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Learning to prove: using structured 
templates for multi-step calculations 
as an introduction to local deduction   

Tony Gardiner, Birmingham (Great Britain)                                   

Abstract: It is generally accepted that proof is central to 
mathematics.  There is less agreement about how proof should 
be introduced at school level.  We propose an approach - based 
on the systematic exploitation of structured calculation - which 
builds the notion of objective mathematical proof into the 
curriculum for all pupils from the earliest years.  To underline 
the urgent need for such a change we analyse the current 
situation in England - including explicit evidence of the extent 
to which current instruction fails even the best students.  
 
Kurzreferat: Es ist allgemein akzeptiert, dass Beweisen ein 
zentrales Thema der Mathematik ist. Weniger klar ist, wie 
dieses Thema im Rahmen des Unterrichts in der Schule 
behandelt werden sollte. In diesem Beitrag wird ein Weg 
vorgeschlagen, der auf der systematischen Nutzung eines 
strukturierten Kalküls basiert. Damit ist die Idee des 
mathematischen Beweises im Unterricht bereits zu einem sehr 
frühen Zeitpunkt in den Unterricht zu integrieren. Um die 
Bedeutung des Themas für den Unterricht zu belegen, wird die 
derzeitige Situation an Schulen in England betrachtet, die als 
wenig hilfreich selbst für manche gute Schülerinnen und 
Schüler angesehen wird.    
 

ZDM-Classifikation: C30, C50, C70, D30, D50, E50, N70 

1 Identifying the problem  
Many national systems include explicit statements about 
the importance of “proof” in school mathematics.  But 
some appear confused about how to reflect the 
acknowledged importance of this topic within the 
curriculum - in what is taught, in what is expected of 
students, and in how material is assessed.   

English 18 year olds have never found it easy to 
construct proofs.  But university mathematicians in the 
UK have in recent years observed a marked change in   
school-leavers who choose to study highly numerate 
disciplines: “Most students entering higher education no 
longer understand that mathematics is a precise discipline 
in which exact, reliable calculation, logical exposition 
and proof play essential roles; yet it is these features 
which make mathematics important” (LMS 1995, p. 8); 
“What is being observed in England is a profound 
change.  There may be those in certain other countries for 
whom such behaviour is all too familiar.  That is no 
reason to dismiss the fact that England is now witnessing 
mathematical behaviour of a kind never previously 
experienced in the top 10-20% of the ability range” 
(Gardiner 1995, p. 343).  The very conception that 
mathematical calculations have to be structured logically 
if they are to be trusted has been largely replaced by a 
blind faith in half-remembered “rules” - often used in a 
form which appears to be made up on the spot (Gardiner 

2003a, 2003b).  The central problem now is not that 
students have difficulty constructing proofs, but rather 
that they have no conception that the essence of 
mathematics lies in exact calculation and proof, what 
constitutes a proof, what distinguishes exact calculation 
from apparently intelligent inference, and why these 
things matter.   

The confused situation in England with regard to proof 
would appear to reflect a wider failure within the 
mathematics education community to understand the 
nature of proof.  Mathematics is an open discipline, with 
a public procedure (of which “proof” is a key 
component), which requires new developments to be 
published in a form that can be scrutinised - and hence 
validated, refined or rejected - by Everyman.  This spirit 
of openness includes an on-going debate about, and a 
permanent re-evaluation of, the procedure itself.  
Unfortunately, this openness is exploited in the chapter 
(Hanna 1996) on “Proof and proving” in the 
International handbook of mathematics education to give 
the impression that the difficulty of developing an 
effective approach to proof within classroom practice 
arises “because there have been and remain differing and 
constantly developing views [within mathematics itself] 
on the nature and role of proof and on the norms to which 
it should adhere” (p. 877).  Nothing could be further from 
the truth.  The challenge of finding an effective way to 
incorporate proof as a key component in school 
mathematics is only obscured by such attempts to shift 
the focus of attention away from the real source of the 
present confusion, which lies squarely within 
mathematics education.  

The confusion within mathematics education is 
exacerbated by blurring the distinction between two very 
different notions - namely “logical correctness” and 
“psychological conviction”.  This has led to thoroughly 
misleading claims, such as “a proof actually becomes 
legitimate and convincing to a mathematician only when 
it leads to real mathematical understanding” (Hanna 
1996).  A proof may well provide a degree of insight and 
understanding.  But the official role of proof in 
mathematics is purely to demonstrate logical correctness.  
While there is scope for exploring how this logical 
function of proof is best incorporated in school 
mathematics, analyses based on a blurring of the 
distinction between objective correctness and subjective 
conviction have contributed nothing but unhelpful 
confusion in the minds of both teachers and students. 

