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Abstract: In this article we present, illustrate, 
test and refine a framework developed by 
Galbraith, Stillman, Brown and Edwards (2006) 
for identifying student blockages whilst 
undertaking modelling tasks during transitions 
in the modelling process. The framework was 
developed with 14-15 year old students who 
were engaging in their first experiences of 
modelling at the secondary level.   
 
ZDM-Classification: C70, M10  

1. Introduction  
The term mathematical modelling as it is used in 
curricular discussions and implementations does 
not have a single meaning. One interpretation 
sees a role for mathematical modelling primarily 
for the purpose of motivating, developing, and 
illustrating the relevance of particular 
mathematical content (e.g., Zbiek & Conner, 
2006).  For example, Emergent modelling, as a 
conceptual framework and modus operandi 
(Gravemeijer, 1999), is located essentially 
within this purpose. We recognise and respect 
the work of those who adopt this approach in 
their efforts to improve the teaching and 
learning of mathematics, and now proceed to 
clarify the different emphasis that underlies our 
own work.  We do not use applications and 
modelling primarily as a means for achieving 
some other mathematical learning end, although 
at times this may occur as an additional benefit. 
Rather we retain, as far as possible, an approach 
in which the modelling process is driven by the 
desire to obtain a mathematically productive 
outcome for a problem with genuine real-world 
motivation (e.g., Galbraith, 2006; Galbraith, 
Stillman, Brown, & Edwards, 2006; Pollak, 
1997; Stillman 2002, 2006). At times this is 
directly feasible, while at other times some 
modifications make the descriptor “life-like” 

more accurate. The point is that the solution to 
such a problem must take seriously the context 
outside the mathematics classroom, within 
which the problem is located, in evaluating its 
appropriateness and value. This approach is 
consistent with Julie’s (2002) term “modelling 
as content” as distinct from  “modelling as 
vehicle” which describes the former approach. 
This view of modelling has characterised the 
ICTMA series of conferences, and the curricular 
call to arms on the part of those such as Henry 
Pollak (e.g., Pollak, 2006). The learning goal is 
to support the students’ development of 
modelling competence; however, as researchers 
we are guests in teachers’ classrooms and 
therefore do not always have influence over the 
approach to modelling that a particular teacher 
adopts within his/her classroom.  

2. Modelling process 
 Various diagrammatic representations of the 
modelling process are common in the literature 
(e.g., Edwards & Hamson, 1996; Galbraith, 
Goos, Renshaw, & Geiger, 2003; Stillman, 
1998), where most of these can be recognised as 
relatives or descendants of a diagram initially 
provided among the teaching materials of the 
Open University (UK). Such diagrams illustrate 
key stages in an iterative process that 
commences with a real world problem and ends 
with the report of a successful solution, or a 
decision to revisit the model to achieve a better 
outcome. The purpose is to provide a scaffolding 
infrastructure to help modellers through stages 
of what can appear as a challenging and opaque 
task. It is based on procedures that real world 
problem solvers undertake. However, as pointed 
out by Blum and Leiß (2006), when interests in 
teaching and learning are also central we need a 
version that is more oriented towards the 
problem solving individual, to give not only a 
better understanding of what students do when 
solving (or failing to solve) modelling problems, 
but also a better basis for teachers’ diagnoses 
and interventions. The diagrammatic 
representation (Figure 1) contains a structure 
that encompasses both the task orientation of the 
original approach, and the need to capture what 
is going on in the minds of individuals as they 
work, often idiosyncratically on modelling 
problems.    
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The respective entries A-G (expressed as nouns) 
represent stages in the modelling process, and 
the heavy arrows signify transitions between the 
stages. The total problem solving process is 
described by following these heavy arrows 
clockwise around the diagram from the top left. 
It culminates either in the report of a successful 
modelling outcome, or a further cycle of 
modelling if evaluation indicates that the 
solution is unsatisfactory in some way. Some 
(e.g., Blum & Leib, 2006) see A-B as involving 
a further stage (the situation model). We do not 
make this distinction here.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1. Modelling Process Chart 
Now, adding an educational focus, we turn 
attention to the kinds of mental activity that 
individuals engage in as they move around the 
modelling cycle. As the term ‘activity’ suggests, 
these can be expressed in terms of verbs that 
describe what happens as modellers achieve a 
successful transition (or not) from one modelling 
stage to the next, (where there is special interest 
in identifying blockages that impede progress).  
At a theoretical level these may be thought of as 
generic activities as illustrated for the transitions 
below.  

A  B: Understanding, structuring, simplifying, 
interpreting context 
B   C: Assuming, formulating, mathematising 
C   D: Working mathematically 
D   E: Interpreting mathematical output 
E   F: Comparing, critiquing, validating   
F  G: Communicating, justifying, report 
writing  (if model is deemed satisfactory) 
OR 
F  B: Revisiting the modelling process (if 

model is deemed unsatisfactory). 
These descriptors are illustrative of broad 
cognitive activity – finding what their detail 
looks like in particular cases, as a precursor to 
generating robust generalised structure, is one of 
the purposes of our research.   
The remaining structure included in Figure 1 
consists of light arrows that are in the reverse 
direction to the heavy arrows denoting the 
direction of the modelling cycle. These light 
arrows are included to emphasise that the 
modelling process is far from linear, or 
unidirectional, and to indicate the presence of 
metacognitive activity that permeates every part 
of the process (Stillman, 1998). While, for 
example, a model will be evaluated in terms of 
what it provides at stage E, processes of 
evaluation and attendant action will be 
undertaken by competent modellers throughout 
the process. For example in the transition A  
B, judicious referencing back to the messy 
context of a problem will assist in the 
construction of a feasible problem statement; 
within the transition B  C reference back and 
forth to the real world problem statement is 
essential in designing a mathematical model that 
captures its necessary features; within the 
transition C  D checking of mathematical 
solutions in terms of the type of output expected 
from the model is important in monitoring the 
correctness of mathematical processing -  and so 
on for the other transitions.   
In our study we aim to learn more about critical 
aspects within transitions between stages in the 
modelling process as follows:   

1. Messy real world situation → real world 
problem statement; 

2. Real world problem statement → 
mathematical model; 

3. Mathematical model →  mathematical 
solution; 

4. Mathematical solution → real world 
meaning of solution; 

5. Real world meaning of mathematical 
solution → (evaluation) revise model or 
accept solution.   

We therefore examine in detail how students 
approach and perform in these areas of 
transition, while learning modelling in an 
environment characterised by the interactions 
between modelling, mathematical content, and 
technology. The technological component is 
significant to the purpose of addressing realistic 
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problems. Real measurements are messy, and in 
order to make their inclusion tractable, 
technology is needed. In turn this implies 
knowing both what alternative technologies 
(e.g., graphing calculators and spreadsheets) can 
do, and facility with them to carry out operations 
to achieve desired mathematical ends.    

3. Purpose of the Research 
Data for this paper have been generated within 
RITEMATHS, an Australian Research Council 
funded project of the University of Melbourne 
and the University of Ballarat with six schools 
and Texas Instruments as industry partners (see 
http://extranet.edfac.unimelb.edu.au/DSME/RIT
EMATHS/). The research being undertaken is 
part of a design experiment (Barab & Squire, 
2004) which was in its second cycle at the time 
of data collection. The research focuses at the 
level of individual student learning and applying 
modelling skills in classrooms where electronic 
technologies are available and expected to be 
used. The purpose of the research is to develop, 
test and refine a framework, to identify potential 
blockages for students in the transitions between 
stages in the modelling process. As pointed out 
by Gellert, Jablonka, and Keitel (2001), the 
mathematical knowledge as well as the 
technological tools at their disposal, will 
influence the models that are produced by the 
students and this is particularly true of students 
at the intermediate secondary level. 

One school in RITEMATHS has been 
developing a lower secondary mathematics 
curriculum (Years 8–10) which provides 
opportunities for engagement in extended 
investigation and problem solving tasks set in 
real-world contexts considered meaningful for 
the students by their teachers. A major focus to 
date has been in Year 9 when students (14-15 
year olds) are required for the first time to have 
laptop computers and graphing calculators. In 
keeping with local curriculum requirements 
(VCAA, 2005, p. 36), students are introduced in 
Year 9 to a mathematical model being able to be 
used to describe the relationship between 
variables in a real situation and this model being 
used to predict an outcome in terms of a 
response variable when a control variable is 
altered. A series of extended real-world tasks 
(e.g., Cunning Running in Figure 2) have been 

designed, implemented and refined by teachers 
at this school.  

