel qS(x) = Oxl+[xgo(x)] and 
S1 has the kernel q~(x) = 8xl+[~o(x)], where tp(x) e C ~  and fop = I. In fact, we have 

I+( f ) (x )  -- I+( f ) (x  + y) = [I+(f)(x)  - (q)y • I+(f))(x)] + 

[(q)y * I+( f ) ) (x)  -- ({Oy * l+( f ) ) ( x  + y)] + [((fly • I+( f ) ) (x  + y) - l+ ( f ) ( x  + y)] 

= Ii(x,  y) + 12(x, y) +/3(x, y), 

thus, 

D~(f)(x)  < ~ ~ Ilj(x, y)l 2 
-- yl+2a dy ---- E A j ( x )  . 

j = l  j = l  

Procceding as in [13, page 162], we obtain 

Al(X) < c g+( f ) (x )  , A2(x) < c S l ( f ) (x )  

and A3(x) < c g~( f ) (x ) ,  

with ~. = 2or + / z ,  1 - 2or < / z  < 1. Therefore, (5.12) holds. Then, in.virtue of Theorems 5 and 7, 
we get (5.11) for f in Co I. 

If f is any function in LP(w), let {fn} be a sequence of cl-functions with support contained 
in (x-oo, xoo) converging to f in LP(w) substituting I f  - AI by f in (5.8) and (5.9) we see that 
I+(fn)(x)  tends to l+( f ) ( x )  a.e. in (x_~,  ~ ) .  Thus, i fg(x,  y) > 0 satisfies 

t 

2 dy ~ P /  ' 
g(x, y) y--i%--~ ) w(x) -P /p  dx < 1, 

then, by Fatou's Lemma and H61der's inequality, 

< 

< 

fx x~ fo °° dy g(x, y ) l l+ ( f ) ( x  + y) - l+( f ) (x) l  ~ dx 
- o o  

f x ° ° f o ° °  dr  lim inf g(x, y) lI+(fn)(x + y) - l+(fn)(X)l ~ dx 
M X--oO 

lim inf IID,~(f~)IILp0,) _< c lim inf Ilfn ]]Lp(w) = c II/IILp(~), 

which implies that (5.1 I) holds for any f .  
As for (5.10), procceding as in [13, page 162], we get 

g+(f ) (x)  < c Da( f ) (x)  

for x_c~ < x. Thus, (5.10) follows by integration and Proposition 1. [ ]  

6. Application to Multipliers 
Let re(x) be a bounded measurable function defined on ~. The operator 

A A 

Tm f ( x )  ----- m(x ) f ( x )  

is well defined if f e S(R). With this notation we have the following theorem: 
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T h e o r e m  9. 
Let  re(x) (x ~ R) be the boundary value o f  an analytic and bounded function on the upper 

half-plane. We assume that its derivative D m ( x )  exists for  every x ~ 0 and 

Ix i lDm(x) t  <_ c , x ~ O . 

I f  w E A + , 1 < p < cx~, then there exists a constant c' depending on p and w only, such that 

C ! o IITm(f)llL,(w) ~ IlfllLP(w) 

Proofi  Let ~o be a function with the following properties: 

(i) ~0 E ,S(•) and tp > 0,  
(i i)  supp (~o) C ( - ~ ,  0] and 
( i i i )  f ~dx >0. 

(6.1) 

We define ~b(x) = -x~o(x)  and ~(x) ----- ~b • dp(x)/x 2. These functions ~b and ~p satisfy the 
same conditions (6.1) that ~0 does. Since x2~p(x) = (<p • <p)(x) it follows that 

D2~'(x) = [D~(x)] 2 . (6.2) 

Let M ( x ,  t) be define by M(x, t) = m (x )~( tx ) .  By (i) and (ii) we get that ~(x) is the boundary 
value of the function ~(z)  = f o  e_2rrizy ~o(y) dy,  where 2"m (z) > 0 and I~'(z)l _< c/Izl ~+2. Then, 
since lm(z)l < c, by the Cauchy's Theorem it follows that 

We define 

M ( x , t ) = O  for 0 < x  and t > 0 .  

U(x ,  t) = m ( x ) f ~ ( x ) ~ ( t x )  = ~ f ( x ) ~ ( t x )  and 

~(x,  t) = T ( x ) ~ ( t x )  . 

Taking into account (6.2) it follows that 

Thus, 

a ~ U ( x , t )  = atM(x, t)  O,'~(x, t) .  

£ a2U(x,  t) = OrM(y, t) atu(x - y,  t) d y .  
O0 

By a change of variables and (6.3) we have 

02tU(x, t) = O t M ( - y ,  t) OrU(X + y, t) d y .  

Following [13, page 96], we have that 

g + ( T m ( f ) ) ( x )  <_ c g ~ ( f ) ( x )  . 

Appealing to Proposition 1 and Theorem 7, and recalling that f ~ > 0, we get 

! 

IlTm(f)llLp(w) < c IlfllLp(w), 

w h e n e v e r w ~ A  + , 1  < p  <oo .  []  

(6.3) 
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