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The analysis of solidification processes is complicated by a nonlinear boundary condition
at the moving solid-liquid interface, and exact solutions are r a r e . Various attempts to
predict the rate of solidification are available in the literature but most of the results
seem t o be of limited use for operation and design studies on metallurgical processes.
In this article we present a physical model which can be solved analytically for the most
commonly encountered boundary conditions; that is constant temperature at the cooling
wall or finite heat transfer t o the cooling fluid. The model is based on the assumption of
a linear temperature profile in the solidified shell and a corresponding differential re-
moval of internal energy. As a result one obtains a very simple expression for the soli-
dification time as a function of the space variable and the pertinent system parameters.
By comparison with numerical results the prediction e r r o r is shown to be less than 10
pct over a wide range of parameter combinations. In extreme situations, where a la rge r
e r r o r may occur, equally accurate working equations can be generated by slightly modi-
fying the basic results.

T H E p r i m e objective of solidification studies is t o
predict the position of the solid-liquid interface at
any given time subject to certain boundary conditions
and values of the system parameters. For a simple
geometric configuration, a sharp solid-liquid inter-
face and a well defined phase change temperature
various theoretical results have been published, some
of which agree well with the few experimental data
available.

In metallurgical applications only numerical or
seminumerical techniques have been successful until
now and the r e a s o n for this is well known-with
metals the r e m o v a l of sensible heat from the material
already solidified is usually as significant as the re-
moval of latent heat from the interface. Therefore,
if one neglects the change in internal energy of the
solid, one obtains analytic results1,2 which heavily
overpredict the rate of solidification. On the other
hand, the complete set of governing equations cannot
be solved analytically if we exclude the classical
case known as Stefan's problem. 3

Under unidirectional heat-flow conditions, that is
for the solidification of slab shaped bodies, the ap-
proximate analyses 4-7 have been quite successful in
predicting metallurgical processes; the results agree
well with numerically exact data8-1° and experi-
ments. 1~,x2 However, for cylindrical and spherical sys-
tems the analytic approximations so far available13-17
either do not compare favorably with numerical re-
sults9,~8 or they are so involved that a digital com-
puter is required t o calculate actual freezing times.

These r e m a r k s may indicate that a considerable
effort has been made in this field, particularly in re-
cent years, but that no "engineering" solutions of
simple analytic structure and sufficient accuracy
have been developed. It is the aim of this paper to
overcome the present difficulties; on the b a s i s of a
very simple physical concept, originally developed for
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unidirectional heat flow,7 analytic results for the s o l i -
dification t i m e s of cylinders and spheres are pre-
sented which are easy to handle and much more ac-
curate than previous results of equally simple struc-
ture.

1. MODEL AND MATHEMATICAL FORMULATION

The model to be discussed and evaluated here is
formally the same as the one for slab-shaped bodies,v
However, with cylindrical or spherical systems the
physical significance of the m o d e l as well as the
quality of the results are expected to be quite differ-
ent and we have t o draw on previous conclusions in
o r d e r to justify the present procedure.
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Fig. 1--(a) Assumed temperature distribution during solidi-
fication-slab analysis. (b) Assumed temperature distribu-
tion-cylindrical and spherical solidification.
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1.1. Conclusions From the Slab Analysis

For the purpose of summarizing the slab analysis
we r e f e r t o Fig. l(a) and assume that t h e r e is a l i n e a r
temperature profile in the solidified l a y e r at any
t i m e . Neglecting the heat capacity of the solid one
obtains a simple analytic result for the solidification
time as a function of the l a y e r thickness 5. This re-
sult , known as the quasistationary solution, clearly
provides a lower bound for the solidification time be-
c a u s e in reality not only latent heat but also some
sensible heat has to be removed. This is easily seen
by following the temperature-time history of some
volume element at 0 < x < 5. On the other hand we
know that the true temperature profile is always
curved so that the temperature at any point x < 5 is
l a rge r than the one specified by a l i n e a r temperature
gradient. Therefore, if we a s s u m e that a f t e r an in-
cremental increase of 5 internal energy is removed
until this steady profile is r e a c h e d then less capacity
is available for latent heat removal and an upper
bound for the solidification time should result. Again,
the result is obtained from an energy balance and
consists of an extremely simple relationship between
t, 5 and the system parameters.