Cunning Running: In the Annual “KING OF 
THE COLLEGE” Orienteering event, 
competitors are asked to choose a course that 
will allow them to run the shortest possible 
distance, while visiting a prescribed number of 
checkpoint stations. In one stage of the race, the 
runners enter the top gate of a field, and leave by 
the bottom gate. During the race across the field, 
they must go to one of the stations on the bottom 
fence. Runners claim a station by reaching there 
first. They remove the ribbon on the station to 
say it has been used, and other runners need to 
go elsewhere. There are 18 stations along the 
fence line at 10 metre intervals, the station 
closest to Corner A is 50 metres from Corner A, 
and the distances of the gates from the fence 
with the stations are marked on the map.  

 

 

 

 

 

 

 

 

THE TASK 

Investigate the changes in the total path length 
travelled as a runner goes from gate 1 to gate 2 
after visiting one of the checkpoint stations. To 
which station would the runner travel, if they 
wished to travel the shortest path length? 

For the station on the base line closest to Corner 
A, calculate the total path length for the runner 
going Gate 1 – Station 1 – Gate 2. Use Lists in 
your calculator to find the total distance across 
the field as 18 runners in the event go to one of 
the stations, and draw a graph that shows how 
the total distance run changes as you travel to 
the different stations.  

Observe the graph, then answer these questions. 
Where is the station that has the shortest run 
total distance? Could a 19th station be entered 
into the base line to achieve a smaller total run 
distance? Where would the position of the 19th 
station be?  

Gate 2 

Gate 1 

18 stations at 10 metre intervals 

A runner’s path 

B 

L 

F 

40m

240 mertres 

120m

A 
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If you were the sixth runner to reach Gate 1, to 
which station would you probably need to 
travel? What is the algebraic equation that 
represents the graph pattern? Draw the graph of 
this equation on your plot of the points. If you 
could put in a 19th station where would you put 
it, and why? 

(Additional suggestions were provided as to how 
the work might be set out, and for intermediate 
calculations that provide some task scaffolding.) 

Figure 2. Cunning Running Task 

We seek to identify and document (a) key 
activities involved in moving successfully 
through the modelling cycle; and (b) the 
occurrence or removal of blockages that emerge 
at such critical points, when the process includes 
respective interactions between modelling, 
mathematical content, and technology. The 
purpose is to enable an in-depth analysis of 
issues and activities impacting on transition 
phases 1 - 5 above, with implications for both 
the learning and teaching of mathematical 
modelling at an intermediate stage of secondary 
education.  

4.  Emergent Framework for Identifying 
Student Blockages in Transitions 
The structural framework as in Figure 3 
consisted initially of the transitions arising from 
our theoretical framework (Figure 1) of which 
five have been included for present purposes. 
Initially the contents of the respective transition 
sections were empty. Each element in a 
transition section in Figure 3 has two parts 
which have been generated from intensive 
analysis of data from the implementation of two 
modelling tasks at this first school which 
resulted in the development of the emergent 
framework (Galbraith, Stillman, Brown, & 
Edwards, 2006) shown. We refer to it as an 
“emergent framework” as it is our first result 
from empirical study and was at that stage yet to 
be refined and tested with other tasks and 
implementations with other teachers with 
different motivations for using such tasks. The 
empirics gave rise to case specific categories 
and generalisations of these that form the 
various elements in each transition section in 
Figure 3. Key (generic) categories in the 
transitions between phases of the modelling 
cycle are indicated (in normal type), and 

illustrated (in capitals) with reference to one of 
the tasks, Cunning Running. Our research 
indicates there is potential for blockages to 
occur when any of these component activities 
have to be undertaken. 

Intensive data were generated from 
implementations of the two tasks in order to 
develop this framework. These data were 
collected by means of student scripts (24 and 28 
respectively), videotaping of teacher and 
selected students, video and audiotaped records 
of small group collaborative activity, and 
selected post-task interviews (8 and 4 
respectively). In order to identify and document 
characteristic levels of performance; occurrence 
or removal of blockages; use of numerical, 
graphical, and algebraic approaches; quality of 
argumentation; and the respective interactions 
between modelling, mathematical content, and 
technology, these data were entered into a 
NUD.IST database (QSR, 1997) and analysed 
through intensive scrutiny of the data to develop 
and refine categories related to these themes. 
The point of the approach was to closely observe 
students at work on a task in a normal classroom 
setting, identify what is happening in terms of 
task specific activities, seek to describe these in 
terms of generic attributes that can be confirmed 
or supplemented by observing the 
implementation of a second task with the same 
class and teacher. The resulting emergent 
framework was then to be refined and tested by 
looking at performance on other tasks in a 
different setting. Thus, our methodological 
approach is basically a version of a Grounded 
Theory approach. The conceptual categories in 
the framework arise “through our interpretations 
of data rather than emanating from them or our 
methodological practices”. Thus the framework 
is the result of our “interpretive renderings of a 
reality” (Charmaz, 2005, pp. 509-510). 

We note that technology features strongly in 
transitions 2 and 3. In the former the knowledge 
of the capabilities of different calculator or 
computer operations impact directly on how a 
model is formulated. Obtaining results from the 
model then depends on the ability to actually 
perform the respective operations. Hence the 
regular occurrence of the terms choosing in 
section 2, and using in section 3 of the 
framework. 
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1. MESSY REAL WORLD SITUATION → REAL WORLD PROBLEM STATEMENT: 
1.1 Clarifying context of problem [ACTING OUT, SIMULATING, REPRESENTING, DISCUSSING PROBLEM SITUATION]  
1.2 Making simplifying assumptions [RUNNERS WILL MOVE IN STRAIGHT LINES] 
1.3 Identifying strategic entit(ies) [RECOGNISING LENGTH OF LINE SEGMENT AS THE KEY ENTITY] 
1.4 Specifying the correct elements of strategic entit(ies) [IDENTIFYING SUM OF THE TWO CORRECT LINE SEGMENTS] 
2. REAL WORLD PROBLEM STATEMENT →  MATHEMATICAL MODEL: 
2.1 Identifying dependent and independent variables for inclusion in algebraic model [TOTAL RUN LENGTH AND 
DISTANCE OF STATION FROM CORNER] 
2.2 Realising independent variable must be uniquely defined [CANNOT USE X FOR DISTANCE FROM BOTH A & B] 
2.3 Representing elements mathematically so formulae can be applied [TOTAL LENGTH EXPRESSED IN TERMS OF 
EDGE DISTANCES ALONG THE FIELD] 
2.4 Making relevant assumptions [PYTHAG. TH. IS APPROPRIATE GIVEN STRAIGHT LINE APPROXIMATIONS TO PATHS] 
2.5 Choosing technology/mathematical tables to enable calculation [RECOGNISING HAND METHODS IMPRACTICAL] 
2.6 Choosing technology to automate application of formulae to multiple cases [LISTS HANDLE MULTIPLE X-VALUES] 
2.7 Choosing technology to produce graphical representation of model [SPREADSHEET OR GRAPHING CALCULATOR 
WILL GENERATE PLOT OF L FOR DIFFERENT X-VALUES] 
2.8 Choosing to use technology to verify algebraic equation [RECOGNISING GRAPHING CALCULATOR FACILITY TO 
GRAPH L VERSUS X] 
2.9 Perceiving a graph can be used on function graphers but not data plotters to verify an algebraic equation 
[GRAPHING CALCULATOR CAN PRODUCE GRAPH OF FUNCTION TO FIT POINTS – SPREADSHEET CANNOT] 
3.  MATHEMATICAL MODEL → MATHEMATICAL SOLUTION: 
3.1 Applying appropriate formulae [L = √(14400+X2) + √(1600+(240-X)2), WITH RELEVANT X-VALUES SELECTED] 
3.2 Applying algebraic simplification processes to symbolic formulae to produce more sophisticated functions 
[PRODUCING ALGEBRAIC EQUATION FROM MANIPULATION OF LIST FORMULAE]   
3.3 Using technology/mathematical tables to perform calculation [SUCCESSFUL CALCULATION OF L-VALUE] 
3.4 Using technology to automate extension of formulae application to multiple cases [EFFECTIVE USE OF LISTS]  
3.5 Using technology to produce graphical representations [USE OF SPREADSHEET CHART/GRAPHING CALCULATOR] 
3.6 Using correctly the rules of notational syntax (whether mathematical or technological) [CORRECT USE OF 
ALGEBRAIC NOTATION IN EQUATIONS] 
3.7 Verifying of algebraic model using technology [GRAPHING A FUNCTION TO MATCH A DATA PLOT] 
3.8 Obtaining additional results to enable interpretation of solutions [CALCULATING & PLOTTING EXTRA VALUES TO 
TEST HUNCHES OR SUSPICIONS]   
4. MATHEMATICAL SOLUTION → REAL WORLD MEANING OF SOLUTION: 
4.1 Identifying mathematical results with their real world counterparts [INTERPRETING L-VALUES IN TERMS OF 
RESPECTIVE CHECKPOINT STATIONS].   
4.2 Contextualising interim and final mathematical results in terms of RW situation (routine → complex versions) 
[INDIVIDUAL L-VALUES GIVE STATION SPECIFIC RESULTS: STRATEGY DECISIONS (E.G. OPTIMUM POSITIONING OF 
STATION – REQUIRE EXTENDED COMPARATIVE DATA] 
4.3 Integrating arguments to justify interpretations [PRESENTING REASONED CHOICE FOR OPTIMUM PLACEMENT OF 
STATION IN TERMS OF GRAPHICAL BEHAVIOUR] 
4.4 Relaxing of prior constraints to produce results needed to support a new interpretation [PLACING 19TH STATION 
– NEED TO BREAK PATTERN OF SUCCESSIVE STATIONS AT 10M INTERVALS]   
4.5 Realising the need to involve mathematics before addressing an interpretive question [BE UNWILLING TO 
SUGGEST POSITION OF OPTIMALLY LOCATED STATION WITHOUT SOME MATHEMATICAL SUPPORT] 
5. REAL WORLD MEANING OF SOLUTION→ REVISE MODEL OR ACCEPT SOLUTION:   
5.1 Reconciling unexpected interim results with real situation [RECALCULATING L-VALUE AS CONSEQUENCE OF 
OBVIOUS ERROR WHEN COMPARED TO NEIGHBOURING VALUES]  
5.2 Considering Real World implications of mathematical results [LOCAL – DO INDIVIDUAL 
CALCULATIONS/GRAPHS ETC MAKE SENSE WHEN TRANSLATED TO REAL WORLD MEANINGS?] 
5.3 Reconciling mathematical and Real World aspects of the problem [L-VALUES SHOULD VARY STEADILY WITH 
CHANGING STATION LOCATIONS]  
5.4 Realising there is a limit to the relaxation of constraints that is acceptable for a valid solution [19TH STATION 
MUST BE ON AB – NOT ON STRAIGHT LINE JOINING GATES]    
5.5 Considering real world adequacy of model output globally [MODEL PROVIDES ALL ANSWERS TO RW PROBLEM?]  

