Thermodynamic Properties of Silicates and of
Alumino-Silicates From Montecarlo

Calculations

C. BORGIANNI AND P. GRANATI

Some thermodynamic properties of silicates, aluminates and aluminosilicates have been
calculated with the Montecarlo method. This method, developed by Salzburg et al, has
been applied in the present paper to the calculation of the canonical ensemble partition
function. The calculated results are satisfactorily in agreement with the experimental

data collected from the literature.

THE structure and thermodynamic properties of
slags are of fundamental importance for understand-
ing ironmaking and steelmaking processes and for
improving the related technology.

Direct experimental measurement of slag thermo-
dynamic data is a difficult, expensive (and sometimes
impossible) task, mainly because of the high tem-
perature involved in the operation; as a result, theo-
retical methods are being increasingly used.

These methods are based on statistical physics
and require for their application to set up an appro-
priate physical model of the slag being investigated.

Presently the lattice model representation'™ and
the quasichemical calculation procedure® are the
traditional and more widely used tools for investi-
gating the behavior and influence of slag constituents.
The quasichemical procedure, however, presents two
main disadvantages. Formerly, it tends to under-
estimate probability correlations between different
lattice particles occupying different sites,® under-
estimation being larger as the energy of possible in-
teraction increases.

Therefore, the mathematical formulation of the pro-
cedure becomes increasingly difficult as the physical
model of the system being investigated becomes more
complex.

With bigger and faster computers, the Montecarlo
method has become increasingly common as a tool
for studying lattice statistics, instead of the more
traditional techniques such as the quasichemical
method. Actually, the Montecarlo method permits a
fairly simple mathematical formulation and involves
only approximations inherent to the physical model
selected to represent the system. While the method
has the drawback of a large computing time even us-
ing a modern computer, nevertheless it has the ad-
vantage of giving (as an additional output) informa-
tion on the ionic species present in the system. A
result of this kind would only be possible with the
more traditional statistical physics methods by in-
troducing additional hypotheses.?

On the basis of the above considerations, an attempt
was made to use the Montecarlo method for deter-
mining the thermodynamical and structural properties
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of slags. The present work describes the first results
obtained by applying the Montecarlo method.

1. SYSTEMS INVESTIGATED AND THEIR
PHYSICAL MODEL

The slag systems investigated can be represented
by the following formulas:

(m MeJ0) (p Si0,) (g ALO3)
(m MeY0) (n Me,0) (p Si0,)
(m MeI,IO) (g ALO3)

(m MeY0) (p Si0,)

(m Me50) (p SiO)

in which:

Mell = ca™
Me%I =Fe', Mg™, Mn"".

The procedure adopted for representing these slag
systems with a lattice model is described in Ref. 2.
The model was applied regardless of whether the slag
was in the solid or in the liquid phase at operating
temperature; in addition, tetrahedral coordination
was assumed for all lattice sites.

The formation of silicates takes place according to
a reaction of the following type:®

Si-0-Si + Me — 28i-O~ + Me*2,

It is well known®™® that in slag systems containing
aluminosilicate constituents, the aluminum atom can
replace the silicon atom and consequently can co-
ordinate four oxygen atoms tetrahedrally, provided
that atoms such as Ca, Mg are present in the slag
system; these atoms are capable of transferring one
valence electron to the aluminum thus making the
aluminum tetravalent. Accordingly and in the parti-
cular case of (m CaO) (g Al,0;) and of (m CaO)(p SiO,)
(g Al,O3) systems, tetrahedral coordination was as-
sumed for the aluminum whenever the CaO molar
fraction exceeded the Al,Os molar fraction.

Furthermore, metal cations were represented in the
model by appropriate silicon and/or aluminum lattice
vacancies.

The following correspondences were established be-
tween model configurations and the chemical species
present in the real systems:
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Model Chemical Species

8i-8i 8i-0-5i (a)

Si-Vac Si-0” (b}

Vac-Vac ol ()

Al-Al “AI-O-AT (d)

Al-Vac Al'-O" (e)

Al-Si Al’-0O-8i (£)
where:

(@), {4}, {f) = oxygen with covalent bonds,
(b), (e) = terminal parts of anions,
(c) = free oxygen ion, and
Vac = vacancy.