It is pointed out that the bounding character of the
second result has not yet been proved mathematically
but was verified by comparison with all the n u m e r i -
cally and analytically exact results which are a v a i l -
able from the literature. Indeed, for large tempera-
ture changes over the solid layer and large solidifi-
cation r a t e s (typically encountered in metallurgical
applications) heavy overpredictions for the solidifica-
tion time occur; the temperature profile is curved
markedly and far less internal energy is removed in
the true process than is anticipated in the model. This
suggested the formulation of a weighted mean of the two
limiting solutions and high accuracy was achieved by
using two-thirds of the second and one t h i r d of the
f i r s t (quasistationary) result. Since the latter is part
of the f o r m e r the final result is of equally simple
structure.

Two conclusions can be drawn from the previous
discussion. First ly, no meaningful equivalent upper
bound can be devised for cylindrical and spherical
systems because the steady-state temperature profile
approaches T w = constant when the solidification front
approaches the center (see Fig. l(b)). In o r d e r to r e -
move all the internal energy above T w an infinite
length of time is required, that is the upper bound for
the solidification time simply becomes infinity. Sec-
ondly, the true temperature profile may be either con-
vex or concave, depending on the system parameters
and on t i m e . Typically the profile starts off b e i n g
slightly concave and becomes convex towards the end
of the process when the l i n e a r velocity of the solid-
liquid interface increases drastically.

T h e s e physical considerations may indicate that
useful results can be obtained with a linear tempera-
ture profile in the solidified shell. The differential
internal energy r e m o v a l corresponding to such a pro-
file can be calculated and incorporated in an energy
balance. It is noted that the model makes qualitative
provision for the fact that the true solidification time
always lies in between those for zero and maximum
r e m o v a l of internal energy. However, quantitative in-

formation can only be obtained from a comparison of
the results with numerically exact data.

1.2. Formulation of the Problem

The assumptions inherent in the formulation of the
mathematical model are as follows: (a) the heat
flow is geometrically one dimensional; (b) constant
physical properties are a s s u m e d throughout; (c) the
solidification process occurs between the two constant
temperatures of melt and cooling fluid; (d) the sys-
tem is cooled subject t o a constant film coefficient at
the cooling wall; and (e) volume changes due t o differ-
ent densities of liquid and solid are neglected.

Under these conditions the o v e r a l l energy balance
r e a d s (see Nomenclature for notation)

, d 5 d U s [1]
h'cAo ( T w - T c ) = X ' p A5 ~-[ + d t "

The heat to be removed from the system comprises
the latent heat of phase change, which is proportional
t o the rate of solidification, and a change in internal
energy of the solidified layer.

The overall heat transfer coefficient h ' , r e p r e -
senting the sum of the resistances of the solidified
layer, the outer wall and the cooling fluid, can be ex-
pressed as follows:

1 1 5 [2]
h , A m - ~ + A m k "

The change in internal energy of the cooling wall is
neglected so that the wall resistance can be combined
with the heat transfer coefficient on the cooling fluid
side, i . e .

Further, any desuperheating of the melt is in-
corporated in the latent-heat term such that

x ' = x + cm ( T i n - Tp). [4]

This provides a good approximation as long as the
superheating of the melt is s m a l l .19 For a large super-
heat more sophisticated analyses have to be em-
ployed.20

The change in internal energy of the solidified l a y e r
is

dU s d
d t = p c --~ {V(Tp - 7)} [5]

w h e r e T is the integrated mean temperature of the
layer.

With the further assumption of a l i n e a r temperature
profile we set

1
(Tp - T ) = - ~ ( T p - T w )

k ~-x O f ~ c U

[6]

For convenience the following dimensionless v a r i -
ab les and parameters are introduced

tc~. 8*= 5 h~8o X'
T : 5g' 5o; B i = k ; P h = C ( T p - T c ) " [7]
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The reference length 50 is taken t o be the radius of
the cylinder or sphere.

With the variables and parameters so defined Eq.
[1] becomes

1 _ A 5 PhS* dS*
A m + 1 A m d T

A o B i S *

+ 2A m 5--0 d7 A m "

In o r d e r t o integrate this equation, one has to specify
the a reas A m , Ao and A 6 which depend on the geometry
of the system.