Figure 3. Emergent framework for identifying student blockages in transitions 
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The following outline of key steps in the 
solution of Cunning Running is now provided, to 
assist the reader in the discussion that follows as 
we use this task and data used to generate the 
emergent framework to elaborate its various 
entries.  

Following the calculation of individual distances 
for the respective checkpoints the solution 
involves the calculation of the total path as the 
sum of two segments, followed by graphing, 
construction of an algebraic model, verification, 
interpretation, and the search for a nineteenth 
station optimally located.  

Figure 4 shows a typical graph produced by 
students who used a spreadsheet to graph the 
different values of path length calculated for the 
separate checkpoint stations obtained, for 
example, using the LIST facility on a TI-83 Plus 
graphing calculator.  

Total path length is given by L = √(14400 + X2) 
+ √(1600 + (240 - X)2) where X is the distance to 
a station from corner A. 

The equation can be checked, using the function 
plotting facility of a graphing calculator to 
generate the graph for L in terms of X.  

Deciding which checkpoint station to use (if the 
sixth runner), and selecting a site for the 19th 
station are inferred from an understanding of the 
behaviour of L in terms of X, as displayed, for 
example, in the graphical output.   

Figure 4. Spreadsheet graph for length of path 

We now look at the transitions in the solution 
phases and possible blockages that could result 
for students with this level of expertise in 
modelling and mathematical background. Links 

to the framework will be shown as numerical 
codes such as 1.1 meaning ‘clarifying context of 
problem’ as per Figure 3. 

 Messy real world situation  real world 
problem statement 

The first challenge is to identify the key 
elements that will be the basis of model 
building, namely, deciding the nature of the 
‘strategic entity’ and then specifying the correct 
element of this identified strategic entity. Here it 
is assumed that the runner’s path from gate to 
checkpoint station is a straight line (1.2).  The 
key element is a distance (1.3), which is a 
compound entity to be constructed from other 
components present in the real situation being 
modelled, namely line segments (1.4). To avoid 
possible blockages in the early specification and 
formulation stages, the teacher provided a 
supporting dynamic geometry animation of the 
task which students watched. All students 
interviewed said this clarified or confirmed their 
thinking in some way (1.1). 

Interviewer: The Friday before you did the task 
you saw a GSP animation of the task. He 
showed you a diagram that had a yellow triangle 
and a green triangle.  

Gary: [showing the movement with his fingers 
using the task diagram] Awh, and he moved the 
bar. It just, it showed um, um, I understood it. It 
was just showing you the length and how you 
actually got it, the area. And it was just basically 
the formula you needed to know to get the 
answer. It showed everything that you needed 
really. …it was just good to see it in front of you 
and it doing its own little business [indicating 
the movement of the station along the base line 
with his fingers again].  

In addition students were required to make a 
scaled plan of the field showing the checkpoint 
stations and the first four paths. Some students 
such as Mei saw this as a further source of 
clarification (1.1). 

Mei: Because you could actually see like how 
many metres it was away from each other and, 
yeah, it was easier to work out by seeing the 
image. 

Others only did it because they had to, saying 
they already had a clear idea of the task situation 
and what specifically they were focussing on.  

Total distance of running
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Real world problem statement  mathematical 
model  
Key decisions with the potential to generate 
blockages in this transition include (a) deciding 
how to represent the sum of the lengths 
mathematically so formulae can be applied (2.3); 
(b) making assumptions necessary to support 
model development (2.4); (c) choosing to  use 
technology to enable calculations such as square 
roots with different technologies presenting 
different challenges (e.g., Excel versus graphing 
calculator) (2.5); (d) choosing to use technology 
to automate extension of the application of 
distance formulae to multiple cases (graphing 
calculator LISTs or a spreadsheet) (2.6); (e) 
choosing to use technology (spreadsheet or 
graphing calculator) to produce a graphical 
representation of the model (2.7); (f) identifying 
the dependent and independent variables for 
inclusion in an algebraic model, respectively the 
total travel distance and the distance of the 
station from the corner of the field (2.1); (g) 
realising that an independent variable must be 
uniquely defined [e.g., Mei used a one variable 
expression for the total distance 
    

40 2 + x( ) + 120 2 + x( )  as only one station was 
involved at any time when her expression was 
evaluated. She did not see this conflicting with 
the x being the distance from the station to corner 
A in one part of the expression and from corner B 
in the other part] (2.2); and (h), choosing to use 
technology to verify the algebraic model (2.8). 

The last of these includes an affordance of the 
graphing calculator (along with other function 
graphers but not data plotters) which is critical 
for students at this level who do not have the 
mathematical experience to fully cope with 
unusual functions as arise in some of these tasks. 
Several students did not perceive the affordance 
of the calculator to draw the graph of an 
algebraic function on the screen to match the 
scatter plot of the points if the equation for the 
function is correct (2.9). They thought the 
question was superfluous, stating, “the graph 
will be the same”, as they had used a joined 
scatter plot on a spreadsheet (a data plotter) or 
joined the points already in a by-hand graph. 
However, Ben perceived an alternative method 
of verification that could overcome this 
blockage was to use substitution of the station 
number into his model on the calculator home 
screen. Whether the answer was the same as that 

from his calculator LIST would tell him if his 
model was incorrect or needed revision (2.8). 

 Mathematical model  mathematical solution 
Knowledge of mathematical procedures, 
technological knowledge for their automation 
and declarative knowledge about the rules of 
notational syntax associated with both 
mathematics and technology feature in the 
potential sources of blockages in this transition. 
It would be expected that some blockages here 
follow from difficulties in the formulation 
process (e.g., non-uniqueness of a definition of a 
variable). Others follow appropriate decisions 
made in formulation (e.g., choosing to use 
technology for some correct purpose), but occur 
for example, due to technical failures when 
attempting to use technology to automate 
extensions of formulae to multiple cases (3.4) or 
to produce graphical representations (3.5). 

