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ABSTRACT. Sharp constants for function-space inequalities over a manifoM encode information about 
the geometric structure of the manifold. An important example is the Moser-Trudinger inequality where 
limiting Sobolev behavior for critical exponents provides significant understanding of geometric analysis 
for conformal deformation on a Riemannian manifold [5, 6]. From the overall perspective of the conf ormal 
group acting on the classical spaces, it is natural to consider the extension of these methods and questions 
in the context of SL(2, R), the Heisenberg group, and other Lie groups. Among the principal tools used 
in this analysis are the linear and multilinear operators mapping L P (M) to Lq (M) defined by the 
Stein-Weiss integral kernels which extend the Hardy-Littlewood-Sobolev fractional integrals 

K(x, y) = Ix] -c' Ix - yl -x lyl -~ , (1) 

conformal geometry, and the notion of equimeasurable geodesic radial decreasing rearrangement. To 
illustrate these ideas, four model problems will be examined here: (1) logarithmic Sobolev inequality and 
the uncertainty principle, (2) S L (2, R) and axial symmetry in fluid dynamics, (3) Stein-Weiss integrals on 
the Heisenberg group, and (4) Morpurgo's work on zeta functions and trace inequalities of conformally 
invariant operators. 

1. Logarithmic Sobolev Inequality and the Uncertainty 
Principle 

Geometric information about a manifold is determined by the classical inequalities. The uncer- 
tainty principle is a quantitative statement about both the dilation structure and the product structure 
on a manifold. A new formulation of the uncertainty principle can be given as a logarithmic inde- 
terminate expression which is additive rather than multiplicative [7].: Let P, Q designate canonical 
momentum and position variables with mean values denoted by P,  Q. Then logarithmic uncertainty 
is given by 

(ln I Q -  0[)  + (ln [P - P'I) > C .  (1.1) 

More precisely, for functions in the Schwartz class S ( R  n) and the Fourier transform defined by 

f ( ~ )  = f R  n e2~rix~ f ( x ) d x  , 
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then 

i:, 
d 

Dn = ~(n/4)  - Inzr ~r(t) = - -  In F( t ) .  
dt 

(1.2) 

Since the individual terms on the left-hand side of this expression may be indeterminate on L2(R), 
this inequality is realized as an apriori limit. Consider product functions of the form 1"[ f ( x l )  where 
each xk E R m and k runs from 1 to £. Further, adjust (1.2) to include the variation from the mean 
values J ,  ~ of the respective distributions If(x)l 2 and If(q)l 2. Then the concavity of the logarithm 
function implies that for IlfllL2fR~) = 1, 

£. : 

e e 

> In Ix - ~1 l"I  If(x~)12 dx + l .  
a t  

k = l  k = l  

Since -½ < ~P(z) - lnz < 0, the limit e ~ e¢ gives the classical Heisenberg-Weyl inequality 

-> 4--'~ fR ~ If(x)12 d x .  (1.3) 

The basic inequality (1.2) is a consequence of computing the sharp constant for Pitt's inequality on 
R n [7]. For f E S ( R  n) and0 < a < n 

f~. I~1 -a ]f(~)12 d~ < Ca fR. IxJ a If(x)l  = dx 

p (1.4) 

This inequality can be realized as an equivalent Stein-Weiss integral inequality on tt~n: 

fRn 1 1 1 l f ( x )  _ Yl n-a g(y) dx dy ×~ Lxl a/2 Ix lyl a/2 

_< Ca rr=- r' / F  IlfllLz(~") IlgllL2(~.) • (1.5) 

The sharp constant here is calculated by using radial symmetrization and reducing this inequality to 
Young's inequality for convolution on the multiplicative group R+. 