2. CYLINDER

2.1. Analysis

Eq. [8] r e q u i r e s expressions for A m and V. The lat-
ter is simply

v = ,{8o [9]
whereas the mean area is approximated by

A m = (Ao + A5)/2

: , ( 2 5 0 - 5). [10]

Thereby the governing equation for inward cylin-
d r i c a l solidification becomes

( 1 - 5*)5* dS*
1 - 2 P h -2--- - ~ d r1 5"/-/~ + 1

BiS*

5* d 111 - (1 - 5*)2]5*Bi l
+ 2 ( 2 : 5*) d T [ 1-- 5 " ( 1 / 2 - B i ) J "

[111

After some lengthy but elementary calculus, involv-
ing the integration between 0 and 5* -< 1, an expres-
sion for the partial or total solidification time is ob-
tained.

For total solidification, 5* = 1, the dimensionless
time is given as

=2-Ph( l~ ) 1 1+ 6 - 8 1 n 2 + 4 ( 6 - 8 1 n 2 ) +T1 2 ( B i - 1/2)

[ 1 1 / 2 ) ] [12]x 1 B i - 1 ~ I n ( B i + .

and is seen t o be a function of the two parameters B i
and P h .

For large P h values Eq. [12] reduces to

T I ( P h ~ ) = - - ~-~ + 6 - 8 1 n 2 . [13]

In comparison with the exact quasistationary solu-
tion,~ given by

~__hh{1 1} [13a]r l ( P h ~ ) = - - ~ + ~ ,

a slight underprediction of 71 (reaching a maximum of
9 pct for B i ~ oo) is registered. This discrepancy will
be discussed below.

We note that by integrating Eq. [11] over a s h e l l
of thickness 5* < 1 expressions are obtained which
have the same structure as Eq. [12]. For example, the

time t o solidify up t o the half radius 5* = i / 2 is given
by

P h ( 3 + 5 - 8 1 n ( 4 / 3 ) ) + 1 ( 5 - 8 1 n ( 4 / 3 ) )

+ 2 ( B i - 1/2) 2 B i - 1 7 2 I n 1+ ~ .

[14]

2.2. Comparison With Previous Results
and Working Equation

A quantitative estimate of the reliability of our
m o d e l can only be made by comparison with exact re-
sults. We s h a l l therefore not consider previous ap-
proximate analyses but r a t h e r the numerical results
of Stephan and Holzknecht; 9 they employed a Crank-
Nicolson scheme and showed that the maximum r e l a -
tive e r r o r in t h e i r data is only 10-4.

In F i g s . 2 and 3 we have plotted Eqs. [12] and [14]
respectively for various values of the phase change
parameter P h and as a function of the Biot modulus
B i . The solutions for constant wall temperature a r e
included because in that case B i ~ ~o, that is 1/Bi - - O.
The numerical points indicate clearly that the model
over predicts solidification t i m e s for P h < 1 and under
predicts, t o a l e s s e r deg ree , for P h > 1. This is, in
fact, expected on purely physical grounds and can be
explained as follows (see Fig. l(b)).

A large value of P h results in a slow solidification
rate such that the true temperature profile is closer
t o the steady-state one than the assumed l i n e a r pro-
f i l e . Consequently, too little sensible heat is re-
moved in the model process. On the other hand, s m a l l
P h values provide a rapid growth of the solidified
shell in which case the true temperature profile is
convex throughout the process. Thus with a l i n e a r
temperature profile too much internal energy is re-
moved and the calculated solidification time becomes
too long. This argument also explains why the pre-
diction e r r o r increases with increasing Blot number,
i . e . cooling intensity, especially in the case of half-
radius solidification (Fig. 3).
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Fig. 2--Time for complete i n w a r d cylindrical solidification.
Comparison b e t w e e n Eq. [12] ( - - - ) , Eq. [16] ( ) and
numerically e x a c t r e s u l t s ( • ).
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F i g . 3--Time for inward cylindrical sol idi f icat ion to 6* = 0.5.
Comparison between c o r r e c t e d analysis ( ) and n u m e r i -
cal resul ts ( • ) .

