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affine space at scale r > 0 is measured by the infimum of the scaled Hausdorff distances between 
the boundary and n-planes through Q, namely 

O ( r , Q ) = i n f { ~ D [ 3 ~ f 3 B ( r , Q ) , L N B ( r , Q ) ] }  , 

where the infimum is taken over all n-planes L containing Q. Our work requires uniform control of 
several quantities on compact sets; thus, for each compact set K C R n+l we define 

OK(r) = sup O(r, Q ) .  
Q~a~olf 

The quantity OK (r) provides a uniform measurement over K of how far 0f2 is from being an 
affine plane at scale r > 0. It also gives an upper bound for the oscillation of the approximating 
affine spaces at scale r. In this sense it is a good replacement for the oscillation of the unit normal 
to the boundary (which measures the oscillation of the tangent planes). If ~2 C I~ n+l is smooth, 
the fact that the approximation of 0f2 by affine spaces improves as r tends to 0 translates into the 
following statement: for each compact set K C R n+L we have 

lim 0K (r) = 0 .  
r--+0 

Defini t ion 1. 
Let f2 C R n+l. We say that f2 is a Reifenbergflat domain if there exists 8 ~ (0, 1/8) so that 

for each compact set K C R n+l there exists R > 0 such that 

sup OK(r) < a . (1.1) 
O<r<R 

In the definition of a Reifenberg flat domain, the parameter 8 could have been chosen to be 
any positive number. On the other hand, (1.1) only provides significant information for 8 small. The 
choice of 1/8 as an upper bound for 8 is slightly arbitrary, but it is enough to rule out some nasty 
examples (see Remark 3 below). An important example of a Reifenberg flat domain is f2 = {(x, t) 
R n+l : x ~ R n, t > ~o(x)} where ¢p is a Lipschitz function with Lipschitz constant less than 1/8. 

Defini t ion 2. 
Let f2 C R n+l. We say that f2 is a Reifenberg vanishing domain if ~2 is a Reifenberg flat 

domain and if  for each compact set K C R n+l 

lim 0K (r) = 0 .  
r-.--~ 0 

Summarizing the fact that ~2 is a Reifenberg flat domain guarantees that at small scales af2 
can be approximated by n-planes. This approximation is uniform on compact sets. The deviation of 
af2 from being an n-dimensional affine space only depends on the parameter 8 ~ (0, 1/8). If f2 is 
a Reifenberg vanishing domain, the approximation improves as the scale diminishes. On the other 
hand, it is not true that if ~ is a Reifenberg vanishing domain then a~2 admits tangent planes. In 
fact, let ~o : R --~ R be defined by 

cos(2kx) 
~o(x) = E 2~4~ 

k = l  

The function ~0 can be shown to belong to ~.,, the little-o Zygmund class (see [28, pg. 47]). This 
implies that ~0 is well approximated by affine functions whose graphs are affine spaces. Using this 
information it is not difficult to show that f2 = {(x, t) ~/R = : t > ~p(x)} is a Reifenberg vanishing 
domain. On the other hand, ~0 is a continuous function which is nowhere differentiable (in particular 
it is a variant of the Weierstrass function). Thus, a ~  is not rectifiable (for a precise definition of 



Flatness of Domains and Doubling Properties of Measures Supported on their Boundary 925 

rectifiability, see [26]), which in particular implies that 0f2 does not admit tangent planes almost 
everywhere, i.e., there is not even a weak notion of the unit normal vector to Oft. Furthermore, Of 2 
has locally infinite 1-dimensional Hausdorff measure (see [27]). Thus, the surface measure to Oft is 
not well defined. 

A way to understand the pathologies presented by Reifenberg vanishing domains is by thinking 
about them as domains which admit C °'~ parametrizations for every ~ 6 (0, 1) but which might 
not admit C °'1 parametrizations. As a matter of fact, Reifenberg's theorem guarantees that the 
boundary of a Reifenberg vanishing domain is locally representable as the image (not the graph!) 
via a bi-H61der continuous map of an open subset of R n, with H61der exponent as close to 1 as one 
wishes (see [19, 22]). On the other hand, the example above shows that the boundary ofa  Reifenberg 
vanishing domain might not contain any Lipschitz piece. As we shall see, there is a correspondence 
between the flatness of a domain and the doubling properties of harmonic measure. 