Not only does the logarithmic uncertainty principle imply the classical uncertainty inequality, 
but it also determines the logarithmic Sobolev inequality for Gaussian measure. Observe that using 
equimeasurable radial decreasing rearrangement of either the function or its Fourier transform will 
improve the estimate (1.2). Suppose that f is radial decreasing; then for [Ifl[2 = 1, [f(x)l < 
Alxl -"/2 or 

n 
In If(x)l  ___ - ~  In Ixl + C~ 
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where Cn = ½ In I'(-~ + 1) - ~ In Jr. Now substituting in expression (1.2), one obtains 

nfR 12 f(~)  2 fR , l n l t  d~ > ,If(x)121nlf(x)ldx + An 

n ( 4 )  l ( n )  A n = ~  - n l n r r - - l n l - ' 4  2 2 + 1  . (1.6) 

This expression is already a logarithmic Sobolev inequality because the left-hand side is a smoothness 
estimate while the right-hand side is a measure of entropy. An is not the sharp constant for this 
inequality, but it will suffice to derive the Gaussian logarithmic Sobolev inequality using the product 
structure of Gaussian measure. Again, using the fact that the logarithm is concave and inverting the 
resulting expression for the Fourier transform, one finds 

~ fR n n In [Vfl 2 dx > Ifl 2 In Ifl  dx + An + ~ ln(2zr). (1.7) 
4 - . 

Theorem 1. 
The logarithmic Sobolev inequality (1.6) obtained from the uncertainty principle (1.2) implies 

the logarithmic Sobolev inequality for Gaussian measure 

f=. tgl21nlgldlz < IVgl 2 d/L (1.8) 

where d/z = (2rr) -n/2 exp(-x2/2) dx and [IgllLz(a~) = 1. 

Proof. Using the interplay between Gaussian measure and Lebesgue measure, observe that the 
weaker inequality with a non-positive constant Vn 

Vn + fR" ]gj21nlgldlz < fR" IVgl2 d/z 

is equivalent to the inequality 

4n~refR n£ Vn+ .l:l lnmdx xln olV:: ex 

by setting g(x) = (2~)n/4eX2/4f(x) in the first inequality and then making the resulting expression 
dilation invariant where 

]IfIIL2(R ") = [lgllL~(dtz) = 1. 

n ln(Dr/ne) Now inequality (1.7) implies that for Vn = An + 

Vn + fR" [g]21nlgld" <- "" 
Using an expression for ¢r taken from Whitaker and Watson ([41, p. 251 ]) 

f f  t - - 1 - - 2  (e 27rt I) dt ,  ¢(z) = In z 2z (t 2 + z 2) - 

the constant Vn ----- - 1 - ¼ In 7r - ¼ In n as n --+ ~ .  Set n = me and consider the product function 
I-Ig(xk) where each xk 6 Rm and k runs from 1 to e and Ilgl12 = I. Then 

1 
~Vn + ]gl21n]g]dl z <  m ]Vg]2 d/z.  
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Then for fixed m and e ~ ~ ,  ~ Vn ~ 0 and the logarithmic Sobolev inequality (1.8) is obtained. 
[ ]  

In part, this result is interesting because the logarithmic Sobolev inequality has been viewed 
as sharpening the classical uncertainty principle [4]. Now it would seem that these two concepts 
are more closely intertwined. Of course, the original interest in the logarithmic Sobolev inequality 
was Gross' proof that it was equivalent to Nelson's hypercontractive estimates for the Hermite 
semigroup [24]. Subsequently it was recognized that such hypercontractive estimates followed from 
the sharp Young's inequality [2] or by using a symmetrization argument and the interplay between 
Gaussian measure and Lebesgue measure [3]. 

Resuming the analysis of the initial Sobolev inequality (1.6), one can observe that this in- 
equality is conformally invariant and so the sharp constant can be calculated and up to conformal 
automorphism the extermal functions are determined as A(I + Ix12)-n/2: 

n2 L Inl~[ [ f (~ )2d~>_  fR" I f ( x ) l~ ln l f ( x ) l dx  +Bn 

n ( 2 )  n 1 Bn = ~ - l i n e r  - ln[r(n)/r(n/2)]. (1.9) 