All students but one used graphing calculator 
LISTs to automate extension of their by-hand 
calculations using Pythagoras’ Theorem, the 
method promoted by the teacher (3.1, 3.3, 3.4). 
The remaining student did all 18 calculations by 
hand supported by home screen calculations 
(3.1, 3.3), and then checked her work against 
that of other group members who were using 
LISTs. This was at costs of both time, and 
experience in using technology to automate 
calculations already mastered by hand. She thus 
denied herself the time to develop the “reflective 
ness" needed in modelling to examine the 
appropriateness and reasonableness of the 
models that are constructed within the real world 
aspects of the situation being modelled (Gellert, 
Jablonka & Keitel, 2001), potentially laying the 
foundation for future blockages at other 
transitions as the time remaining was reduced 
substantially.  

Students had the greatest difficulty in 
formulating a two variable algebraic model with 
only 2 of the 27 students who attempted the task 
doing this successfully but these were early days 
in their study of algebraic functions. The process 
of concatenating LIST formulae to produce an 
equation with just two variables was described 
by one student as “putting them together and 
then kind of simplifying it so they worked 
because it is pretty well what it is, just all the 
LISTs.”  Such simplification of symbolic 
formulae to produce more sophisticated 
functions (3.2) often presents a blockage for 
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students at this level, as does the understanding 
of rules of notational syntax (3.6) needed to 
apply them. 

The verification of an algebraic model using 
technology requires both technological 
knowledge and mathematical knowledge of a 
high level, and the ability to integrate these. 
Only Sandra was able to verify that her algebraic 
equation for Cunning Running was correct by 
using the graphical representation of the 
graphing calculator (3.7).  

Other blockages occur in this transition when 
students do not know what is necessary 
mathematically to obtain the additional results 
needed to enable an interpretation (3.8); for 
example, when asked interpretive questions such 
as: “Could a 19th station be entered into the base 
line to achieve a smaller total run distance? 
Where would the position of the 19th station 
be?” 

Mathematical solution  real world meaning 
of solution  

Blockages occur here as students fail to identify 
mathematical results with their real world 
counterparts (4.1). This is the most basic of 
interpretative acts where a mathematical result 
has been obtained and students need to identify 
what it tells them about the real world situation 
it was intended to model. In this task it involves 
the interpretation of an outcome distance in 
terms of implications of using the corresponding 
checkpoint station, or the meaning of the 
minimum distance in terms of a particular 
strategy for station selection.  

Students’ attempts at routine interpretations lead 
to blockages when they have difficulty 
contextualising interim or final mathematical 
results in terms of the real world situation (4.2). 
For example, when asked,  “Does running via 
station 1, or station 2, or station 3 make any 
difference to the overall length of the run?” 
responses ranged from bald assertions such as, 
“It makes a difference”, to justified arguments 
such as, “Yes, it does the closer you are to 
corner A, the further the distance you have to 
run.” In some cases an adequate response 
requires arguments that integrate mathematical 
knowledge with the impact of this knowledge in 
the real situations to justify interpretation (4.3). 
There is a dilemma that students must face as to 
whether people really take mathematical 

knowledge into account or are driven by more 
pragmatic concerns; for example whether 
runners would use mathematical reasoning to 
select the best available station, or just go to any 
convenient one.   

Failing to perceive that constraints can be 
relaxed in order to answer interpretative 
questions central to the real world meaning of a 
mathematical solution, is another source of 
potential blockage (4.4). Students had the 
greatest interpretative difficulty determining 
where to place a 19th station, as this entailed 
relaxing the previous constraint of continuing 
the ordered pattern (i.e., 19th must follow 18th at 
a distance of 10 metres).  Many students simply 
placed the extra station 10 m away from either 
the first or last stations, rather than applying a 
minimum distance criterion.  
Failing to realise the need to involve 
mathematics before addressing an interpretative 
question, can also lead to a blockage (4.5).  As 
the aim here is to find the shortest path through 
the field, the essential question to be answered 
is: Where is the station that has the shortest total 
run distance? Most students used their numerical 
lists, the graph or a combination of the two to 
identify the station. Con, however, saw no need 
for any mathematical involvement in arriving at 
his answer, just writing “towards the end”. 

Real world meaning of solution  revise or 
accept model  

This transition produced some potential sites for 
blockages, noting that interpretive aspects of 
tasks also cause difficulties when students have 
to ultimately reconcile mathematical and real-
world aspects of a problem (5.3).  One sub-task 
required that mathematical results from the 
model be used to indicate to which station the 
sixth runner would probably travel. This 
involved assuming the other runners would take 
the shortest paths available to them (1.2), and 
several students perceived this. Meg’s response 
was typical, “If you were the sixth runner to 
reach gate 2 you would probably of [sic] 
travelled from Station 11. (That’s if the people 
in front know the fastest stations.)” However, 
others such as Kim were more pragmatic stating, 
“Most likely the sixth because you wouldn’t 
really think about the distance.” 

Blockages can still occur at this transition if 
students fail to consider the real world 
implications of mathematical results (5.2), such 



2006 Vol. 38 (2) Analyses
 

 151 
 

 

as when answering the more open final question, 
“If you could put in a 19th station where would 
you put it and why?” Some students such as 
Gary searched for a shorter distance than that 
previously determined, introducing real world 
(but extraneous to the problem) implications, by 
choosing to make it a close race. 
 
Gary [reading from his report during interview]: 
“A 19th station could be placed into the base 
line and achieve approximately the same 
running distance of 288.44 m by placing the 
station 178.75 m from corner A.” Because my 
theory on trying to get the 19th gate [sic] … 
roughly the same distance as [station] 14. I 
thought a good race is a close race so I was 
thinking if you have the first two runners going 
to the same station [distance] round about it is 
going to be a closer race. 

Other students in giving free reign to their 
imaginations when responding to this question 
did not realise there is a limit to the relaxation of 
constraints that is acceptable for a valid solution 
(5.4). Arguably, Pat could be seen as exceeding 
this as he relaxed all constraints of the problem 
and placed his 19th station on the straight line 
joining the gates. 

5. Refining Framework against Data from 
another Site and Different Tasks 
One problem of design-based research, 
particularly researching technology use, is 
adoption by other classroom teachers (Fishman, 
Marx, Blumenfeld, & Krajcik, 2004) with 
different motivations for the use of such things 
as modelling, real-world tasks and/or electronic 
technologies. This is especially true in the 
intermediate secondary years. Some of the tasks 
from the first school have been modified by 
members of the research team and teachers at 
another project school where they have been 
implemented to fit the conditions existing at that 
school. This is a girls school, in which the 
teachers are prepared to spend less time, no 
more than 2-3 class lessons (45 minutes each), 
on such tasks. They also make much less use of 
electronic technologies in their teaching at this 
level and students are not required to own a 
graphing calculator or laptop computer. Small 
pods of computers are available and so are class 
sets of graphing and CAS calculators although 

these are used infrequently at Year 9 level. Data 
from the implementation of the two tasks, The 
Bungee Experience (Figure 5) and Shot on Goal 
(Figure 6), at the second school, also during the 
second design experiment cycle, will be used to 
test the framework.  

5.1. The New Tasks 

The Bungee Experience: Barbie has turned 40. 
Her friend Ken has given her an extreme sports 
experience, part of which is an afternoon’s 
bungee jumping. Your task as the operator is to 
CALCULATE the length of Bungee Cord 
Barbie will need to jump from the given height‚ 
of the Bungee tower. Remember there is 
concrete below and we don’t want to mess up 
Barbie’s hair.  
During the next two maths periods your team 
will: 
1. Conduct measurements in the classroom to 
determine a model that links the fall distance to 
the number of rubber bands used for a shock 
cord.  
2.  Record your data, the graph for the data, and 
your linear equation.  
3. Test your model by predicting the 
requirements for a fall from an unknown height.  
(Additional suggestions were provided as to how 
to collect data, display results, and use a 
graphing calculator to find the equation. 
Students used a doll, usually Barbie or a soft toy 
such as a bear or Sesame Street Bert for the 
Bungee Jumper.)  