R e m a r k  1. 
Reifenberg introduced this notion of flatness in 1960. He was interested in the existence 

and regularity of solutions for the Plateau problem in higher dimensions. The result mentioned 
above allowed him to show that an n-dimensional minimal surface with prescribed boundary is a 
topological manifold except for a set of n-dimensional Hausdorff measure zero. 

2. Doubling 
A measure co supported in a subset Z of ]R n+l is doubling if the w-measure of the ball of radius 

2r and center Q ~ Z can be controlled by the w-measure of the ball of radius r and center Q for 
r > 0 small enough. If  f2 is a smooth domain, the surface measure of its boundary is a doubling 
measure. On the other hand, since the surface measure of  the boundary of a general Reifenberg flat 
domain is not well defined, we use a different measure, namely harmonic measure, which makes 
sense in a very general context. Let f2 C R n+l be a smooth (unbounded) domain, then there exists 
a harmonic function v defined in ft satisfying 

A v = 0  in f t  n+£ 32 
v > 0 in ft , A = , the Laplacian. 
v = 0 on 3f2 i=l 3x2 

The function o is uniquely determined up to multiplication by a positive constant and is called the 
Green's function of ft with pole at infinity. In general, the Green's function of a domain f2 with 
pole at Xo ~ ft is a positive harmonic function in f2\{Xo} which vanishes on 3ft. The function 
v can be constructed as the limit of scaled Green's functions whose poles converge to infinity. If  
4~ ~ Cc°°(Rn+l), integration by parts yields 

(vA¢ -- C A r ) d x  = a v-~v O r /  da , 

where a denotes the surface measure and 3/Or denotes the normal derivative at the boundary (i.e., 
3/3v = v • V where v denotes the inward unit normal and V denotes the gradient). Since v is 
harmonic in ft and vanishes on the boundary, the integration by parts formula above becomes 

vACdx = - -~vdrr . (2.1) 

By analogy with the conventional Poisson kernel, ~ is called the Poisson kernel of f2 with pole at 
infinity. The measure co which is supported in 3f2 and defined by 

fo 3V da  co(A) = -~v ' for any Borel set A C R n+l 
~NA 
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is called the harmonic measure of f2 with pole at infinity. Both the Poisson kernel and the harmonic 
measure are determined up to multiplication by a positive constant. Note that the measure co might 
exist, without the existence of either Ov/Ov or da, if our domain f2 is no longer smooth. 

In particular if f2 = R~_ +1, v(x] . . . . .  Xn+l) = xn+l, the Poisson kernel of ~_+] with pole 

at infinity is identically 1 and the harmonic measure of R~_ + 1 with pole at infinity is the Lebesgue 
measure of  R n. Thus, (2.1) becomes 

fR+ +lxn+IAq~dxl'''dxn+l = - - L  (gdXl...dxn. 

The Hopfboundary lemma combined with classical boundary regularity results for the solution 
of the Laplace equation on a smooth domain guarantee that the harmonic measure with pole at infinity 
o9 is asymptotically optimally doubling. This means that co is a Radon measure, i.e., the 09 measure 
of compact sets is finite, and for each compact set K C R n+1 such that K N of 2 ¢ 0, and for each 
z > 0  

co(B(rz, Q)) o)(B(rr, Q)) 
lim inf = lim sup = r n . (2.2) 
r~O Q~KnOf~ co(B(r, Q)) r-->O Q~Xna~ co(B(r, .Q)) 

On the one hand, (2.2) states that co is a doubling measure. On the other hand, it claims 
that as r ---> 0 the ratio co(B(2r, Q))/co(B(r, Q)) behaves more and more like the corresponding 
ratio for Lebesgue measure (resp. Hausdorff measure) in n-dimensional Euclidean space (resp. n- 
dimensional smooth hypersurface). Nevertheless, (2.2) does not imply anything about the behavior 
of the ratio co(B(r, Q))/r n for Q E 0f2 as r tends to 0. In fact if 

oo cos(2~x) 
f 2 = { ( x , t ) ~ R  2 : t > ~ o ( x ) } f o r ~ 0 ( x ) = ~  2k4~. , 

k = l  

then co is asymptotically optimally doubling and for each compact set K C R n+l, suprna co (B(r, Q))/r n 
tends to infinity as r tends to 0. 