H o w e v e r , the f a c t that the m o d e l i s a v e r y a c c u r a t e
r e p r e s e n t a t i o n of the t r u e p r o c e s s at P h = 1 ( h e r e the
e r r o r i s l e s s t h a n 5 pct f o r 0.1 -< B i <- 2) s u g g e s t s
that the s e n s i b l e - h e a t t e r m in o u r r e s u l t b e p r e -
m u l t i p l i e d by s o m e f u n c t i o n of P h . E v i d e n t l y , the
m o d e l l e a d s to a s o l u t i o n of the f o r m

T(5* -< 1) = f l ( P h , B i ) + f 2 ( B i ) + C [15]

w h e r e f l r e p r e s e n t s the q u a s i s t a t i o n a r y s o l u t i o n and
f2 a s well a s the c o n s t a n t C a c c o u n t f o r the r e m o v a l of
i n t e r n a l e n e r g y f r o m the s o l i d i f i e d m a t e r i a l . F o r B i

~o the f u n c t i o n f2 v a n i s h e s and t h e c o n s t a n t C p r o -
v i d e s e x c e l l e n t r e s u l t s f o r c o m p l e t e sol idi f icat ion
(< 10 pct e r r o r , s e e F i g . 2) but r a t h e r h e a v y o v e r
p r e d i c t i o n s f o r ha l f r a d i u s sol idi f icat ion and P h < 1
(26 pct e r r o r at P h = 0.5, 5* = 0.5, B i = ~ ) . T h e r e a -
son for th i s d i s c r e p a n c y i s s i m p l e : i f only a s h e l l of
t h i c k n e s s 5* -< 0.5 i s to be s o l i d i f i e d then the t y p i c a l
c y l i n d e r c h a r a c t e r i s t i c s b e c o m e insignif icant and
t h e u n i d i r e c t i o n a l heat flow m o d e l7 s h o u l d b e m o r e
a p p r o p r i a t e . F o r the l a t t e r i t w a s s h o w n t h a t , wi th
t h e a b o v e p a r a m e t e r c o m b i n a t i o n , the l i n e a r t e m p e r a -
t u r e p r o f i l e l e a d s to a m a r k e d o v e r p r e d i c t i o n . On
the o t h e r h a n d , w e b e l i e v e that a c o n s t a n t wall t e m -
p e r a t u r e t o g e t h e r wi th a p h a s e c h a n g e p a r a m e t e r P h
--< 0.5 i s a n u n l i k e l y o r , at l e a s t , u n d e s i r a b l e c o n f i g u r a -
t ion in m o s t m e t a l l u r g i c a l a p p l i c a t i o n s . If t h e t e m -
p e r a t u r e d i f f e r e n c e T p - T c , a p p e a r i n g in the d e n o m i -
n a t o r of P h , b e c o m e s v e r y l a r g e t h e n b u c k l i n g o r even
c r a c k i n g of the b i l l e t m a y o c c u r .

In c o n s e q u e n c e , we p r o p o s e to a p p l y t h e e m p i r i c a l
c o r r e c t i o n only to f2 and no te that an e x t r e m e s i t u a t i o n
s u c h a s the one d i s c u s s e d a b o v e m a y r e q u i r e a n
a d d i t i o n a l c o r r e c t i o n a p p l i e d to the c o n s t a n t C .

In m a t c h i n g the a n a l y t i c wi th the n u m e r i c a l r e s u l t s
we p r e f e r to r e t a i n the b a s i c a l l y s i m p l e s t r u c t u r e of
E q s . [12] and [14] r a t h e r than a i m f o r the h i g h e s t p o s -
s i b l e a c c u r a c y . T h e r e b y we s h o u l d o b t a i n u s e f u l
w o r k i n g e q u a t i o n f o r p e r f o r m a n c e s t u d i e s on con-
t i n u o u s c a s t i n g m a c h i n e s a n d o t h e r p h a s e - c h a n g e
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e q u i p m e n t a s well a s f o r p r o c e s s d e s i g n p u r p o s e s .
A f t e r v a r i o u s t r i a l s w e f o u n d a v e r y s i m p l e c o r r e c t i o n
f a c t o r w h i c h r e s u l t s in p o s s i b l y the b e s t c o m p r o m i s e
b e t w e e n s i m p l i c i t y and a c c u r a c y . By p r e m u l t i p l y i n g
f2 wi th the s q u a r e root of P h w e o b t a i n f o r c o m p l e t e
sol idi f icat ion of a c y l i n d r i c a l s y s t e m