This estimate follows from the limit p ~ 2 for the norm of the Hardy-Littlewood-Sobolev mapping 

f e LP (R n) Ixl • Z e LP' (R") 

where ~. = 2n/p '  and 1 < p < 2 (see [7]). Since this inequality is conformally invariant, there is 
an equivalent realization on the sphere S n. The most effective representation in the compact setting 
is by using a Dini integral (see [3] and [8]): 

f s  IFI21nlFld~ < An - "×s, IF(~)-F(rl)12d~dol~ - rlt n 

An = 4~" F(-~ + 1) (1.10) 
2 

where II F I]2 = 1 and d~ denotes normalized surface measure. Extremal functions are of the form 
A I 1 - ~ • ~l -n/2 for 1~" ] < 1. The right-hand side is a quadratic form so there is also a representation 
in terms of spherical harmonics. For F = ~ Yk, this form is given by ~ Ak (n) f I Yk 12 d~ with 

k - I  

" ( 9 - '  Ak(n)=  ~ Z  m +  
m = l  

This result was first obtained in 1983 by the author to show that the Poisson semigroup on the n- 
dimensional sphere is hypercontractive [3]. As a corollary, it followed that the heat semigroup is 
hypercontractive on S n. But the inequality (1.10) is also related to work of Calder6n et al. on the 
existence of singular integrals for operators that commute with dilations on R n+l where the kernel 
takes the form 

f2(x) 
K(x) = ixl , ,+ l 

with f2 being homogeneous of degree zero and so a function on the unit sphere S n. In their work, 
an estimate was needed to show that if ~ was integrable and satisfied an L I Dini condition, then 
f2 belonged to the Zygmund class L In + L. Calder6n quantified an old argument of Riesz which 
concerned the conjugate function and used complex variables to prove the required estimate in one 
dimension, and then the n-dimensional form was obtained by approximation: 

fs ,  t ~ t l n [ f 2 [ d ¢ < B f s -  "×S" I n ( ~ ) -  f2(O)l - rl[ n 
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for f I~[ d~ = 1. This result seems to have been the first appearance of a logarithmic Sobolev in- 
equality where "smoothness controls entropy" (see inequality 2.3 in [ 17]). Later the one-dimensional 
estimate was also used by Pichorides in his thesis (see Theorem 2.4 in [33]). A different argument 
was given in Fefferman's thesis to obtain this same result without sharp constants. But the constant 
given by Calderrn using the Riesz argument was sharp in one variable. Calderrn et al. remark that "it 
would be useful and interesting to prove this inequality directly, without using complex variables". 
This question was answered by the author in [8] by two different arguments. 

T h e o r e m  2. 
Let f2  ~ L I ( S  n) with f lf21d~ = I. Then 

fs  If211nlflld~ < ~/~- 1-'(~ + 1) f s -  n+l I f l ( ~ ) -  f2(r/)[ d~dr/ . (1.11) 
. r(-.-y-) .×s.  I¢ - ~1" 

Proof.  This result follows from the logarithmic Sobolev inequality (1.10) by replacing F 2 by f2, 
and noting first that IF(~) - F(r/)l z _< IFZ(~) - FZ(r/)[ for F >_ 0 which gives (1.11) for f2 _> 0 
and in turn implies the general case. [ ]  

It is surprising that this inequality is sharp, but in part that is explained by the fact that there are 
no extremals for this inequality. By using symmetrization arguments, one can give a more elementary 
proof of (1.11 ) and for a wide range of singular kernels, including an improvement of the Riesz result 
by cutting down the range of integration in the right-hand integral. 

2. SL(2, R) a n d  A x i a l  S y m m e t r y  

The mathematical description of fluid motion is a central problem in the study of critical 
phenomena. Ideas concerning symmetry have been useful in the analysis of differential equations 
that arise in vortex dynamics. In examining axisymmetric steady flow for vortex rings, the existence 
of SL (2, R) symmetry is apparent from the representation of the Stokes stream function ~ in terms 
of the vorticity o~ ([35, chapter 10]): 

l ffyy'o~(x',y') ~p(x, y)  = 4"-~ 

dx'  dy'  . (2.1) 
[(x - x') 2 + y2 + y,2 _ 2yy' cos0] 1/2 

Let Z = (x, y) denote a point in the upper half-plane N2+ ----- M "~ SL(2, R) /SO(2 ) .  Here the 
invariant distance is given by the Poincarg metric 