Thus, a smooth domain is Reifenberg vanishing and its harmonic measure with pole at infinity 
is asymptotically optimally doubling. We now show that these notions of flatness and doubling are 
deeply intertwined, and are independent of the smoothness assumption. They provide some weak 
notions of  regularity which suffice to answer several questions in potential theory and geometric 
measure theory. Before stating any results, we need to guarantee that it makes sense to talk about 
the harmonic measure with pole at infinity for a general Reifenberg flat domain. This is the content 
of the next proposition. 

Proposition 1. 
Let f2 C R n+l be a Reifenberg flat domain, or a Lipschitz domain (i.e., a domain whose 

boundary is locally representable as the graph of a Lipschitz function), then there exists a unique 
(up to normalization) doubling Radon measure co such that 

where 

f vAe?dx = - f a  ~dw V~ ~ C ~ ( R  "+1) 
f~ 

A v = O  inf2 
v > O  in f2 
v = 0 onaf2 

Here o9 denotes the harmonic measure off2 with pole at infinity, and v denotes the Green's function 
of f2 with pole at infinity. 
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3. Regularity of Harmonic Measure 

In this section we discuss ways in which the regularity of the boundary of f2 C R n+ 1 (a domain 
as in the proposition above) determines the regularity of its harmonic measure co. If Of 2 is uniformly 
rectifiable (i.e., rectifiable with uniform estimates, see [7] for a definition), then the surface measure 
cr given by the restriction of the n-dimensional Hausdorff measure to 0f2, i.e., cr = 7~nl.0f2, is 
a Radon measure. Under the appropriate geometric conditions for f2, results by [5, 6] and [25] 
guarantee that co is a doubling measure and that a and co are mutually absolutely continuous. In this 
case the Radon-Nikodyn theorem insures that the Poisson kernel h = dco/da (the Radon-Nikodyn 
derivative of co with respect to tr) exists. The Poisson kernel is the density of co with respect to or. 
In this setting we describe the regularity of co in terms of the behavior of  h. If 0f2 is not uniformly 
rectifiable we concentrate on the doubling properties of co, rather than in those of the Poisson kernel 
which might not even exist. The proofs of all the results discussed in this section use techniques 
from harmonic analysis, potential theory, and partial differential equations. 

A classical boundary regularity result states that if the unit normal vector to the boundary 
is in some H~lder space, then so is the logarithm of the Poisson kernel. More precisely if f2 is a 
C L~ domain (i.e., 0f2 is locally representable as the graph of a C L'~ function) for a ~ (0, 1) then 
log h ~ C °'a (see [12]). Jerison and Kenig proved that if the oscillation of the unit normal vector to 
the boundary is small in the C o norm then log h has small oscillation in an integral sense, specifically 
log h has vanishing mean oscillation, i.e., if f2 is a C l domain (i.e., 0f2 is locally representable as 
the graph o fa  C 1 function) then logh ~ VMO(da)  (see [11]). This ensures that logh can be well 
approximated by uniformly continuous functions in an integral sense (namely in the mean oscillation 
norm), but it does not guarantee that log h is continuous. In fact it is easy to construct examples of 
C l domains for which the logarithm of the Poisson kernel is not continuous. 

Along these lines we prove that if the unit normal vector v to the boundary of f2 has small 
integral oscillation, then so does the logarithm of the Poisson kernel. We show that if f2 is a chord 
arc domain with vanishing constant (i.e., v ~ VMO(dcr) see [23, 24]), then logh ~ VMO(dzr) 
(see [14]). (Such domains are Reifenberg vanishing [23, 24]). Thus, we extend the result in [I l]. 
Chord arc domains with vanishing constant thus provide a good generalization of C 1 domains from 
the potential theory point of view. 

The first results of this type for non-smooth domains were proved by Lawentiev (n = 1, 
see [17]) and Dahlberg (n >_ 2). In particular, Dahlberg showed that if f2 is a Lipschitz domain, 
then cr and co are mutually absolutely continuous. In this case while the Radon-Nikodyn theorem 
guarantees that h ~ L~oc(da), he proved that in fact h ~ L~oc(d~r) ([5]). (See also [20] for VMO 
results.) 