+ ~ 1 B i - 0.5 [16]

This r e s u l t , r e p r e s e n t e d by t h e s o l i d c u r v e s in F i g . 2 ,
i s in e x c e I l e n t a g r e e m e n t wi th the n u m e r i c a l d a t a .
T h e m a x i m u m r e I a t i v e e r r o r r max, i n v o l v e d in u s i n g
E q . [16] c a n b e s p e c i f i e d a s f o l l o w s :

0 . 2 ~ P h < - ~ ; O . l < - B i <- 1 0 ; - - , r r n a x , ~ - 8 p c t %

0.2 P h < - o o ; 1 0 - < B i - < ~ ; ~ I r m a x [ - 11 p c t . J .
[17]

S i m i l a r l y , f o r ha l f r a d i u s sol idi f icat ion a n d with the
s a m e c o r r e c t i o n f a c t o r t h e e r r o r i s

0.2 <- P h -< 0% 0.1 -< B i <- 1; ~ I r max ] -~ 5 p c t ; ]
!

0 . 5 - < P h < - ~ ; 1 < B i < - 5; ~ [ r m a x l - 9 pet ;
!

1 <- P h <- oo; 5 < B i -< oo; ~ [ r max1 - 8 pct . J . [18]

T h e r a n g e of l a r g e r e r r o r s ( B i > 5 , P h < 1) h a s b e e n
e x c l u d e d f o r the r e a s o n s g i v e n b e f o r e .

In c o n c l u s i o n , i t i s f o u n d that Eq . [16] o r t h e e q u i -
v a l e n t e q u a t i o n for s o l i d i f i c a t i o n up to 0.5 -< 5" -< 1
c o n s t i t u t e s a v e r y a c c u r a t e a n d s i m p l e r e s u l t f o r mos t
p a r a m e t e r c o m b i n a t i o n s of p r a c t i c a l i n t e r e s t .

3. S P H E R E

3.1. Analysis

For inward spherical solidification the correspond-
ing expressions for the solidified volumeand the mean
area become

4 ~5o3 [1 - (1 - 5*)3] [19]V = 5

and

Ao + A o = 27r5o2[1 + ( 1 - 5*)2]. [20]A m = 2

Upon subs t i tu t ing t h e s e in to Eq . [8] w e o b t a i n the fo l -
l o w i n g d i f f e r e n t i a l e q u a t i o n :

B i S * = P h ( 1 - 5*)2 5* dS*
6. 2 + 2 ( B i - 1)5" + 2 1 + ( 1 - 6.) 2 dT

B i d

+ 311 + (1 - 5*)2] d--T

x{ 5 " [ 1 - ( 1 - 5")~] } [21]
5*2 + 2 ( B i - 1 ) 5 . + 2 "

I n t e g r a t i o n of E q . [21] r e s u l t s in the s o l i d i f i c a t i o n t i m e
a s a f u n c t i o n of the two p a r a m e t e r s B i a n d P h . A g a i n ,
p a r t i a l o r t o t a l sol idi f icat ion c a n b e s o l v e d f o r and the
s t r u c t u r e of the r e s u l t i s a s s p e c i f i e d by E q . [ 1 5 ] . F o r
5" = 1 , that i s c o m p l e t e sol id i f ica t ion , w e find a f t e r
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elementary integration that

f ~ (Ph, B i ) = P h ~ + 1 + ln2 - 2 tan-~1

= P h ( 3 - ~ z + 0.122), [22a]