Iz-z'l 
d (z, z') - -i a- 7 

and left-invariant Haar measure dv = y-Z dy  dx. Then 

if i f (z)  = (z') [d (z, z)l dv (2.2) 

where ~(z) = y -1 /2~( z ) ,  ff)(z) = yS/2w(z) and 

fo ~z [ o 1--tl 2 ~o(t) = t 2 + sin'(O/2)J cos 0 dO. 
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In Fraenkel's work on vortex rings with swirl [23], a non-classical weighted Sobolev inequality was 
used to develop existence theory. It is interesting that this problem exhibited naturally an SL(2, R) 
symmetry and the inequality in question could be rewritten as a Sobolev embedding on the two- 
dimensional real hyperbolic space M. Using the representation that the gradient in this setting is 
given by D = yXT, then Fraenkel's inequality can be realized in the form for p > 2 [10]: 

3 dv] [f lFIPdv]z/P<__Ap[fIDFI2dv+-~fIFI 2 . (2.3) 

This connection between axial symmetry and the group SL(2, R) may seem surprising at 
first, but it is in fact quite natural in the context of standard analysis on classical manifolds. As 
a paradigm to illustrate this point, SL(2, R) symmetry will be used to calculate extremals for the 
sharp L 2 Sobolev inequalities and the Hardy-Littlewood-Sobolev inequality on ~n. For n > 2 and 
l ip = 1 / 2 -  1/n 

[IflILp(R") < Ap IIVfIIL2(R,) 

Ap = [zrn(n - 2)] -1/2 [F(n) /F(n /2) ]  l/n (2.4) 

and up to the action of the conformal group, the sharp constant is only attained for functions of the 
form A(1 + [x12) -nIp. 

The technique of symmetrization (equimeasurable radial decreasing rearrangement) provides 
the reduction of this inequality to radial decreasing functions (see [3, 6]). Using duality and the 
Green's function for - / x  

G(x, y) = zr-n/2F(n/2) Ix - yl -(n-2) , 
2(n - 2) 

the inequality (2.4) is equivalent to the Hardy-Littlewood-Sobolev inequality 

fR "×R" u(x)G(x' y)v(y) dx dy[ <- (Ap)211UlILP' (~") IIVII Lp' (R") (2.5) 

where the dual exponent p'  = p/(p - 1). Using the argument given in ([6, p. 40]), one sees that an 
extremal must exist for the inequality (2.5) and it must be radial decreasing up to conformal action. 
Hence, by duality an extremal exists for (2.4) and up to conformal action it must be radial. 

Now suppose that f is a radial extremal for the Sobolev inequality (2.4). Use the product 
structure for Euclidean space R n ~ N x ~ n - I  with x = (t, x') and set y = [xrl. Then the function 
f being radial in x is also radial in x'. Now let g(t, y) = yn/pf(t, x ~) and inequality (2.4) becomes 

[ f, vt lglP dv]2/P <_ BP [ fM lDgl2 dv + n (p  --1) fM lgl2 (2.6) 

where 
4 [ n - l ]  2/" 

B p = n ( n Z 2 )  [. 2zr .] " 

Apply equimeasurable geodesic radial decreasing symmetrization on M. 
Since f was extremal, the inequality (2.6) cannot be improved. But now there is an extremal 

which is a function only of the invariant distance from the origin. On M the invariant distance is 
given by the Poincar6 metric for w = (t, y). Hence, the rearranged extremal on M is a function of 

1 -st 2d2(w, 0) ---- y2 -I- t 2 + 1 
2y 
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where 0 = (0, 1) denotes the origin on M. Now tracing the steps back to the inequality (2.4), there 
must be extremal f# of  the form: 

(Y 2 + t 2 + 1  ) 
f#(t, y) = y-n/p g * \ -~Y . 