2) APPLICATION OF MONTECARLO METHOD
TO LATTICE SYSTEMS

The basic problem to be solved when calculating
the thermodynamic properties of a system is the de-
termination of the correct partition function. For
systems having a constant number of particles and
for constant volume and temperature the appropriate
partition function is the canonical function @. The
canonical partition function  is related to Helm-
holtz’s free energy F by the equation

F =—KT InQ@
where:

K = Boltzmann’s constant, and
T = absolute temperature.

For the systems such as those investigated here,
Helmholtz’s free energy F can be considered approxi-
mately equal to Gibbs’s free energy G; hence,

G =—KT InQ.

If the normal approximations described by Guggen-
heim® are now introduced, the value of @ can be deter-
mined simply by calculating the configurational parti-
tion function (@, ¢ ).

For calculating the configurational energy E, the
following assumptions have been made: a) only inter-
actions between next neighbors could take place; b)
the energy bond between two given lattice species was
not influenced by other species eventually present
and was equal to the bond between the same two lat-
tice species when the model was applied to the pure
compound formed by them; for instance, it was as-
sumed that the energy of the Si-O-Si bond was the
same both in silica and in silicates.

To comply with the second assumption, CaO : Al,Os
was chosen instead of Al,O; as reference state for
aluminates, since the aluminum in CaO - Al,Os is en-
tirely tetrahedral with an aluminum to oxygen ratio
equal to the silicon to oxygen ratio of silica.

The configurational energy E was calculated with
the formula:

n

E= 2J

j=1
where:

n
27 nip Eip
kg

n = number of lattice species present,
njp = number of (jk) pairs present in the lattice,
and
€jp = interaction energy of (jk) pairs.
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The &;;, energies were obtained from the heat con-
tent required for forming the (jk) binary compounds at
zero absolute temperature. It was accepted that the
&;, energies obtained in this way were the same for
all compounds in which the species j and k were pres-
ent.

A brief description of the procedure’ used for ap-
plying the Montecarlo method to slag systems is re-
quired at this point. At the beginning the particles
are randomly distributed in the lattice sites. A Mar-
kovian chain of configurations is then generated ac-
cording to the following criteria. Let j be the present
configuration and ! the configuration obtained when
two particles located at any two lattice sites exchange
positions; moreover, let £; and E; be their respective
configurational energies. If E; > Ej, the new configura-
tion [ is accepted unconditionally for the next step in
the chain; if instead E; < E;, the new configuration is
accepted only when exp [(E; — E]-)/KT | is greater than
a random number selected between 0 and 1. Other-
wise the configuration j is the next step in the chain.

When this iterative process is developed to a suf-
ficient extent using a counter for each E value ob-
tained, the number m (E) of times a specific £ value
has occurred along the chain will be established. Let
P (E) now be the statistical weight of the E energy
level; one has from statistical mechanics.

E

P(E) =3 (E)*eXT - Qeont [1]
where:

&(E) = probability of observing the E energy level,
and
Qconf = configurational partition function.

As the lattice (B sites) contains N; particles of ¢ type,
the conditions for normalizing with respect to P (E)
is given by:

2P(E) = g

equal, in other words, to the number of distinct con-
figurations of the system; Expression [1] becomes:
E

~ VKT . B!
2P (E) = Qg 2@ (E) X7 = gy N1

and therefore:

in which & (E) is estimated by:

& (E) = m(E)/%} m(E).

The accuracy with which Q,,,; is determined will be
greater the closer ® (E) is estimated, i.e.: the longer
the iterative process for expanding the Markovian
chain is continued. Usually, a compromise has to be
made between a fairly accurate estimate and an ex-
cessive number of steps, involving a large computer
time. In this connection, it was found that the magni-
tude of the error introduced by arresting the iterative
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process after 2 x 10° + 3 X 10° steps was small com-
pared with the error of &, estimates.

For binary compounds with free energies of the
order of —20,000 cal/mole, an error of 1, 2 pct in
the estimate of &;, generally produces an error of
1,000 cal in the estimate of their free energy, i.e.: a
closer approximation than when experimentally de-
termining free energies.

An other error source was estimated by starting

the Markovian chain from two different configurations.

It was found that after approximately 10° steps the
results, for a given compound, differed at maximum
by 10, 20 cal/mole.

The free energies obtained in the course of this
study were referred to B sites lattices. The corres-
ponding thermodynamic quantities were extrapolated
for B — «; practically, this was done by plotting the
free energy values of the B sites lattices against the
parameter 1/B and extrapolating for 1/B — 0. Larger
lattices were obtained by regular three-dimensional
repetition of an 8 sites unit cell. The surface effects

Table I. Free Energies of Formation of Binary Compounds

resulting from the use of small lattices were mini-
mized by laying down the usual periodic boundary
conditions.