Figure 5. The Bungee Experience Task 

Shot on Goal: You have become a strategy 
advisor to the new football recruits. Their field 
of dreams will be the FOOTBALL FIELD. Your 
task is to educate them about the positions on the 
field that maximise their chance of scoring. This 
means—when they are taking the ball down the 
field, running parallel to the SIDE LINE, where 
is the position that allows them to have the 
maximum amount of the goal exposed for their 
shot on the goal?   
Initially you will assume the player is running 
on the wing (that is, close to the side line) and is 
not running in the GOAL-to-GOAL corridor 
(that is, running from one goal mouth to the 
other). Find the position for the maximum goal 
opening if the run line is a given distance from 
the near post.  
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(Additional suggestions were provided as to how 
the work was to be set out, and for intermediate 
calculations especially in the area of graphing 
calculator use providing extra task scaffolding.,) 

Figure 6. Shot on Goal Task 

Methodologically the approach contains a 
continuous aspect, in that two versions of Shot 
on Goal have featured. The original version in 
the first school was the second task used to 
generate elements for the framework. The 
version used by the second school (see above) 
has provided some of the data for testing the 
framework—and one would expect consistency 
if the classification is to be robust. 

The following outlines typical solution elements 
for The Bungee Experience using data collected 
for a stuffed toy bear (Table 1).  

Number of Bands Av. Drop Distance  (cm) 

3 70.6 

4 89.0 

5 105.3 

6 121.0 

7 144.0 

8 157.0 

Table 1. Sample data for a typical solution to 
The Bungee Experience 

 

 
Figure 7. Plot of sample data with line of best fit 
by eye 

Estimated line of best fit is: y = 17.5x + 18 
Set jump height for test: 580 cm 
Number of bands required = 32 (rounded down).  
Note: This gives a drop distance of 578 cm.  
(A more cautious modeller might under estimate 
and choose 31 to leave some more room for 
error.) 

The outline of essential steps in the solution that 
follows is for the version of Shot on Goal given 
in Figure 6.  Table 2 shows calculations obtained 
using the LIST facility of a TI-83 Plus graphing 
calculator. Calculations are shown for positions 
of the goal shooter at (typical) distances from 
the goal line of between 2 and 24 metres; along 
a run line that is 10 metres from the near 
goalpost (see Figures 6 and 8). Width of 
goalmouth is 7.32 metres. (The students 
encompassed a wider range of calculations than 
these, increasing the distance along the run line 
beyond 24 metres, and varying the lateral 
position of the run line.) The maximum angle 
and its reference points are highlighted in the 
table, which was generated by the LIST facility 
of the calculator, following hand calculations to 
establish a method).  

Distance    
(m) 

Angle1 
(degrees) 

Angle2 
(degrees)  

Difference 
( α degrees) 

L1 L2 L3 L4  
2.00 78.69 83.41 4.72 
4.00 68.20 77.00 8.80 
6.00 59.04 70.89 11.85 
8.00 51.34 65.21 13.87 
10.00 45.00 60.00 15.00 
12.00 39.81 55.28 15.47 
14.00 35.54 51.05 15.51 
16.00 32.01 47.27 15.26 
18.00 29.06 43.90 14.84 
20.00 26.57 40.89 14.32 
22.00 24.44 38.21 13.77 
24.00 22.62 35.82 13.20 

 
Table 2. Sample calculations from a typical 
solution to Shot at Goal 
Note. Calculator LIST formulae used were L2 = “tan-

1(10/L1)”, L3 = “tan-1((10+7.32)/L1)”, L4 = “L3 – L2”. 

90m 

PENALTY BOX  
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7.32m 

GOAL LINE 
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D
E 
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N

E 
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Figure 8. Angle (α) to be maximised 

A graph (Figure 9), showing angle against 
distance along the run line is drawn, using the 
graph plotting facility of the calculator. 
Additional points near the maximum can then be 
calculated, to provide a numerical approach to 
the optimum position (15.54 degrees at 13.16 
metres from the goal line—a suitable approach 
for early or middle secondary students—or an 
algebraic model can be constructed and the 
maximum found using the graphing calculator 
operations. 

 

 

Figure 9. Function for (α) passing through 
scatter plot for run line 10m from near goal post 

In practice a player often goes on a zigzag run 
and discussion can be used to infer that whatever 
her/his path the ultimate shot is from a position 
on some run line. 

Intensive data were collected during the 
implementation of the two tasks (The Bungee 
Experience and Shot on Goal) by means of 
student scripts (21 for both tasks), videotaping 
of teacher and selected students, video and 
audiotaped records of small group collaborative 
activity (2 groups for both tasks), and written 
homework post-tests for The Bungee Experience 
(only 14 returned). These data have been 
subjected to the same analytic process as before 
using NUD.IST (QSR, 1997) except this time 
the generic categories within transitions in 
Figure 3 had already been established and it was 
a matter of confirming whether or not these were 
adequate to describe what was happening during 
these two task implementations.  

 

5.2 Transitions in The Bungee Experience  

Messy real world situation  real world 
problem statement  

In this implementation of The Bungee 
Experience this transition presented no 
blockages to students’ progress. The teacher told 
the students to drop (not throw) the doll off a 
ledge and demonstrated the attaching of bands 
and taping back of extraneous hair as she read 
through the task booklet with them before they 
began (1.1). At other schools some difficulties 
arise when students attempt their Bungee jump 
data collection with the doll upside down 
hanging from her toes or they throw the doll 
rather than topple it from a standing position. A 
major assumption (1.2) is that the bands will 
stretch at a constant rate and not exceed their 
elastic limit when the model is used to 
extrapolate well beyond the set of collected data 
(maximum drops of around 2m in a classroom). 
In this implementation it was also assumed that 
the aerodynamic characteristics of some toys 
would have negligible impact (1.2) and this 
appeared to be so in most cases, with the 
outstanding exception being a large stuffed toy 
alligator. On the test drop the alligator “went 
like half way down” and the group suggested 
they were disadvantaged because “like it is 
lumpy”. 

 Real world problem statement  mathematical 
model  
Again there were no real blockages in this 
implementation. This was because the task setter 
had already made the decisions for the students 
by specifying a linear model and choosing the 
technology to use or the task itself did not entail 
particular aspects in the framework.   

Mathematical model  mathematical solution  
Several students did not use appropriate 
formulae when they calculated the number of 
bands for their prediction (3.1). They did not use 
the entire linear model they had constructed but 
instead chose to use how far one rubber band 
stretched on average with their toy. Rae and Jo, 
for example, constructed the linear model, y = 
15.5x + 21, using Bert from Sesame Street. They 
then ignored the 21 in calculating their 
prediction of the number of bands needed for a 
drop of 5.8m as is revealed in their discussion 
with Cate. 
 

goal 

α
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Rae: Well, what we did was we divided these 
together. ... Is that what we did? 
Jo: Divided by. 
Rae: That’s what we did anyway divided 580 by 
15.5. But I don’t know if that is right.  
Cate: Plus 21? 
Jo: Divided by. 
Rae: ... no, divided by 15.5 but I don’t know if 
that is right. 
Jo: I did the amount it is going up by. ...That’s 
15.5. 

Mathematical solution  real world meaning 
of solution  
Possible dilemmas for students in this transition 
occur when they need to contextualise interim 
and final mathematical results in terms of the 
real world situation (4.2), for example, when 
predicting a shock cord length for their test jump 
at a greater height outside the classroom, 
without their doll hitting the ground. The doll 
was to be dropped so as to stop as close to the 
ground as possible. Eva, for example, wondered 
if it was possible to have half band lengths in the 
shock cord. 

Teacher: You will need to figure out how many 
rubber bands that will take. 
Eva: Can it be a half or does it have to be only a 
whole? 
Teacher: I don’t quite see how we can manage a 
half. But I think you probably could. 
Eva: Put a knot in it. 
Teacher: If you put a knot halfway and held it at 
that spot. 
Other Student: Oh, yeah! 
Teacher: So yes you probably could manage 
halves. 

The task sheet specified that the students begin 
finding a linear model for their data by fitting a 
line to a by-hand plot of the data and reading off 
the y-intercept. The model was then to be refined 
using a graphing calculator by starting with y = 
10.0x + ‘y-intercept’ and adjusting the gradient 
by eye to fit the scatter plot of the points. Liz 
and Nancy started with y = 10.0x + 38 as 
instructed. However, Nancy had her own 
mathematical ideas about how she might refine 
the model. She calculated the differences 
between consecutive pairs of average drop 
distances. 
 
 
Liz: What are you doing that for? 