As we saw in the example above, in a general Reifenberg vanishing domain the surface measure 
of the boundary is not well defined. In this setting the regularity of the harmonic measure needs to be 
expressed in terms of its doubling properties, since it cannot be expressed in terms of the regularity 
of its density with respect to surface measure. The appropriate regularity statement is given by the 
following result. 

Theorem 1. [14] 
The harmonic measure of a Reifenberg vanishing domain is asymptotically optimally doubling. 

This theorem shows that if the boundary of a domain is well approximated by affine spaces in 
the Hausdorff distance sense, then its harmonic measure behaves like the harmonic measure of those 
affine spaces from a doubling point of view. The theorem implies that: The boundary ofa Reifenberg 
vanishing domain supports an asymptotically optimally doubling measure. Theorem 3, discussed in 
the next section, establishes the converse of this statement. This provides a complete characterization 
of Reifenberg vanishing domains in terms of the doubling properties of the measures they support. 
The main ingredients in the proof of Theorem 1 are the maximum principle, the comparison principle 
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for non-tangentially accessible (NTA) domains (of which Reifenberg flat domains are an example), 
and the boundary regularity for non-negative harmonic functions on NTA domains (see [10, 14]). 

4. A Free Boundary Regularity Problem 
In this section we discuss the converse problem. Namely, we explain that either the regularity 

of the Poisson kernel of a domain or the doubling properties of its harmonic measure determine the 
regularity of its boundary. This problem should be understood as a free boundary regularity problem 
in the sense that we are trying to deduce the regularity of the boundary of the set {v > 0}, where 
v denotes the Green's function with pole at infinity from some information about the "regularity of 
the normal derivative" on the boundary of this set. In the case when the boundary of the domain is 
rectifiable, we have a unit normal vector and the normal derivative of v at the boundary is a well- 
defined function, h, the Poisson kernel with pole at infinity. In the case when the boundary is not 
rectifiable, we do not have a unit normal vector to the boundary and therefore the "normal derivative" 
should be understood not as a function but as a measure, the harmonic measure with pole at infinity. 
(See the integral equality that appears in the Proposition 1 in Section 2). 

Free boundary problems of this type were studied by Aft and Caffarelli (see [1, 2, 3]), who 
showed that on a domain which is sufficiendy flat the behavior of the logarithm of the Poisson kernel 
determines the regularity and the geometry of the boundary. The strategy behind their proof is the 
following: in a domain whose boundary is flat enough, the uniform continuity of the logarithm of the 
Poisson kernel ensures that as the scale decreases this flatness improves. They proved the following 
theorem. 

Theorem 2. [11 
Assume that 

1. f2 C R n+l is a set of  locally finite perimeter (see [8]for the precise definition) whose 
boundary is Ahlfors regular(i.e.,for Q ~ ~2 and r > O, the ratio 

7"In(of2 tq B(r, Q)) 
r n 

is bounded above and below by uniform constants. 

2. ~ C R n+l is Reifenberg flat domain and (1.1) holds for some 8 > 0 small enough, 
depending on dimension, 

3. logh e C°'#forsome~ ~ (0, 1). 

Then ~2 is a C l'a domain for some ot e (0, 1) which depends on ~. Moreover, if h is identically 
equal to 1, then ~2 is a half space. 

In [2] it was shown that if a£2 is apriori assumed to be a Lipschitz graph, (2) is not needed to 
obtain the same conclusion. In [9] Jerison later showed that in this case (Lipschitz graph), we can 
take ~ = ~, the optimal result. Moreover, in [9] it is also shown that in the Lipschitz graph case, if 
instead of (3), we have that log h is uniformly continuous, then the graph function has a gradient in 
VMO. 

Note that these results combined with those mentioned above reinforce the idea that the reg- 
ularity of the boundary of a domain (described in terms of the oscillation of the unit normal vector) 
and the regularity of its harmonic measure (described in terms of the regularity of the logarithm of 
its density) are "equivalent". 

Along these lines we prove that this "equivalence" prevails even when the notions of smoothness 
involved are weaker than the ones above. We show that on a domain which is flat enough, the behavior 
of the logarithm of the Poisson kernel together with the doubling properties of the harmonic measure 
determine the regularity and the geometry of the boundary. More precisely, if f2 is a chord arc 
domain with small constant (i.e., the mean oscillation of the unit normal to the boundary is small), 
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if o9 is asymptotically optimally doubling, and if log h ~ V M O (da), then f2 is a chord arc domain 
with vanishing constant (see [9, 15]). (Both assumptions are necessary conditions, as shown by the 
results in the previous section). 