Up to conformal action, the only possible form for f# is to be radial. Hence, 

f # ( Y 2 - t - t 2 ) = y - n / p g ' (  y2-Ft2+l)2y 

and 
+t2 + y2) n. a(1 

This completes the proof of  the sharp L 2 Sobolev inequality and gives a new application of SL(2, R) 
methods and competing symmetry structures. An analogous argument works for the Hardy-Lit t lewood- 
Sobolev inequality. That is, the inequality 

fR u(x) Ix - v(y) dx dy < Cp IlulILp(R.) IIVlILP(~") (2.7) yl -x  
n ×An 

where 1 < p < 2 and L = 2n/p',  is equivalent to the inequality 

fM g(w)~oX [d (w, w')] (w') < Op IlgllLp(g) [lhlILe<M) (2.8) h dvdv  
×M 

with g(t, y) = yn/pu(t, x'), h(t, y) = yn/Pv(t, x ~) and x = (t, x ') ,  y = Ix'l and w = (t, y). 

f o ~ [  ~ 1-~/2 gox(t) = 2-X/2an t 2 + s in ' (8 /2) I  (sin 0) n-3 dO 

[ ]2,., 
Dp = 2-1~-(n-l)/2F[(n -- 1)/2] ; an = 7r-U2F[(n - 1 ) /2 ] /F [ (n  - 2)/2] 

As above, the competing radial and cylindrical symmetry force the extremal to be of  the form 
u(x) = v(x) = A(1 + Ix12) -nIp up to conformal automorphism. 

3. Stein-Weiss Integrals on the Heisenberg Group 
The natural setting for the uncertainty principle is quantum mechanics in phase space. Since 

this principle constitutes a quantitative statement about both the dilation structure and the product 
structure on a manifold and incorporates the logarithmic Sobolev inequality, it is important to examine 
how the Heisenberg group fits within this framework. The tooIs used to achieve this geometric 
realization are Stein-Weiss integrals, SL(2, R) symmetry, and analysis on hyperbolic manifolds. 

The Heisenberg group 7-/n is realized as the boundary of the Siegel upper half-space in C n+l, 
D = {z ~ C n+t : Im  Zn+l > Izll 2 + "'" + [znl2}. Then 7-/n = {(z, t) : z 6 C n, t 6 •} with the 
group action 

(z , t ) (z ' , t ' )  = (z + z ' , ,  + t ' + 2  Imzz") 

and Haar measure on the group is given by dm = dz d~ dt = 4 ~ dx dy dt where z = x + iy ~ C n 
and t ~ R. The natural metric here is d((z, t), (z', t ')) = d((z', t ' ) - I  (z, t), (0, 0)) with 

d((z , t ) , (O,O))=l l z ,2  + i t  I/2 : (Izl4 + t 2 )  1/4 . 
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Based on the relation between Pitt's inequality and the uncertainty principle (see [7]), one can 
formulate a Stein-Weiss integral on the Heisenberg group that incorporates an SL (2, R) dilation 
symmetry. 

Theorem 3. 
For f ,  g ~ S(7-[n) and 0 < ~ < 2n 

I -a/2 g(w, s) dm dm] (3.1) [w 

_< c a  IlfllL2(~.)IlgllL2(~.) - 

The sharp constant is given by 

ca = 2 a/2 (2~: +' r(~/2) [. r ~ - ~ )  ]~- 
r , : 2 n - - a  i l ~ r t 2 n + a ~ /  " 

Here S(7-(n) denotes the Schwartz class. Several observations can be made about this in- 
equality; (1) it is dilation invariant with respect to the natural dilations on the Heisenberg group, 
(z, t) --~ (~z, 82t); (2) fractional integration is used in order to have a real-variable formulation of 
the problem; and (3) the usual role of the metric is not maintained which is reflected by the range of 
and the powers of Izl, I wl. This last point is determined by the underlying SL (2, R) invariance of the 
Heisenberg group. In studying weighted inequalities on Lie groups and symmetric spaces, the com- 
plexity of the symmetry structure will allow different choices for the form of variational inequalities. 
Examples including both Sobolev estimates on the Heisenberg group and Pitt's inequality on IR n [7] 
suggest that here the SL(2, R) invariance should be primary. But it is then surprising that there exist 
three simple alternate proofs of the sharp estimate (3.1) using in turn the Euclidean product struc- 
ture, the hyperbolic dilation structure, and the homogeneous metric structure [9]. The multiplicity 
of proofs undoubtedly depends on the fact that no extremals exist for this inequality and hence a 
concentration phenomena gives the sharp constant. The Euclidean estimate follows by applying 
Hblder's inequality for integration in the t, s variables. Then 