[Nancy has recorded the five differences.] 
Nancy: Find the sum. 
Liz: Awh. [Pause] How come they are not doing 
them? 
[Nancy uses a graphing calculator to add her 5 
differences and then divides the sum by 6 (sic). 
She records 17.2 as the new gradient.] 
Nancy: On the average each rubber band makes 
it go up 17.2, like makes it fall that much longer.  
Liz: Mmm [still looking at Nancy’s work]. Yeah 
but doesn’t it mean, yeah so we have got to put, 
um. Well we have just got to do the graph. So 
like. [Pauses and thinks.] Does it mean that one 
rubber band will fall 17.2? 
Nancy: Yeah, but that is not what we are doing 
Liz. 
At this stage they were refining the fit of their 
line to their data points. The mathematical 
procedure Nancy was using to do this 
temporarily blocked Liz’s progress, and it was 
not until the mathematical results of the 
procedure made sense in the real situation that 
Liz was willing to accept its use (4.2 and 5.3).  

When the students finally found their 
mathematical result for the predicted number of 
bands, decisions had to be made about whether 
they should round up, truncate their answer or 
over or under estimate. The real world 
implication (5.2), that rounding up or over 
estimating would mean the doll would hit the 
ground was not foreseen by seven students. This 
is not to suggest that all other students realised 
the implications of this, as they may have 
fortuitously derived a mathematical result such 
as 27.3, which was rounded down in keeping 
with expected classroom practice. In the 
recorded conversations no groups justified their 
actions either way. 

Real world meaning of solution  revise model 
or accept solution  
Some students realised the significance of the y-
intercept in their mathematical model and how it 
could be used to partially evaluate the 
mathematical equation they had constructed 
(5.3) but most did not.  
Teacher [to Eva]: So you have got your 
equation? 
Eva: Yep, 16.9x + 18 = y. So what is the 18? 
Teacher: What do you reckon it might be? 
Eva: Zero rubber bands. ... x is the rubber bands. 
Teacher: If x was zero, what would you know 
then? 
Eva: How far. 
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Teacher [indicates with her hands a toy falling]: 
How far would she fall? 
Eva: 18 centimetres. 
Teacher: Which is what? You have got no 
rubber bands and you just have? 
Eva: The length of it. 
Teacher: Okay, so pick it up, see if that is right. 
[Eva measures the length of the bear.] 
Eva: Yep, he is about 18 centimetres. 
Teacher: What do you reckon it means? 
Eva: It proves it! 
Later in a discussion with students who used the 
stuffed alligator for their bungee jumper, Eva 
explained to the group why she was able to tell 
their equation was incorrect - as the y-intercept 
should have been “how tall our animal is” 
whereas theirs clearly was not the length of the 
alligator.  
 
Once the girls had tested their predictions many 
still faced puzzlement as to why their predictions 
were wrong. They had difficulty reconciling the 
results of their testing with the mathematics of 
the situation (5.1), seeking an explanation in the 
physics of the situation, but these possible 
explanations were not used to evaluate their 
models. Liz, for example, was puzzled by the 
fact that her Ken doll just hit the ground with 27 
bands whereas Mel’s Barbie with 34 bands 
performed an almost perfect jump, missing the 
ground by about a centimetre. Various reasons 
were offered by other students for the difference 
such as Ken being heavier, less aerodynamic and 
more muscular than Barbie (both the Ken and 
Barbie doll are 29.5cm tall). There was no 
discussion of the difference in their models, 
Liz’s y = 19.8x + 38 and Mel’s y = 16.5x + 25. 
 

5.3  Transitions in the implementation of Shot 
on Goal  

 Messy real world situation  real world 
problem statement  
Assumptions in Shot on Goal (treated as a two 
dimensional problem) include that the player 
runs on a straight line perpendicular to the 
goal line, that the ball travels in a straight line 
once kicked, and that the presence of the goal 
keeper (whose job it is to “close down the angle” 
of the attacking player) can be ignored (1.2). 
Here the key element is an angle (1.3), which is 
a compound entity, to be constructed from other 
angles present in the real situation (1.4). 
Blockages occurred despite the teacher 

providing a supporting physical demonstration 
with string lines sticky taped to a goal drawn on 
the board, in which class members either 
watched or participated (1.1). Interpretation is 
central here in specifying a mathematical 
problem in the first place. The teacher spent 
some time working with the girls as a class 
discussing the diagram of the football field in 
the task booklet to ensure that they understood 
what the terms used meant (1.1), as she did not 
think many played football. She deliberately 
pointed out the aim of the task was to try “to 
find out whereabouts on that [the run line] for 
the person shooting, is the best angle.” She also 
had them: “Pick a spot somewhere on that line. 
Just so you get a picture of what is happening, 
then mark in the angle that the player at that spot 
has to kick a goal through.” This language is 
well chosen, she was aware of the difficulties the 
students in the first school had in realising where 
the angle was (on the run line or at the goal 
mouth) that was to be optimised (1.1). Later 
when reading through the task with the class she 
pointed to the required angle in the diagram on 
the board and said, “That’s here, to the near and 
far goal posts” (1.1). Despite this, there was still 
confusion between whether they should focus on 
the path of the ball (Lil: “Is it going to the left 
hand post or the right hand post?”) or the shot 
angle. Even when they had ascertained that they 
were to focus on finding the shot angle, several 
students such as Liz and Nancy and Sui and 
Summer thought they should start by finding a 
distance using Pythagoras’ Theorem but could 
not see how this led to finding an angle as they 
really had not been able to decide what were the 
elements of the angle that would specify it (1.4). 

Later in the task when the students were asked 
about their initial belief about how the angle size 
would change as they moved along the run line, 
Summer instigated a dynamic concrete 
demonstration of how the angle might change in 
a discussion with Sui in an attempt to clarify her 
thinking about the context of the problem (1.1). 
On her part, Sui tried to clarify the discussion by 
using a diagram to show how the angle changed 
size (1.1). 
Summer: Am I meant to say like I would have 
thought that the further, the closer I get the angle 
would get smaller? 
Liz: Yeah. 
Sui:  I thought if you went away, like if you 
were here then it would get bigger.  
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Summer: It would get tiny, wouldn’t it? [Pause] 
It would stay the same. [Summer uses her hands 
and then pens to simulate the changing angle.] 
Look, think about this. See moving this around, 
hang on it is more like that. 
Sui: You are not moving it around. 
Summer: Yeah, the closer you get the smaller. 
Sui: It is going to be bigger! 
Summer: No, look. Hang on. No you are meant 
to keep drawing it like. 
Sui: No, no, but look at this. You have like the 
box [the goal box] and you’re here [the shot 
spot] and it’s going like that and here it’s going 
really like that [draws 3 different angles from 
run line to goal posts.] 
Summer: If you start off with the angle here and 
it’s here like look, watch. I have no idea I just 
wrote smaller. 
Sui: Look hang on, that is how the angle is, the 
closer you get the skinnier it is getting if they 
were long enough [referring to the pens]. 
Summer[laughing]: It’s closer had my pens been 
long enough. See they get skinnier and the 
further out you get the fatter they get. 
Sui: I don’t know. 

Real world problem statement  mathematical 
model  
Blockages continued for some time as students 
struggled to mathematise the problem. The 
critical and time-consuming nature of the 
blockage at this stage was commented on by the 
teacher who was surprised by their lack of 
progress, “In fact most of that first period was 
spent on figuring out how on earth you would 
get that angle that you need.”  Even when 
students had determined that they should use tan 
and inverse tan to find the angle they were still 
blocked by not being able to decide how to 
represent the angle mathematically so formulae 
could be applied (2.3). The difficulty for Sui and 
Summer, for example, was that they were trying 
to apply trigonometry formulae when they did 
not have right-angled triangles in their 
representation of the required angle. 