Note that all of these results convey the idea that the oscillation of the unit normal to the 
boundary of a domain and the oscillation of the logarithm of its Poisson kernel are "equivalent" 
quantities on flat domains. For chord arc domains in R 2, this equivalence was explicitly proved by 
Pommerenke. He showed, using complex analysis methods, that the unit normal to the boundary 
belongs to VMO(dcr) if and only if logh ~ VMO(da)  (see [20]). It is the subject of current 
investigation whether this result is also true in higher dimensions. More precisely, we would like 
to show that if f2 C R n+l is a chord arc domain with small constant and logh ~ VMO(dcr), then 
o9 is an asymptotically optimally doubling measure. This would allow us to apply the result stated 
above to conclude that ~2 is a chord arc domain with vanishing constant, assuming only one of the 
two hypotheses we used in the above theorem. (See also the conjecture at the end of the article). 

In general Reifenberg flat domains, the notion of surface measure of the boundary is not well 
defined; therefore, the regularity of the free boundary in this case depends solely on the doubling 
properties of the harmonic measure. 

Theorem 3. [15] 
Let f2 C R n+I be a Reifenberg flat domain whose harmonic measure is asymptotically opti- 

mally doubling, then f2 is a Reifenberg vanishing domain. 

Theorem 3 is a corollary of a more general result of a geometric measure theory flavor: 
A Reifenberg flat set which supports an asymptotically optimally doubling measure is Reifenberg 
vanishing. Theorem 1 and 3 provide a complete characterization of Reifenberg vanishing domains 
in terms of  the doubling properties of their harmonic measure. The proof of Theorem 3 uses tools 
from [ 18, 21]. It relies heavily on the Kowalski-Preiss classification of n-uniform measures (see [ 16] 
and Remark 2 below), as well as in the notions of tangent and pseudo-tangent measure (see [15]). 

Remark 2. 
Both in Alt and CaffareUi" s result, as well as in Theorem 3, the assumption that f2 is a Reifenberg 

flat domain is crucial. In R 3, Alt-CaffareUi [1] construct a double cone, of opening ", 33 °, such that, 
for the region outside of  it, the Poisson kernel at infinity is identically 1. An example by Kowalksi and 
Preiss (see [161) combined with a calculation of the harmonic measure carried out in [15] shows 
that in dimensions greater than 4 there exist unbounded domains whose Poisson kernel at infinity 
is identically 1, whose harmonic measure with pole at infinity is asymptotically optimally doubling 
and which are very far from being Reifenberg flat. I f  n > 3, let 

f 2 = { ( X l  ..... Xn+l) C Rn+l : lx41< ~x21+ x~ + x231 . 

f2 is an unbounded non-tangentially accessible domain whose harmonic measure o9 with pole at 
infinity appropriately normalized satisfies 

do) 
og=cr =7-/nLaf2 =~ h = - - = l .  

da  

(See [15]). Moreover, to is n-uniform, i.e.,for Q ~ a~2, r > O, and r > 0 

og(B(rr, a))  
og(B(r, Q)) = 7"[n(af2 t~ B(r, a))  = r n ::~ = r n . 

og(B(r, a))  

(See [16]). On the other hand, it is easy to see that f2 is not Reifenberg flat. ln fact O ~ Of 2 and for 
r > O, the Hausdorffdistance between Of 2 A B(r, O) and L A B(r, O)for any n-dimensional plane 
containing the origin is at least r / ~ ,  i.e., O(r, O) > 1 / ~ .  
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R e m a r k  3. 

Old counter-examples o f  Keldysh-Laurentiev (see [13, 4]) show that in the theorem o f  Alt- 
CaffareIli [1], the hypothesis o f  being Ahlfors-regular is needed. These are examples o f  locally 
rectifiable domains in R 2, which are Reifenberg vanishing, fo r  which log h ~ O, which are not 
smooth. These examples, and the theorems and remarks above lead us to the following: 

C o n j e c t u r e  1. 

Assume that (1) and (2) in Theorem 2 above hold, and that log h ~ V M 0 (da).  Then, ~2 is a 
chord-arc domain with vanishing constant. 
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