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Solubility curves, pct O v s  pct A1, representing the saturation of iron with A1203, include both 
minimum and maximum points. In this article, it is shown that a two-parameter exponential 
form of log fo  as a function of pct A1 represents the A1-O clustering in iron and the solubility 
of A1203 in iron better than using the first- and second-order interaction coefficients based on 
the epsilon formalism. The exponential form of the (log fo)-pct A1 relationship is consistent 
with current clustering and central atom solvation models. 

I. INTRODUCTION 

THE saturation of iron with A1203 can be represented 
by pct O v s  pet A1 solubility curves. Solubility min- 
ima t~-41 and maxima t3'4J of oxygen as a function of alu- 
minum content in iron have been established by several 
researchers, as well as in many other Fe-M-O sys- 
tems.t4'5'6] The slope of the log pet O v s  log pet AI sol- 
ubility curve prior to the minimum is approximately - 2 / 3 ,  
as established by the equilibrium constant, K, of the dis- 
solution of alumina: 

A1203 ~,~ 2AI + 30 [1] 

K = [A112[O] 3 [2] 

At the minimum, clustering of aluminum around the ox- 
ygen interstitials allows the solubility to increase. At the 
maximum, the oxygen interstitials have all been screened, 
so that the solubility product drops off again. The slope 
of log pet O v s  log pct AI is approximately - 2 / 3  after 
the maximum. 

In this article, it is shown that a two-parameter ex- 
ponential form of the activity coefficient of oxygen, 
log fo,  as a function of pct A1 represents the A1-O clus- 
tering in iron and the solubility of A1203 in iron better 
than using the first- and second-order interaction coef- 
ficients based on the epsilon formalism. 

II. ACTIVITY COEFFICIENT FORMALISMS 

Activity coefficients of oxygen, fo, and aluminum, fA~, 
are used to calculate the solubility of alumina in iron. 
The activity coefficient of oxygen, fo,  can be expressed 
in terms of the epsilon formalism interaction coeffi- 
cients, e~ l and r Al, in accord with Eq. [3]. 

logfo = e A~ (pct AI) + r~ ~ (pct A1) 2 

+ (higher-order terms) [3] 

Equation [3], using interaction coefficients compiled by 
Sigworth and Elliott, t71 as well as the data of Fruehan, t~l 
is presented in Figure 1. The higher-order terms have 
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been neglected, as is the usual case in the epsilon for- 
malism, which results in a two-parameter quadratic. The 
two-parameter quadratic of Eq. [3] results in an inap- 
propriate and unrealistic upward curvature for aluminum 
contents greater than 1.2 pct. It will be shown that this 
upward curvature predicts an oxygen solubility that de- 
creases with increasing aluminum contents (pct AI > 
1.2 pct) much faster than the observed slope of - 2 / 3 .  
The addition of higher-order interaction coefficients in 
the "truncated" equation would be expected to correct 
this upward curvature; however, they are not known. 
Therefore, an exponential function is proposed, namely, 

logfo = ( logf*)  (1 - e-" pet A~) [41 

which uses the two parameters f *  and K. Figure 1 com- 
pares the quadratic epsilon formalism and the exponen- 
tial function. The exponential function better describes 
high aluminum content behavior than the two-parameter 
quadratic epsilon formalism. There is no physical reason 
for the increase in log fo shown by the quadratic form 
of log fo. 

In Eq. [4], log fo decreases to a saturation value of 
log f *  as pct A1 increases. As oxygen interstitials be- 
come screened by aluminum atoms, additional alumi- 
num has less effect on the oxygen activity. This type of 
saturation behavior is consistent with the clustering and 
central atom solvation models of St. Pierre and 
Shumaker, t8,91 Lupis e t  a l . ,  I~~ and Wagner. IN] 

The initial slope of the (logfo)-pct AI curve as pct A1 
approaches zero is equal to eo AI. The initial slope can be 
found in terms of the f *  and K parameters by taking the 
derivative of Eq. [4] with respect to pct AI: 

d logfo _ K(iogf,)e_Kp~tAl [5] 
d pct AI 

In the limit, as pct A1 approaches zero, the slope is 
K log f* ,  which is equivalent to e~'. Thus, Eq. [4] can 
be rewritten as 

l ~ 1 7 6  = e~ 1-e-K-K p~t A~) [6] 

From Eq. [6], it is seen that the parameter K essentially 
takes the place of all of the second- and higher-order 
terms of the epsilon formalism, thus expressing log fo 
in a two-parameter equation. 
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III. THE SOLUBILITY OF ALUMINA IN IRON 

The solubility of alumina in iron can be expressed as 

log \ - ~ ]  = - l o g  ( fo )  - 3 log (pct A1) 

2 
- - log (fA[) [71 

3 

The solubility limits of aluminum and oxygen in iron 
using both the epsilon formalism (Eq. [3]) and the ex- 
ponential form (Eq. [4]) for the log fo  term in Eq. [7] 
are shown in Figure 2. Also presented in Figure 2 are 
the data of Fruehan []] and d'Entremont et  aL TM In the 
latter case, data for 1600 ~ were estimated from the 
direct data at 1740 ~ There is a wide disparity in 
the literature for the value of the equilibrium constant, 
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Fig. 1 - - A c t i v i t y  coefficient of oxygen as a function of aluminum 
content in alumina-saturated Fe-A1 alloys at 1600 ~ Data from Frue- 
han.lll 

K, due to inherent experimental difficulties. []21 The equi- 
librium constant was assigned a value of 5 • 10 -~5, which 
is representative of the values in the literature.[].5,6] The 
solubility after the maximum using the exponential func- 
tion does not drop off nearly so sharply as with the use 
of the quadratic interaction coefficient expression. The 
new calculated curve more closely fits the experimental 
data of d'Entremont e t  a l .  TM at high aluminum contents. 
Also, the slope approaches - 2 / 3 ,  which again is con- 
sistent with the d'Entremont et  aL TM results. It does not 
equal - 2 / 3 ,  because the 1ogfA~ term has significance at 
these higher values of pct A1. 

IV. CONCLUSIONS 

The use of a two-parameter exponential function for 
expressing log 3"o as a function of pct A1 instead of the 
usual first- and second-order interaction coefficient for- 
malism allows the solubility of alumina in iron to be de- 
scribed in a more realistic manner. The exponential form 
of l og fo  is consistent with current clustering and central 
atom solution models. The exponential form does not 
predict a sharp increase in log fo  above 1.2 pct AI, as 
does the quadratic first- and second-order epsilon for- 
malism. The exponential form of logfo  more closely fits 
experimental solubility data at high aluminum contents. 
Also, the slope after the solubility maximum approaches 
- 2 / 3 ,  which again is consistent with experimental data. 

The two parameters f *  and K have physical signifi- 
cance. The log f *  term is the saturation value of log fo ,  
and K log f *  is the initial slope at pct AI equal to zero, 
which is equivalent to e~ ~. The parameter K essentially 
takes the place of the second- and higher-order terms of 
the epsilon formalism. 

The solubilities in other Fe-M-O systems exhibiting 
similar solubility minima and maxima, such as Fe-Ti-O 
and Fe-V-O, are compatible with this type of treatment. 
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Fig. 2 - -So lub i l i t y  relationships for A1203 in iron at 1600 ~ Com- 
parisons of  predictions with data. 
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