Mathematical model  mathematical solution 
Even when students had identified and specified 
the correct component angles of the shot angle 
and represented these correctly geometrically in 
a diagram, many students still struggled in 
applying an appropriate method for finding the 
size of the shot angle (3.1). Nora and Anna, for 
example, took several attempts before they 
worked out:  “To find out that one you minus it 

from this one” (i.e., by subtracting the angle 
from the run line to the near post from the angle 
from the run line to the far post).  Kara, on the 
other hand, had produced such a diagram 
identifying the two component angles but 
despite knowing she had to apply tan and 
inverse tan, she calculated the size of only the 
angles to the near post for four shot distances 
along the run line. The other 20 students all 
eventually overcame this blockage. 
Using technology to automate extension of their 
calculations of the size of the shot angle to 
another 26 cases (3.4) also proved an 
insurmountable blockage for some but 15 
students were able to do this successfully. 
However, Jen who had successfully calculated 
four shot angles by hand, failed to check her 
calculator generated angles against these despite 
being advised to do so on the task sheet. Her 
LIST formulae to calculate component angles 
were correct but she divided these to find the 
shot angle (i.e., L4 = L2/L3). Even when asked 
to record between which two spot distances the 
maximum angle for the shot on goal occurred, 
she apparently did not notice she had a 
continually increasing table of 30 values and just 
wrote between “29 and 30 metres.” (4.2) 
Applying algebraic simplification processes to 
symbolic formulae in the calculator LISTs to 
produce a more sophisticated function using 
only x and y (3.2) proved challenging for those 
students who progressed this far in the task. Liz 
who worked out with Nancy how she would do 
this, helped Sui and Summer interpret what they 
were expected to do to achieve this.  
Summer: Liz, have you done this bit? 
Liz: Yeah. 
Summer: I don’t understand it. 
Liz: You have to put, what one are you doing 
here? You have to put it all into one thing. All 
into one formula instead of having List 1, List 2, 
List 3, and List 4 you have to have just had 
Sui:  List 5  
Liz: List 1, List 5, do you get what I mean? 
To do this successfully students had to 
understand and apply the rules of notational 
syntax both mathematical and technological 
(3.6). This took Sui and Summer quite some 
time and discussion of each other’s methods of 
finding the angle from its components and also 
how they had used LIST formulae to model their 
mathematical calculations, but finally they were 
able to record their new algebraic formulae 
correctly. 
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Summer: Yeah. “Now write this List formula as 
a function in terms of x and y”. What! Ooh, it is 
getting tricky now, like trickier than before. 
What’s that?  What’s the List formula? 
Sui: This one, the L5, the L1 and L5. The 
formula for L5 is this. 
Summer: So do we exchange the L1 and L5 for x 
and y? 
Sui: Yes. 
Summer: You agree? 
Sui: I guess. It is going to make it pretty simple. 
Yeah. 
Summer: I don’t really understand. 
Sui: No, just this one that you wrote here. Just 
instead of writing L1 you write x and instead of 
L5 you write y. 
Liz and Alice also attempted to make an 
algebraic model from their symbolic LIST 
formulae. Liz’s final equation still contained L5 
in the place where x should be (3.2, 3.6); 
whereas Alice made an incorrect symbolic 
model multiplying the formulae for the two lists 
instead of subtracting them. She had subtracted 
them earlier to generate her list of angle values 
from spot distances along the run line of 1m to 
30m (3.2). 
Only four students verified their algebraic model 
using technology (3.7), as the others did not 
reach this stage of the solution in the 3 lessons 
devoted to the task. Liz was able to do this 
despite her formula still containing L5, for when 
it came to using the function menu of the 
graphing calculator she immediately translated 
L5 as x. 
 
Mathematical solution  real world meaning 
of solution  
There were several opportunities in the task for 
interpretative questions to present blockages. 
Most of these requirements were of a low 
interpretative level with students needing merely 
to identify mathematical results with their real 
world counterparts (4.1). For example Nancy 
wrote “12m out from goal” when asked to state 
between what two spot distances the maximum 
angle occurred, according to the results of her 
calculator generated lists of angles along her run 
line (4.1). Interpreting the implication from 
graphical output, obtained from a sketch graph 
of their algebraic model on the scatter plot of 
points was more difficult, mainly because of the 
novelty of the question for these students (4.1). 
Sui and Summer managed to do this. 
 

Sui: Okay, what does your graph show you 
about your function? Well, it drew a line through 
it. It really did. So does it mean that it is correct? 
Summer: So what does this graph show? 
Sui: It showed me that my function is correct. 
Summer: Is that what it meant when it drew a 
line through it? 
Summer then wrote: 
“It showed me that my graph was correct, as it 
drew a line through my graph. It was able to do 
this because my squares [marks for points on her 
plot] were in the correct position.” 
Contextualising of interim mathematical results 
in terms of the real world situation (4.2) did not 
occur to some students as necessary or even 
possible, until after they thought about 
responding to the question: “Initially, what was 
your belief about angle size for the Shot on Goal 
as you changed positions along the Run Line?”   
 
Summer: What was my belief? I didn’t pay 
attention to that bit. I just did the sums. 
Sui: The answers to the angles I know but like it 
doesn’t, it doesn’t prove anything about the shot 
really. It just tells you what angle they’re at. 

When Sui derived her final mathematical results 
for the task again she did not consider them in 
terms of the real world, writing both the angle in 
degrees and the distance in metres to six decimal 
places (4.2). 

An interpretative question (after the students had 
completed a scatter plot of the data points 
generated in their calculator LISTs) required 
them to integrate their interpretation of the 
scatter plot with their response to an earlier   
interpretative question about the location of the 
maximum angle for shot on goal along their run 
line. Alice had previously said her maximum 
was “between 5 and 6” metres from the goal 
line. She was then able to write in response to 
whether her plot confirmed her answer: “Yes, 
because 5 & 6 are the two highest ones.” Liz, on 
the other hand, had said her maximum angle 
would be located “13m out from goals” (actually 
from the goal line). She then focussed on 
matching the points in her plot to the numerical 
values in her table when looking at the plot 
writing: “Yes, because they were really close at 
the time, all the angles.“ (4.3) 
At other times when students were asked 
interpretative questions about the problem 
requiring them to integrate their beliefs and 
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observations, several students seemed quite 
unperturbed by the fact that they could hold 
quite contradictory views at the same time, and 
record them in close juxtaposition. When Sui 
recorded her initial belief about the size of the 
angle for the shot on goal as she changed 
position along the run line she wrote: “My belief 
was the further away from the goals you got, the 
smaller the angle would become.” Her 
calculated angles for distances of 5m, 10m, 15m, 
20m along her run line of 12m from the near 
goal post were 8.11°, 12.44°, 13.51°, 13.05°. 
She was able to interpret these results as refuting 
her belief explaining, “the answers did not get 
smaller as I had assumed; instead, the results 
varied.” However, when responding to a 
question about the effect on the angle size of the 
measurement that continually changed (which 
she identified as “the side lengths”) she wrote, 
“Yes, generally, the smaller the side lengths, the 
smaller the angle.” 
 
Real world meaning of solution  revise model 
or accept solution  
Several students had difficulty reconciling 
unexpected interim results with the real 
situation. At times unexpected results were the 
consequence of an obvious error when they were 
compared to other results generated (5.1). These 
thus did not result in a blockage although they 
may have for a less observant student. Nancy, 
for example, calculated a shot angle of 42° for a 
shot distance of 5m from the goal line along her 
run line but this was easily detected when she 
reconciled this with the other results for 10m, 
15m, and 20m namely, 16.515°, 16.449° and 
14.986°. 
The students were allocated distances along the 
goal line from the near post for their run line. 
These were from 1m to 12m in whole metre 
values. For the students who had run lines 1m – 
4m from the near post, their calculated angle 
sizes for 5m, 10m, 15m, 20m increased as the 
shot spot was further away from the goal line. 
For the students who had run lines 5m – 12m 
from the near post, their calculated angle sizes 
for 5m, 10m, 15m, 20m increased and 
decreased. Five of the seven students who 
calculated only increasing values were able to 
interpret what these results meant in terms of 
their initial beliefs about how the angle size 
would vary as they changed position along the 
run line. Only eight of the 14 students who had 
increasing and decreasing values were able to 

interpret these in terms of their initial belief 
(5.3). For example, Liz had a run line 10 m from 
the near post and calculated shot angle values (in 
degrees) of 14.328, 15.416, 14.999 and 10.462 
for distances of 20m, 15m, 10m and 5m from the 
goal line along this run line. Her partner, Nancy, 
calculated 14.986, 16.449, 16.515 and 12.021 
for a run line of 9m. Nancy was the student at 
the beginning of the task who held the string 
lines from the near and far posts of the board 
goal diagram and walked towards the back of 
the room away from the goal on a run line. 
Nancy was puzzled by her mathematical results 
as she expected the angle to get smaller from her 
point of view of the demonstration however 
during a discussion with the teacher, who told 
her she could be correct, she suddenly recalled 
an earlier task, The Biggest Box, where they 
drew a spreadsheet graph of volume versus 
height of an open box. 
Nancy: Would it be like The Biggest Box how it 
turns around? 
Teacher: Uhuh, similar sort of thing. 
Nancy: Okay. 
Teacher: Is that what you were expecting? 
Nancy: No. 
Teacher: What were you expecting this time?  
Nancy: That it would keep getting smaller. 
The girls remained puzzled by their results and 
were even more so after comparing with Alice 
who with a run line distance from the near post 
of 3m had angle values that continually 
increased. They were unable to reconcile these 
results with what they expected of the real world 
situation but after about 12 minutes discussion 
amongst themselves sort reassurance from the 
teacher that,  “That can happen, it depends on 
the distance you are from the goal line.” 