1.1 The background 
The observed change in English students’ 

understanding of proof is difficult to document post hoc.  
Yet it is sufficiently clear to those who work with 
university mathematics students to oblige one to look for 
possible causes - even though such a profound change is 
unlikely to have a single cause.   Thus the attempt in this 
section to identify the origins of our current dilemma is 
likely to be partial and to some extent speculative; and 
any conclusions are inevitably tentative.  We therefore 
beg the reader’s temporary indulgence.   

Once the question of possible causes is raised, there is 
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no escaping from the fact that the reported change 
followed hard on the heels of the spread of dependence 
on calculators in the 1980s and 1990s, and the 
introduction in 1988/9 of the first ever English national 
curriculum and of the unified GCSE system of public 
examinations at age 16.   

The impact of calculators has been profound but 
elusive.  In particular, their influence is not restricted to 
the way they are actually used, but rather lies in the 
attitudes that their style of use engenders; this becomes 
clear only when one encourages students to talk through 
their attempted written “solution procedures” (for 
example, in connection with the three problems discussed 
in section 1.4).  A possible summary of what one 
observes among 18 year old university entrants is that the 
majority have been allowed to depend on the power of 
the calculator from too early a stage, with the result that 
they have been effectively encouraged to think of 
“solving a mathematical problem” in terms of adopting 
an almost random sequence of hopeful attempts aimed 
solely at “getting an answer”.  The fact that calculators 
allow many students to achieve apparent success in this 
manner has consequences for the whole of school 
mathematics.  The most significant consequence is that 
such use of the calculator now routinely confers 
“success” without requiring students to achieve 
conceptual understanding, and so inculcates a belief - in 
students and teachers - that it is sufficient for the learner 
to operate on the crudest imaginable conceptual level: 
this is well illustrated by the student responses to the first 
and second problems in section 1.4.  A more elusive 
consequence would appear to be the loss of any 
imperative for the student to achieve, or for the teacher to 
demand mastery of even the simplest universal 
procedures: this is well illustrated in the third example in 
section 1.4 and in (Gardiner 2003a, 2003b).   

The process of introducing a national curriculum in 
mathematics has been a messy one: the original structure 
has been revised several times, and remains contentious.  
But throughout the many emergency changes, the 
philosophy on which the curriculum and its assessment 
(including the GCSE examination system) have been 
based has been frequently justified in terms of what was 
advocated in the Cockcroft report (HMSO 1982) - or 
more often what that report was deemed to have 
advocated.  Two of the report’s oft-repeated demands 
were: (i) to provide a single curriculum “ladder” up 
which all pupils climb - but at different rates; and (ii) to 
respect the needs of “the bottom 50%” by designing the 
initial steps on this ladder, and the associated assessment, 
“from the bottom up”.   

The Cockcroft report included no summary list of 
recommendations on the explicit grounds that “the 
teaching of mathematics must be approached as a whole” 
(HMSO 1982, para 809).  While one may agree with the 
reason given, the lack of an “Executive summary” made 
it too easy for the report to include proposals in different 
places which were in conflict with each other.  Points (i) 
and (ii) above are therefore this author’s attempt to 
summarise what came to be important principles in the 
ensuing years, and to capture as fairly as possible the 

report’s remarks concerning the “Foundation list” of 
topics to be covered by all pupils (Chapter 9), and the 
structure of a possible single examination system 
(Chapter 10).   

The requirements (i) and (ii) above may help to explain 
two distinctive features of the resulting English 
curriculum with regard to “proof” - the first of which is 
an apparent nervousness about embedding “proof” 
clearly within ordinary instruction.  Pythagoras’ theorem, 
for example, is deliberately listed so as to exclude any 
reference to its proof: “understand, recall and use 
Pythagoras’ theorem” (NC 2000).  Recent revisions have 
introduced some more encouraging requirements (“they 
begin to use deduction to manipulate algebraic 
expressions”; “as they encounter simple algebraic and 
geometric proofs they begin to understand reasoned 
arguments” (NC 2000)).  But it remains unclear how 
these “understandings” are expected to grow in the 
subjective mental soil which is all that is often available - 
thanks largely to the second distinctive feature of the 
curriculum discussed in the immediately following 
paragraphs.  Pupils who are not expected to master 
proofs of standard results, and who are trained to trust 
their own  “convincing arguments” up to age 15, lack the 
necessary frames of reference with respect to which they 
might later distinguish between subjective and objective 
reasoning - a distinction which is crucial if they are ever 
to appreciate the essential character of mathematical 
proof. 