1 7r
ln2 4

f 2 ( B i < 1 + ~f2) 2= -~ B i + 3 B i

4 B i Z - 6 B e - 3 B i - I ln (Bi+ 1
6 B i

[22b]
4 B ~ - 1 0 B ~ - B i ~ + 4 B i + 1Jr

3 B i ~ / 2 - ( B i - 1)3

x c o s - l { S i + 1 ~2 J'
~ in2 - ~2

f 2 ( B i > 1 + ~f2) = -~ B i + 3 B i

4 B i 3 - 6 B i 2 - 3 B i - 1 l n ( B i 15
- 6 B i +2)

4 2 2 c ]
4 B i 4 - 1 0 B ~ - B i2 + 4 B i + 1

6 B i v Z ( B i - 1)2 - 2

)<In 1 - B i + l + 1

~ f ( B i - 1)2 - 2

1
C = ~ ln2 - ~ = - 0 . 4 3 9 . [22d]

The two expressions for f2 result from the different
integration ru l e s to be applied at certain values of B i .
Although the f i n a l r e s u l t appears t o be r a t h e r compli-
cated it is, in fact, easily evaluated for any given val-
ues of the two parameters. In the particular case of
constant wall temperature Eq. [22c] reduces to

f2 = 0.5

so that the solidification time becomes

TI (Bi - - oo) = 0.122Ph + 0.061. [23]

For the solidification of a s h e l l of thickness 5* < 1 ex-
pressions s i m i l a r to those in Eqs. [22] and [23] a r e
obtained; only the constants are different.

By comparison with Eq. [22a] a 27 pct under predic-
tion at B i ~ oo and P h ~ oo is registered. We note
that this discrepancy is far more pronounced than
with cylindrical solidification (comparison of Eqs.
[13] and [13a]) and is an obvious consequence of the
assumptions of a linear temperature profile in the
solidified s h e l l and of an arithmetic mean a r e a .

Since from an engineering viewpoint an over pre-
diction of the solidification time is less serious than
an under prediction we propose t o correct the m o d e l
r e s u l t (given by Eqs. [22a] t o [22d]) such that it con-
verges towards the true quasistationary solution for
P h ~ oo. Thus, for inward spherical solidification we
write

~'~ = F ~ ( P h , B i ) + F 2 ( B i ) + C

with I [25]
El = Eq. [24]; F2 = Eqs. [22b, c]; C = Eq. [22d];

equivalent expressions are obtained for 5* < 1.
In Fig. 4 the final result, Eq. [25] is compared with

some numerical data.9 The agreement is seen to be
surprisingly good and the following e r r o r s can be
specified:

0.2 -< P h < 0.5; 0.1 -< B i <- 2 ~ Irma x] -~ 15 pct ,~
t

0.5-<Ph-<o% 0.1-<Bi-< 5 ~ ] r m a x ] ~- 9 p c t . J[26]

For completeness we show the corresponding re-
sults for half radius solidification in Fig. 5. As with
cylindrical solidification we find good agreement with
the exact data for many practically important
parameter combinations but poor model results for
large Biot numbers (Bi > 10). Again, the unidirection
heat flow model7 seems more appropriate in such
cases. Alternatively, one could easily devise an
empirical correction factor to cover the described
parameter range with improved accuracy.

3.2. Comparison of Results and
Working Equations

As in Section 2 we shall compare our results with
exact numerical data; it will be shown that some of
the previous approximate analyses are not very re-
liable. In doing so we observe the same trends as
with the cylindrical geometry, that is over prediction
for P h < 1 and under prediction for P h > 1. In the
latter case the e r r o r increases with increasing Blot
number and, for practical purposes, becomes unaccept-
able (>20 pct) when B i > 2. This is so because our
model result does not converge towards the c o r r e c t
answer when the phase change parameter P h tends t o
infinity. In that case the exact result is given by the
quasistationary solution

'o ,!o 2!0 3!0 ,o
I/ai

F i g . 4 - -T ime for complete solidif icat ion of a s p h e r e . C o m -
parison between Eq. [25] ( ) and numerical r e s u l t s (o).
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1.5 P h = 0 2

~Ph 0 . 5

10

O5

,'o 2!o 3' . . . .
1/Bi

F i g . 5 - -T ime for inward spherical sol idif icat ion to 6" = 0.5.
Comparison between c o r r e c t e d analysis ( ) and n u m e r i -
cal resul ts (e).