If~. Izl -a/2 d s)) -2n-2+a Iwl -a/2 g(w, s) dm, dml f ( z ,  t) ((z, t), (w, 
×7-(  n 

< 42n [ j~(x) IxF an Ix - x'l -=~+a Ix ' l - :  ~ (x') dx dx' 
dX~ xX 2. 
e~ t2 ) -(2n+2-a)/4 

f_oo (1 + dt 

where 

f ( x ) = [ f  l f (x , t )12dt]  1'2 dt] I/2 , ~ ( x ) = [ f l g ( x , t ) l  u 

The sharp Stein-Weiss inequality in the Euclidean case is given by [7] 

IfRu×~ ~ f(x)  Ix - g(y)dx dr ix[-a/2 yl-2n+a lYl-a/2 

<:[  r ( ~  1,r( )l 
- Lr(n - ~)] I ~ /  Ilfllr2(~z~)IlgllL2(Rz~) • (3.2) 

--T- _1 

To see that this value Ca is best possible, let f ( z ,  t) = g(z, t) = p(z)u(t) with IlulIL2(R) = 1 and 
then set f~(z, t) = ¢l/2p(z)u(et) and take the limit ¢ ~ 0. 
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An alternative proof is obtained by first reducing the problem to functions radial in [zl and 
I wl since the map is from L 2 (7-/n) to L 2 (7-/n), and then seeing by a change of variables that (3.1) is 
equivalent to an inequality on M ~- SL(2, R)/SO(2): 

where 

fM×M [d (w, w')] (w')dvd  

P(n) 2n+1_~/2C ~ IlhllL2(g) IlkllL2(m) 
-< (4rr)n 

~)~(U) : fOBn v/~d- u2 -- ~1 -~ d (  

(3.3) 

with d(  being normalized surface measure on the boundary of the unit ball in C n. The estimate is 
completed by applying Young's inequality for a non-unimodular locally compact group (A denotes 
the modular function): 

IIf*gllLp(G) < IIflILP(G) A-l /p 'g  LI (3.4) 
- -  ( G )  

Here 1 _< p < cx~ and the modular function A(x, y) = 1/y. 
A third proof uses homogeneous geodesic polar coordinates and reduces to a problem on the 

multiplicative group R+ in the spirit of the real-variable case. Haar measure on 7"/n is now given by 
d m =  p~+l  dp dx where dx  indicates integration over the boundary of the geodesic unit ball which 
does not have a transitive group action, and 2n + 2 is the homogeneous dimension. These proofs 
are all different, but they are individually important because they emphasize contrasting issues for 
analysis on the Heisenberg group. The essential point is that the global invariance structure involves 
an interlacing of lower-dimensional symmetries. 

4. Zeta Functions and Trace Inequalities 
Conformal invariance is a critical tool for the analysis of a wide range of problems including 

the hydrogen atom spectrum, the Hardy-Littlewood-Sobolev inequality, the Yamabe functional, the 
Moser-Trudinger inequality and its free energy-entropy dual, and the multilinear Hardy-Littlewood- 
Sobolev inequality [5, 6]. These inequalities constitute a rich tapestry growing almost organically 
though recently it has been centered on the Moser-Trudinger inequality for which the most im- 
portant aspect has been its connection to the Polyakov-Onofri log determinant variation formula. 
Morpurgo [29] has used the zeta function and corresponding trace of the heat kernel for confor- 
mally invariant operators as a frame on which to derive many interesting results about conformal 
deformation, and in particular as a master partition function that incorporates many of the interesting 
inequalities determined by conformal invariance. 