The second striking feature is that the curriculum 
appears to have been based on the mistaken idea that 
objective reasoning in elementary mathematics is the 
same as formal reasoning (based on an axiomatic  
foundation, together with some attention to logic) - which 
was felt to be suitable only for a small minority of older 
students.  It was therefore decided to re-interpret the idea 
of “proof” for younger pupils (up to age 14/15 say) by 
cultivating pupils’ own subjective “reasoning” and 
“pattern-spotting” (that is, inference from limited 
empirical evidence).  The wording of the latest official 
version of the national curriculum is less subjective than 
it was (NC 2000); but the confused tradition of classroom 
and assessment practice is still evident in the wording of 
much supporting guidance.  For example:  
• Age 8/9: “Pupils show that they understand a general 

statement by finding particular examples that match it”. 
• Age 10/11: “They search for a solution by trying out 

ideas of their own”. 
• Age 12/13: “They draw simple conclusions of their 

own and give an explanation of their reasoning”. 
• Age 14/15: “Pupils are beginning to give 

mathematical justifications”.  
In English colloquial speech references to “my 

reasoning” are almost always inductive rather than 
deductive, highlighting some presumed inference, and 
bestowing colloquial explanatory power on a personal 
hunch.  The national curriculum and its associated 
documentation consistently uses words such as 
“reasoning” and “argument”, but with a sleight of hand 
which changes their meaning at will from subjective (for 
most pupils at all ages) to objective (for a minority of 



ZDM 2004 Vol. 36 (2) Analyses
 

 69 

pupils, in a very limited number of settings, at a much 
later age).  However, there is now increasing recognition 
that something is wrong with the presumption that 
objective mathematical proof might somehow evolve 
naturally, by miraculous transmutation, from its apparent 
opposite: “It is commonplace in mathematics [education] 
to present proving in a hierarchy of levels in which the 
empirical precedes the deductive.  This paper questions 
the assumption that this is a matter of development from 
the former to the latter ” (Hoyles 1998). 

The reluctance to embrace a formal approach to school 
mathematics is understandable.  But this reluctance was 
somehow transferred from concerns about formal proof 
to the whole notion of objective proof.  This was a 
mistake, since the objective character of elementary 
mathematics can (and should) be made accessible to all 
pupils, without ever adopting an inappropriately formal 
structure.   

Mathematicians were themselves partly responsible for 
this confusion, in that in the 1970s they fell into opposing 
factions: some sought to re-interpret school mathematics 
along axiomatic lines (according to some modern parody 
of Hilbert), while others continued to insist on the 
primacy of intuition and meaning (in the spirit of 
Poincare and Thom). 

Perhaps the leading recent member of the second group 
was the late Hans Freudenthal.  His inspirational writings 
in mathematics education devoted surprisingly little 
space to an explicit analysis of the role of proof.  In his 
monumental 680 page book (Freudenthal 1973) the issue 
was addressed in the most enigmatic, and the shortest, 
chapter - just 8 pages long.  And in his more detailed 
(Freudenthal 1983) the subject of proof remained entirely 
implicit.   

Freudenthal and his followers were reacting to what 
they saw as the misguided formalism of the defenders of 
the “new math”.  They therefore focused their efforts on 
repudiating what they judged to be a false philosophy, 
and on inventing a convincing alternative to the pseudo-
axiomatic approach which dominated the new math era.  
Freudenthal took it for granted that his readers 
understood the objective character of mathematical 
knowledge, and the responsibility of the mathematics 
teacher to lead students - through engaging with the 
world of their experience - to an understanding of the 
higher mathematical realm: “Above all other mental 
exercises, mathematics has the advantage that with each 
statement you can decide whether it is right or wrong” 
(Freudenthal 1973, p. 147).  Learning how to “decide” 
was assumed to be an integral part of the overall 
programme: “… people have protested to me: 
‘Eventually the pupils will have to learn the clear and 
rigorous difference between mathematics and the real 
world’.  I answered: ‘You are right if you aim at teaching 
mathematical rigour, and wrong if you are defending 
teaching unrelated mathematics’ ” (Freudenthal 1973, p. 
152).  What he and his followers rejected was the idea 
that this transformation could be magically achieved by 
foisting on students a fake axiomatic approach: “You are 
… wrong if you advocate teaching ready-made 
axiomatics” (Freudenthal 1973, p. 152).   