6. Testing and Refining the Framework 
We review again the purpose of the research 
described in this paper. For reasons indicated in 
the introductory sections we set out to construct 
a framework from our theoretical model (Figure 
1) to provide an analytic tool for analysing 
modelling processes and associated blockages 
that occur as individuals attempt to solve 
problems with real world connections. In 
particular we are interested in the transitions 
through which solvers must progress in order to 
produce a satisfactory total solution. We began 
by analysing responses to two tasks as attempted 
by students at a middle secondary school level in 
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order to fill in the elements of the structural 
framework containing only the transitions 
derived from Figure 1 that were our focus. This 
resulted in the emergent framework shown in 
Figure 3. In section 5 of this paper we describe 
the next phase of our research, in which two 
further tasks (one a different version of one of 
the above) were undertaken by students of a 
comparable level, at a different school. The 
purpose was to obtain further data to test, and 
where relevant refine or perhaps reject, the 
categories previously identified and illustrated. 
An overall criterion is that to be eligible for 
inclusion in a classification such as Figure 3 an 
activity should not be idiosyncratic to a 
particular case; that is the activity should have a 
generic aspect, which will typically have 
different instantiations in different cases.  
Following the discussion in the preceding 
sections, based on the student responses, we 
make the following observations. 
Within transition 1 (from messy real world 
situation to real world problem statement) the 
four activities are robust. In every case a major 
starting hurdle was the students’ understanding 
of the problem context. Video, computer 
representation, and enactment were variously 
found necessary to clarify the meaning for 
individual students. In each case simplifying 
assumptions (here mainly to do with straight line 
approximations) were explicitly required to give 
structure to the original problem statement. 
Finally the recognition of a property of a key 
entity (minimise this length, maximise this 
angle, maximise the height of a safe drop) was 
necessary to formulate a tractable mathematical 
question. 
Transition 2 (from structured real world problem 
to model) is notorious as one of the most 
challenging parts of the modelling cycle. In 
Figure 3 the entries fall into two groups. 
Activities 2.1 to 2.4 are mathematical 
concerning successfully setting up equations for 
models with an algebraic base. They were 
identified as significant within all the problem 
contexts except this particular implementation of 
The Bungee Experience. (Other kinds of models, 
e.g., statistical, would be expected to add 
parallel structure within this part of the 
classification). Entries 2.5 to 2.9 are technology 
based, and have proved critical to progress 
where messy real world data need to be 
processed especially at this level of schooling. 
The choice of terms such as choosing, and 

perceiving, emphasise the background 
competences that are required. Students need to 
know the capabilities of their technology, for 
example, for calculating and graphing, and of 
differences between such entities as data plots 
and function graphs. Such knowledge is 
essential if students are to develop models to 
handle situations that are beyond the practical 
scope of their hand methods alone.   
Activities central to obtaining solutions from a 
formulated mathematical model are represented 
in transition 3. Activities 3.1 and 3.2 again 
reflect the algebraic contexts of the problems 
used so far in the project, in which they proved 
to be gatekeepers to progress. (As before we 
would expect this suite of skills to be extended 
as the range of model types expands). Activity 
3.8 arose later in solution processes and was 
usually activated by students who felt their 
existing calculations did not provide the amount 
of assurance or consistency they sought. 
Activities 3.3 to 3.7 are the action counterparts 
of the technology decision-making that occurs in 
transition 2; that is, as well as knowing what 
operations a calculator or computer can perform, 
it is necessary to be able to do them. For all 
models involving multiple data, the ability to set 
up and use the LISTs facility of a graphing 
calculator was essential to progress; as was the 
ability to use both spreadsheets and the function 
graphing capacity of a calculator. Inability here 
induced fatal blockages requiring specific 
intervention by teachers or capable peers. 
The interpretive phase of the modelling process 
(transition 4) featured different requirements that 
varied from the very simple to the sophisticated. 
The simplest interpretative requirement is to 
achieve a one to one matching between a 
mathematical outcome and the real world entity 
that corresponds to it (as in a particular distance 
value associated with a corresponding run 
length). Others require greater depth: for 
example distinguishing between the needs of a 
question that can be resolved by means of a 
single calculation, and one that requires the 
comparison of several values that must first be 
computed. Sometimes the process is circular, as 
when an interpretive act is required to support a 
further modelling effort that builds upon it. And 
finally, the depth of interpretation varies from 
unsupported guesses devoid of mathematical 
support, to carefully integrated arguments in 
which mathematical outcomes are the central 
stimulus. In summary we have found this 
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transition to be more complex than one built on 
the idea of interpretation as simply a translation 
between mathematical results and values of real 
world quantities. Correspondingly, the variety of 
demands described, provide a number of traps 
that block progress when unrecognised or 
underestimated. 
The final transition is critical, for it embodies 
decisions that either accepts a modelling 
exercise as satisfying requirements, or rejects the 
model as unsatisfactory and revisits the problem 
solving process. With successful modellers not 
all model evaluation occurs at the end of course. 
Competent modellers constantly review 
mathematical outcomes for believability in terms 
of both expected values from known 
mathematical operations, and in terms of their 
knowledge of the real situation. Both these 
monitoring processes cause adaptive procedures 
to be activated if necessary.  
In general terms evaluation of model output 
generally requires decisions at two levels: 1) 
Locally, do the individual results make separate 
sense in terms of the problem context? 2) 
Globally, does the model succeed in answering 
all the questions posed by the problem 
statement? A blockage at this point would be the 
inability to carry out some or all checking 
procedures, or more generally to accept a 
‘solution’ from an inadequate model, so 
blocking the possibility of a better outcome. 
Constraints on time in the school contexts mean 
that we have not at this point been able to look at 
more than one cycle of the modelling process, so 
evaluation has depended essentially on local 
criteria in the sense described above.   

7.  Applications for the Framework 
We conclude by outlining ways in which we see 
the current work within the wider field of 
applications and mathematical modelling in 
education. Firstly, a direct application derives 
from the way the research has been conducted. 
This is to identify specifically, activities with 
which modellers need to have competence, in 
order to successfully apply mathematics. The 
Framework (a dynamic structure) is our attempt 
to begin to document these. As the elements in 
the framework were identified by observing 
students working (and in particular wrestling 
with blockages to progress), there are two 
immediate potential applications.  
First are the insights obtained into student 

learning, and how these can inform our 
understanding of the ways that students act when 
faced with application problems. Closely allied 
to this, are associated didactical insights. By 
identifying difficulties with generic properties, 
the possibility arises to predict where, in given 
problems, blockages of different types might be 
expected. This understanding will then 
contribute to the planning of teaching, in 
particular the identification of necessary 
prerequisite knowledge and skills, preparation of 
interventions for introduction at key points if 
required, and the scaffolding of significant 
learning episodes. In our work it became very 
clear that aspects of technology use, and the 
modelling process, mutually interfered with each 
other at various times. This occurred, for 
example, when students needed a special tutorial 
on the use of LISTs  (diverting attention from 
the modelling process), and also emerged when 
almost no students were able to verify a model 
by drawing a function graph. Clearly cognitive 
demand is increased when attention must be 
divided between activating the modelling cycle, 
and puzzling about technical aspects of 
technology (or indeed by-hand mathematics). A 
lesson for didactics from our project is the 
importance of ensuring the prior competence of 
students with both the mathematics that will be 
involved in a model, and an understanding of, 
and facility with, technical procedures involved 
in using appropriate technology. These all have 
implications for the design and organisation of 
learning.   
Other potential uses for the framework are in the 
design of modelling tasks, and in assessment. 
Taking account of the activities in the respective 
transitions should enable tasks to be designed so 
that all phases of the modelling cycle are 
adequately represented. It also highlights in an 
implementation when they are not. Regarding 
assessment, a potential means is provided for 
examining modelling reports, to see just what 
characterises them analytically, and how those 
recognised as qualitatively different might be 
compared. Finally of course, the framework 
when refined and stabilised may be useful as an 
instrument in classroom based research. The 
current development and then testing in these 
two settings described in this paper has taken us 
some way to achieving our goal. 
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