3) RESULTS
a) Free Energies of Binary and Ternary Systems

The values obtained for the free energy of formation
at 1800 K of seven binary systems are given in Table
I. When investigating ternary systems of the type
(m Mel0) (n MIO) (p SiOs), the energy of interaction
between the two vacancies (the one associated with
Cation 1 and the other with Cation 2) was determined
as suggested by Niwa,? Richardson,*® and Toop and
Samis,’ i.e.: the mixture of vacancies associated with
the two cations was assumed to behave as an ideal
mixture and the interaction energy was therefore set
equal to zero. For the (m Mel'0) (p Si0,) (g AlOs)
ternary system, the interaction energy of the Al-Si
pair was instead estimated on the basis of the enthalpy
of formation (at 0 K) for obtaining anorthite (CaO
» Al;03 *8i0;) from calcium aluminate and silica.
Given the stoichiometric proportions with which cal-
cium oxide, alumina and silica combine together to
form anorthite, this compound can be represented in

¢ X-Vach fufat";{ AGexp, Reer.  the model as a mixture of tetrahedrally coordinated
Compound cal/bond cal/mole alfmole  ence aluminum and silicon atoms. The following value was
: determined for the Al-Si pair:
2€a0 Si0, —~1.33x 10°% —356007 —33860 14
~35519 15 €ar-gi = —0.37 X 107%° cal/bond.
—34840 16
Ca0 Si0, —-1.33X 107% —20000f —19600 14 Table II gives the results obtained for the three
—22360 17 ternary systems mentioned above.
—20645 16
2M¢gO Si0, ~0.53X 107% —15000% —14940 14
—i 3(5)32 i 2 b) Determination of Ternary System Activities
2MnO Si0, -0.25X 107 - 87007 — 7700 2 Free energy values were also used for estimating
2Fe0 Si0, 0.00 — s100t - 3110 14 activities of individual components. The following
- gégg }g determinations were carried out for comparison
— 2900 20 purposes:
_ 5300 21 1) Ca0-Al,0,-Si0, system: CaO activity for pct
3Ca0 ALO, 0.10X 107 — 5300% — 3380 14 Si0,/ pet ALO; = 1.16 and for T = 1873 K (1600°C):
— 5640 15 2) FeO-Ca0-8i0, system: FeO activity for: a) T
o e = 1623 K (1350°C); pet CaO/pet SiO. = 0.80; and b) T
12Ca0 7ALO, 0.10X 10®  —28000% ~23700 14 = 1873 K (1600°C); pet Ca0/pet Si0; = 0.46.
30500 15 The free energies of mixing determined for the
X =S AL three cases mentioned above are shown in Figs. 1 and
+Starting from oxides. 2. The activity values are listed in Tables III, IV and
{Starting from CaQ* AL,O, and CaO. V, where they are also compared with the correspond-
ing values obtained: i) experimentally; and ii) with the
Table Il. Free Energy of Formation of Ternary Compounds
€ Si-Vac € Al-Vac AG cal-
€Si-Vac(Ca**),  €Si-Vac(Mg**), (Fe™), € Al-Si* (Ca*™), culated AG exp.,
Compound cal/bond cal/bond cal/bond cal/bond cal/bond TK cal/mole cal/mole Ref
Ca0-MgO-Si0, -1.33X 107% —0.53X 1072 — — —_ 1,773 —29900 —26800 24
~28000 25
~21500 26
2Fe0-28i0,* Ca0 -1.33X 107%® — 0.00 — — 1,873 —28000 —300007 27
2Ca0-ALO4'Si0, -1.33X 107 — — —0.37X 107 0.10-1072%* 1,800 28400 —32400% 14
-30800% 28