The idea that beginners should be spared the objective 
character of elementary mathematics is not the only error.  
There is also something seriously wrong with the notion 
that cultivating beginners’ own subjective “reasoning” 
leads on naturally to the notion of objective proof.  Good 
mathematics teaching draws on students’ own reasoning 
to encourage discussion and reflection; but it does so in 
order to challenge and to refine that reasoning, to provide 
an objective alternative, and to show all students that 
their own “reasoning” is only useful insofar as it 
transcends the merely subjective, and learns to respect 
the criteria for objective proof.  

This reluctance to incorporate objective mathematical 
proof in some suitable form from the earliest years 
mistakenly assumes that “the bottom 50%” can master 
the mathematics they require without ever needing to 
think abstractly, and that they can thus be spared the 
luxury of proof.  The Cockcroftian assumption that 
everyone should follow the same initial path then implies 
that there can be no place for objective proof until the 
majority of pupils have been left behind - after the age of 
14 or so.  

The educational instincts of the post-1968 generation 
were naturally child-centered.  Piaget and others 
emphasised the importance of the child’s experience and 
development of language, and underlined the need 
always to start from what the child knows.  Much of this 
is now accepted as a truism.  But the associated theories 
concerning “natural stages of development” encouraged 
an inflated ‘romantic’ respect for the child’s primitive 
“knowledge”; and this in turn tended to undermine the  
‘classic’ assumption that teachers should lead all students 
to the promised land of “official mathematics”.  “Many 
issues which divide English mathematics teachers into 
opposing camps seem to arise from our inability 
simultaneously to keep hold of two complementary ideas 
in creative tension.  For example, we appear unable to 
grasp the crucial link between the first (‘romantic’) part, 
and the second (ultimately more important ‘classic’) part 
of the principle that mathematics teaching should start 
out from where pupils are at, but that this has to be done 
with the clear objective of exploiting such ‘child-centred’ 
beginnings in order to achieve important ‘content-
oriented’ goals, such as establishing a conceptual 
platform which is sufficiently strong to ensure that all 
pupils progress to master proven and important standard 
methods” (Gardiner 1998, pp. 359-360).   

As more children stayed on at school, it became clear 
that the path from the average young child’s intuitive 
understanding of the concrete world to mastery of the 
abstract realm of artificial mathematics was far from 
smooth.  A re-evaluation of didactical approaches to key 
topics, of textbooks and examination structures, and even 
of the accepted goals for school mathematics was clearly 
in order.  Unfortunately education became politicised,  its 
official ethos changed from “society’s cultural duty” to 
“delivering pupils’ rights”, and the focus shifted away 
from what should be taught and onto the pupil as 
consumer.  All of which may help to explain the apparent 
ease with which some countries came to question 
whether abstract mathematics was still appropriate for 
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most pupils, and to attribute inflated status to the child’s 
subjective judgement.   

Traditional school mathematics sought to challenge 
pupils’ subjective “reasoning”, and to supplement it by 
providing a discipline of standard routines from 
arithmetic, measures, algebra and geometry.  Despite the 
drawbacks, this repertoire of procedures gave many 
students an (admittedly passive and authoritarian) 
understanding of the objective character of mathematics, 
and dramatically extended the range of their effective 
action.  In contrast, the approach recently adopted in 
England has had the effect of misleading even the better 
students into imagining that they are free to adapt the 
procedures of elementary mathematics as they choose, 
and that it is more important that they “reason” with 
confidence than that they reason correctly (see (Gardiner 
2003a, 2003b) and the three illustrative examples in 
section 1.4).  

1.2 The dilemma 
“Proof” still had to be accommodated somehow, if only 

because it seemed to be important to mathematicians!  
However, once the objective character of elementary 
mathematics had been misconstrued as being identical 
with a formal axiomatic treatment, one faced a dilemma - 
since the idea of a formal axiomatic treatment was out of 
the question.   