Consider the zeta function Z(s) on the two sphere for the operator --A. Under conformal 
deformation of the metric ds 2 = e F ds 2, the Polyakov formula for the determinant is given by 

Z~(0) - Z'(0) = log [de t ( -A) /de t ( -AF) ]  

= l { l f s 2 l V F I 2 d e + f s 2 F d ~ - l n f s 2 e F d e }  (4.1) 

The term in brackets is the Moser-Trudinger functional which is always positive and means that 
the determinant of the Laplacian on S 2 under conformal deformation with fixed area is maximized 
by the standard metric. Using conformal invariance, Onofri proved the positivity of this functional 
which was later extended by the author to a class of positive-definite conformally invariant operators 
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P n ( - A )  on S n. By its action on spherical harmonics, this operator called the Paneitz operator is 
defined 

P,,(--A)¥k 

P,,(--A) 

= k ( k + l ) . . . ( k + n - 1 ) . Y k  
(n--2)/2 

= 1-I [ - A + e ( n - l - e ) ]  n even 
g=0 

[ = - A +  I-I [-A+g.(n--l--£)] 
£=0 

and for G having mean-value zero 

(4.2) 

n odd 

pn._l (_A)G = _ l___~r(n) L. In I~ - r/I 2 G(rl)drl. (4.3) 

This led to two dual inequalities [5]: 

r L 'L In eF d~ <_ Fd~ + ~ F(PnF)d~ (4.4) 
d S n n 

--nLF(~)Inl~--oI2G(o)d~do < - n f l n l ~ - o I 2  d n + f  as" GloGd~ (4.5) 

where in (4.5) F, G are non-negative with integral one. These inequalities have provided information 
about the determinant of the conformal Laplacian in dimensions 3, 4, and 6 (see [5, 12, 14, 19]). 
In fact, inequality (4.4) provides the leading term for the analysis of the log determinant variation. 
The zeta function for the Paneitz operator on S n will have a pole of order 1 at s = 1 since the 
operator is order n. Morpurgo related the functional inequality (4.5) directly to this zeta function for 
the conformal change of metric gw = w2/ng by showing in even dimension with f w d~ = 1 the 
regularized zeta function at s = i is minimized by the standard metric; that is, 

:/s L 2~w(1)- Z(1) = ~. , w l n w d ~  - , CoPZICod~ (4.6) 

for ~ the projection of w onto the subspace orthogonal to constants. Moreover, Morpurgo extended 
this result to even-dimensional compact Riemannian manifolds without boundary where the corre- 
sponding Paneitz operator is self-adjoint and nonnegative. This is a remarkable result in its own right, 
but Morpurgo has found other interesting results about the zeta function for conformally invariant 
operators, For example, he has related the other end-point limit of the Hardy-Littlewood-Sobolev 
inequality as given by inequality (1.10) above to the zeta function for the conformal Laplacian in 
dimension four. More recently, he proved the trace inequality for the conformal Laplacian Y on the 
sphere S n 

[( Tr w_i/2yw_l/2 -s < IlWlln/2 Tr [¥_s]l/s (4.7) 

for integer s > n/2 and n > 2. The classical Sobolev inequality for Y can easily be obtained from 
the limit s --> oe. This gives for n > 2 

f tpw-l/2y~oto -112 d~ 
)q(1) < IlwllL,/2(s,)~.x(w) < IltollL./z(s.) fl~ol 2 d~ 

Set F = ~ow -1/2 and ~0 = wn/4; then w n/2 = FP where l ip  = 1/2 - 1/n so that 

, IFI p d~ <- Ll(f)  , F Y F d ~ .  (4.8) 
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Morpurgo 's  work on zeta functions together with the research programs of  Branson [ 12] and 
Chang [ 19] are clearly opening up rich new areas of  research in geometric analysis. Sharp constants 
are providing a deeper  understanding of  the geometric structure of  Riemannian manifolds and Lie 

groups. 
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