*In calcium silicoaluminate,

T Evaluated on the basis of the activities reported in the reference quoted.
IStarting from Ca0Q- Al,03, CaO and SiO,.
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0 o T-1073K (1600°C) Hagemark™ quasichemical method adopting the same
e T=1623k(1350°C) interaction energy values used for calculations with
~1,000 the Montecarlo method. A comparison of the data in
the three tables leads to the following conclusions.
1) The values calculated for the activities are
-2,000 fairly close to those obtained experimentally; this
agreement confirms the validity of the hypotheses
3000 made for the present investigation.
250

o> —4,000F
.é. Table I11. CaO Activities in the System Ca0-SiO,-Al,0;
=
o
L X Pct Si0
-5,000} s S 2t oy -
> System CaO Al,0; SiO, Pet ALO- 1.16 T=1873K
? Quasi-
& -6,000L Monte chemical
- Carlo Method Activity,
= Pct CaO Pct SiO, Pct AlLO, Activity Activity® exp.'®
R 5 89.31 5.74 4.95 0.91 0.77
76.63 12.55 10.82 0.73 047
69.44 16.41 14.15 0.61 0.32 0.5*
~8.0001 52.74 25.38 21.88 0.12 0.07 Between
0.1 and
9,000 0:2%
~ y . . re 43.07 30.57 26.36 0.029 0.021 0.025
J . . R 0
w08 06 04 02 %reo 38.86 32.83 28.31 0.016 0.012 0.014
32.28 36.37 31.35 0.005 0.005 0.005
Molar fraction of MO 25.19 40.18 34.63 0.001 0.002 0.003
Fig, 1—~FeO-Ca0-8i0, system: ix-
mgg_ » System: calculated free energy of mix *Estimated on the basis of the values of the Ca0-SiO, binary system, and of
the isoactivity line referred to under Ref, 15.
0 Table 1V. FeO Activities in the System Fe0-Ca0-SiO,
T=(1573to 1673) K
-1000|
. Pct CaO _
System CaQ-FeO-SiO, et S0, = 0.80 T=(1573t0 1673)K
- 2000 Quasi-
( o) Monte chemical
¥ 21873 K €1600°C Carlo Method Activity,
-3000} Si 02 _ Pct FeO Pct CaO Pct Si0, Activity Activity? exp.%°
AlLOy%
80.00 8.89 11.11 0.88 091 0.89
70.00 13.33 16.67 0.84 0.88 0.81
- 4poop- 60.00 17.78 222 0.71 0.82 0.70
I~ 50.00 22.22 27.78 0.60 0.77 0.60
E 40.00 26.67 33.33 0.45 0.69 0.42
3 - seoop 30.00 3111 38.89 0.28 0.48 0.30
< 20.00 35.56 44.44 0.17 - -
& 10.00 40.00 50.00 0.10 - -
£ -spoof
®©
H
&
% -7000}
g Table V. FeO Activities in the System FeO-Ca0-8iO,
T=1873K
-8p00
. Pct CaQ _ _
System Ca0-FeO-Si0, Pet S0, ~ 0465 T=1873K
- 3000 Quasi-
Monte chemical
Carlo Method Activity,
-10,0001 Pct FeO Pct Ca0 Pct Si0, Activity Activity?® exp.”’
89.11 3.47 7.42 0.99 0.87 0.98
1100 ) . ) . . ) ) 82.67 5.51 11.82 0.96 0.82 0.97
0 08 0.8 0.7 0.6 05 0.4 0.3 75.42 7.82 16.76 0.92 0.76 0.90
LA 67.16 10.45 22.39 0.87 0.69 0.86
Molar fraction of Ca0 57.67 13.47 28.86 0.86 0.61 0.83
46.68 16.97 36.35 0.69 0.50 0.73

Fig. 2—Ca0-8i04-Al,04 system: calculated free energy of

mixing.
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2) The more the behavior of the oxide system devi-
ates from ideality, the less accurate are the results
obtained by the quasichemical method. The trend is
clearly evident in the FeO-SiO; systems in which
Si-Si and Vac (Fe)-Vac (Fe) interactions are zero
(in compliance with the chosen reference state) and
the Si-Vac (Fe) interaction is practically zero; for
these systems therefore, the real system matches the
behavior of the ideal system as closely as possible.
As FeOQ is increasingly replaced with CaQ, the real
system deviates always more from the ideality and the
values obtained with the quasichemical method become
more inaccurate (see Tables IV and V). A similar
trend can be identified also in Table III where the
quasichemical method produces always more accept-
able results as the CaO percentage of the system de-
creases (i.e: the interaction energies involved de-
crease).

4) CONCLUSIONS

On the basis of the results obtained, it appears that
the physical model set up and the Montecarlo tech-
nique applied do provide a suitable tool for calcu-
lating thermodynamic properties of oxide systems.
In addition, the processing form seems adequate also
for nonideal systems.
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