Precisely why the dilemma was “resolved” in the way 
it was remains unclear.  It may be that the Cockcroftian 
principles (i) and (ii) (section 1.1) encouraged the 
optimistic fusing of the colloquial and the mathematical 
uses of the word “reasoning”, in the hope that more 
pupils might make more progress if all were encouraged 
initially to develop “their own (subjective) reasoning”.  
Unfortunately, the mental set of many current 18 year old 
undergraduates suggests that there are serious dangers in 
effectively encouraging early “subjective reasoning” in 
the absence of an objective yardstick.  The kind of 
“reasonings” that are thereby reinforced are often 
worryingly subjective - even anti-mathematical.  By 
concentrating initially on students’ own subjective 
reasoning in the absence of the discipline of objective 
mathematical proof (in some form), students have been 
abandoned to their own unstructured idiosyncratic 
methods, and have learned to “get by” as best they can 
with no logical support.  When faced with the simplest 
problems, our best students may manage to structure their 
own methods; but those outside this tiny elite are 
condemned to insecurity even in such trivial instances as 
the Two cyclists (section 1.4).  And all students are likely 
to come unstuck when the going gets slightly tougher 
(see Tom, Dick and Harry and Simultaneous equations in 
section 1.4).   

The results among 18 year old school leavers are 
scarcely surprising; but they are the precise opposite of 
what was promised.  First year university students, 
including those majoring in mathematics, increasingly 
need remedial support; but, in the absence of any 
common understanding of the objective logical character 
of mathematics, it is often difficult for those providing 
that support to explain what is wrong with students’ 

private methods, and hence to help them make progress. 

1.3 Towards a possible alternative 
The issues discussed in sections 1.1 and 1.2 raise the 

obvious question of what alternative approach might be 
more effective.   The remainder of section 1 looks more 
closely at the uncomfortable reality of the current 
situation in England.  But in section 2 we outline a 
possible alternative, whose aim is to develop the logical 
capacity of all young children, while remaining faithful - 
in a simple way - to the spirit of mathematics from the 
earliest years.   

We propose that, from the very beginning of schooling, 
each major new method or technique should be 
developed flexibly and orally, with an appropriate 
measure of practical or exploratory work; but that the 
final synthesis of each method should be routinely 
summarised in the form of a short standard written 
protocol.  These standard protocols should be designed so 
that any application of the method can, if needed, be 
presented in a standard form as a sequence of statements, 
with one statement per line, starting from what is given 
and ending with what is sought, and such that each line 
follows naturally and unpedantically from the line before, 
or from basic facts which are presumed “known”.  

The approach should be neither axiomatic nor formal.  
It is rather an attempt to provide students with a sequence 
of structured formats which make possible the “local 
organization” of solutions to individual problems relative 
to some restricted body of accepted facts (Freudenthal 
1973, p. 150-151). The underlying pedagogy, and the 
way each topic is introduced, may remain child-centred; 
but if  ordinary students are to make genuine progress in 
mathematics, almost all need standard templates of this 
kind to provide a framework (a) within which their 
solutions can be presented and checked, (b) by means of 
which they can be expected to organise a sequence of 
steps in a way that makes plain to the reader the validity 
of the final conclusion, and (c) through which their 
understanding of proof, and their acceptance of 
responsibility for identifying and correcting errors can 
mature.  The final protocols would serve as a standard 
format, or common language, for presenting solutions of 
a particular kind, in much the same way that shared use 
of correct mathematical terminology sharpens classroom 
communication.  They would also constitute a continuous 
thread of simple examples of objective proof, which 
slowly but surely convey the essential objective character 
of the subject.  (If videotapes of typical lessons can be 
trusted, such protocols may well be standard didactical 
practice in many non-English speaking countries.) 

Many of these examples would traditionally be classed 
as mere “calculations”, rather than proofs, but their 
logical structure is identical to that of “proofs” in the 
narrower sense.  And it is only by admitting such simple 
examples to the Pantheon of proof that one can aspire to 
a curriculum, which provides pupils with simple models 
to serve as objective yardsticks in the struggle to 
transform their own subjective reasoning into something 
genuinely mathematical. 