For cylindrical solidification none of the approxi-
mate analyses (excluding the quasistationary approach)
yields a closed form solution for the solidification
time whereas in a spherical system the necessary in-
tegrations can usually be performed analytically. Two
methods have been presented previously and it may be
informative t o compare those results with the present
ones. However, we point out that in both case s the
final r e s u l t is of a much more complicated structure
than Eq. [25], involving lengthy expressions in t e r m s
of both parameters, B i and Ph. The one r e s u l t2~ is
b a s e d on the assumption of a parabolic temperature
distribution in the solid and on the validity of certain
ru l e s2~ by which the solidification rate in a sphere is
obtained directly from that in a slab. The other re-
sult 17 is a perturbation solution for the solidifica-
tion rate with 1 / P h as the perturbation parameter.
Obviously, this latter method cannot yield very ac-
curate results when the phase change parameter is
s m a l l .

In Table I we list a representative set of e r r o r s
involved in u s i n g either of the t h r e e results. Since
in all ca se s good results are obtained for s m a l l B i
and large P h values we have concentrated on the
critical range of parameters discussed above. From
the t a b l e we conclude that the present result provides
a significant improvement over the existing solutions,
particularly in view of its comparatively simple
structure. It is mentioned that with a more elaborate

Table I. Approximate Relative Error in Percent of Some Analytic Solutions
for Complete Solidification of a Sphere

B i P h Ref. 21 Ref. 17 Eq. [25]

1 1 -18 1 + 5
1 0.5 -33 5 + 0.5
1 0.2 -38 17 +15
oo 0.5 -33 11 +11
oo 0.2 -35 25 +27
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empirical correction (as was applied t o one of the
other results 17) a working equation of h ighe r accuracy
can be generated from our b a s i c result. However, we
feel that this would impair its usefulness for practical
applications.

4. CONCLUSIONS

Based on the assumption of a linear temperature
profile in the solidified shell simple analytic solu-
tions have been developed for the inward solidifica-
tion of cylindrical and spherical bodies. The com-
parison with numerically exact data shows that the
results are useful over a large range of values of the
two system parameters B i and Ph. After m i n o r cor-
rections t o the b a s i c results the maximum e r r o r in
predicting solidification t i m e s is of the o r d e r of 10
pct for most situations of practical interest. Ex-
t r e m e cases, characterized by parameter values of
P h < 0.5 and B i > 10, lead t o somewhat l a rge r e r r o r s
but can be represented equally well when more ela-
borate correction methods are employed.

With a reliable analytic result t o the phase change
problem at hand it is not difficult t o analyze and
optimize the t h e r m a l and economic efficiency of in-
dustrial solidification processes. For example, some
preliminary studies on continuous casting machines
have shown that the performance can be improved
significantly by suitable arrangement of the various
cooling zones. With the present results the necessary
calculations become much simpler than with the
n u m e r i c a l schemes devised previously; and yet, the
loss in accuracy is minimal in view of other factors
of uncertainty common t o most of the existing
theories.

NOMENCLATURE

List of Symbols

= t h e r m a l diffusivity (m2/s),
5 = thickness of solidified l a y e r (m),
h heat transfer coefficient (W/m2 K),
X latent heat of solidification (J/kg),
k t h e r m a l conductivity (W/mK),
c = specific heat capacity (J/kgK),
p density (kg,/m3),
t = time (s),
T = temperature (K),
x = coordinate in the direction of the moving inter-

face (m),
A = heat transfer area (m2),
A m = mean area for heat transfer (m2),
U s = internal energy (J/kg), and
V = volume (m3).

List

P h =

B i =

T =

8 * =

of Dimensionless P a r a m e t e r s and Variables
xr

phase change parameter = cCT~,
T c ) '

Biot modulus = h¢'5o
k '

t a
dimensionless time = 5°2 , and

dimensionless thickness of solidified l a y e r
= 0 / 8 0 .
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S u b s c r i p t s

c = r e l a t i n g to c o o l i n g f l u i d ,
m = r e l a t i n g to m e l t ,
p = a t p h a s e c h a n g e condi t ions ,
w = r e l a t i n g to c o o l i n g w a l l ,
0 = a t r e f e r e n c e t i m e to,
1 = r e f e r r i n g to c o m p l e t e sol idif icat ion, a n d
1/2 = r e f e r r i n g to h a l f r a d i u s sol idif icat ion.
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