The development of such templates needs to recognise 
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the tendency for such frameworks to become an end in 
themselves, rather than a means to the higher ends of 
validating correctness and helping students to reflect on 
the nature of objective proof.  This tendency for 
templates to degenerate led certain wise observers and 
practitioners to applaud the call (NCTM 1989) for 
reduced attention to the two-column proof.  However, 
some soon “began hearing people in education claim that 
proof was an obsolete topic for school geometry … . 
More than a few teachers were saying, ‘We don’t do 
proofs anymore’.  Proof had already been eliminated 
from the low tracks of geometry; it was now about to 
disappear at every level” (Cuoco 2003, p. 783).  Yet if it 
is true, as we contend, both that students need templates 
for thought, and that templates have a tendency to 
degenerate, then the response cannot be to deprive 
students of these frameworks for thinking.  Rather we 
must choose the standard protocols with care, and 
recognise the need to develop a professionalism among 
mathematics teachers which continually reviews and 
refreshes the didactical basis for whatever templates we 
may use. 

Our proposal accommodates two very different aspects 
of proof in elementary mathematics: one is profound, the 
other is mundane - but both are important.   

The first aspect is logical and methodological - namely 
the fact that proof (whatever form it takes) provides 
mathematics with a procedure which transcends the 
merely subjective, and which therefore makes it possible 
to aspire to objective truth.  This procedure does not 
claim to eliminate error; but it combines a formal style 
and layout designed to make errors transparent, so 
making it relatively easy for students to take 
responsibility for identifying and correcting their own 
errors, in a spirit of openness which invites further public 
scrutiny.   

The second, more mundane, aspect is the particular 
outward form by means of which we seek to implement 
this underlying goal: that is, the particular protocol, or 
form of “book keeping”, which we adopt in order to 
make the whole process transparent, and through which 
students  demonstrate their acceptance of the fact that 
responsibility for any errors rests with them. 

Attempts to achieve a more profound goal are often 
frustrated by the lack of a suitable mundane frame of 
reference.  Learning one’s tables is scarcely a higher-
order skill; yet without it, many interesting problems 
remain out of reach; and mundane hand-eye coordination 
of pencil, ruler and compasses plays an essential role in 
mediating the logical exactness of ruler and compass 
constructions to the mind.  In the same spirit, when 
seeking to devise a long term strategy for teaching proof, 
it is crucial not only to adopt a broader than usual 
interpretation of objective proof within the context of 
elementary mathematics, but also to devise suitable 
mundane “templates” to provide the unconscious frame 
for students’ thinking, within which the higher goal of 
objective proof might be explored and mastered.  
Identifying and simplifying such templates will require 
an intense programme of design, experimentation, review 
and refinement.     

1.4 Elementary examples 
The three examples in this section indicate the extent of 

the need for change in England, by revealing the actual 
level of performance of some of our most successful high 
school graduates - students whose mathematical 
“success” at school level was achieved the help of 
restrictive templates to discipline their thinking and their 
calculation. 

It is increasingly recognised that, while one would like 
all students to think carefully about every problem and to 
use what they know to respond appropriately, this is only 
possible for most students if we ensure that they first  
achieve mastery of the relevant techniques, leaving them 
free to focus on the particular problem in hand (Barnard 
1999, 2002).  Similarly, if we want students to present 
their solutions in a logical form and to check their 
correctness, they first need some robust standard 
framework within which to work.  Our proposed 
approach rejects the notion that mathematical proof can 
be quietly sidelined into some corner of the curriculum 
intended for a small minority of enthusiasts.  Children’s 
earliest experiences of school mathematics - through 
counting, place value and calculations with positive 
integers - make clear the exact nature of the subject.  
These experiences of exactness and precision need to be 
used to give all children a lasting insight into the essential 
character of mathematics. Applications of elementary 
mathematics (to measures and practical problems) may 
introduce the ever-present reality of approximation; but 
this should not undermine the central message of the 
objective character of calculation and of exact reasoning 
within mathematics.   

Thus our eventual goal is to indicate how the notion of 
objective proof might be embedded as a continuous 
thread within a curriculum for all, by re-interpreting the 
traditional idea of proof so that it informs and inspires 
ordinary school mathematics from the very beginning.  
The initial encounter with each new topic or theme may 
still emerge from personal experience; but it would then 
be routinely transformed - through shared analysis - into 
an objective synthesis which transcends any initial 
subjectivity.  Thus the didactical approach to each 
standard topic or technique (in counting, measures, 
calculation in arithmetic or algebra, geometry, etc.) 
should be such as to build towards this final synthesis.  
And part of such a synthesis will often be the formulation 
of a mundane standard format, or template, for presenting 
all calculations of a particular kind (see section 2).   

The function of such a template is two-fold.  First, it 
provides a standard format within which each student’s  
polished solutions are to be presented - not as part of 
some religious ritual, but in order to lay out clearly the 
sequence of steps used, so allowing ordinary students to 
identify and correct their own errors.  Second, it provides 
a framework which can help students to think more 
clearly about what is needed when they are confronted by 
harder problems, and so extends their reach and power 
beyond what might otherwise be possible. 

The three examples below are truly shocking.  But they 
are part of a general trend which shows what can go 
wrong when one places undue reliance on subjective 



ZDM 2004 Vol. 36 (2) Analyses
 

 72  

“reasoning” (see also (Gardiner 2003a, 2003b)).  
The three problems were given to the 76 first year 

students (aged 18+) who were present at the final lecture 
of a first semester university mathematics course.  These 
students had all achieved apparently good grades (A or 
B) in the school-leaving mathematics examination taken 
by less than 10% of the cohort, and who were majoring 
in mathematics at a leading English university.  Students 
were given 22 minutes to solve the three problems.  
(Most students probably had calculators available in their 
bags, and their use was not explicitly forbidden.  
However, the instruction to present clear reasoning, and 
to cross out errors while leaving them legible, seems to 
have had the effect that relatively few students used a 
calculator.)   

The first problem illustrates the underlying issue.  
 
The two cyclists. Two cyclists cycle towards each other 
along a road. At 8am they are 42km apart.  They meet 
at 11am. One cyclist pedals at 7.5km/h. What is the 
speed of the other cyclist? 
 
This is a problem in elementary arithmetic, which is 

entirely appropriate for moderately able pupils aged 10-
12.  Its solution should have taken no more than one  
minute; but most students appeared to take five minutes 
or more. The task of extracting and combining simple 
information efficiently and reliably proved surprisingly 
challenging.  Of the 76 students present, 26 (34%) failed 
to reach the answer 6.5km/h, and several more made 
serious errors before a second - ultimately successful - 
attempt.  (Five of those deemed to have failed realised the 
need to calculate 19.5 ÷ 3; however, since three of these 
students evaluated this incorrectly, the two attempts 
which left the answer in this form were deemed 
incomplete.)   

One possible inference is that what we often excuse as 
"mistakes" may not be mistakes at all, but are rather a 
routine and predictable result of what happens when 
students reach their (very low) threshold for “information 
overload”.  Many of these students would appear to have 
rarely been required to take full responsibility for 
tackling the simplest multi-step problems.  If this is 
indeed the case, then one can be fairly sure that such 
errors will occur whenever these students have to 
coordinate two or more facts or methods - no matter how 
simple these facts or methods may be.   

The successful solvers all utilised the obvious method. 
But they had to devise this for themselves, inventing their 
own layout and style of presentation!  While 50 students 
were successful, 26 were not: the lack of any standard 
format for presenting solutions to such problems can only 
have increased the level of demand - both for those who 
failed and for many of those who succeeded - in what 
should have been a completely trivial problem. 

While all three problems illustrate the worrying level of 
achievement currently attained, their main purpose here 
is to indicate the need for a more structured approach to 
calculation - designed to help students present steps 
within an agreed standard framework - as part of a long 
term strategy for teaching the nature of local deduction. 

The second example deals with “rates”, and is of a kind 
which is important in mathematics and in science.  Such 
problems used to be standard, but have been completely 
neglected in recent years.  Nevertheless the problem is 
still entirely appropriate for able students aged 15-17, 
who one would expect to respond intelligently, even if 
they ultimately fail to obtain a complete solution.  The 
third example is an unfamiliar, but perfectly accessible, 
pair of simultaneous equations, which students majoring 
in mathematics should again be able to handle sensibly, 
even if a complete solution eludes them. 

 
Tom, Dick and Harry. Tom and Dick take 2 hours to 
complete a job. Dick and Harry take 3 hours to finish 
the same job. Harry and Tom take 4 hours to finish the 
job. How long would all three take working together? 
 
Simultaneous equations. Solve the simultaneous 

equations: 
                                      x2 -  y2 = -5 
                            2x2 + xy -  y2 =  5. 
 
Not one of the 76 students solved the second problem 

and just three students solved the third problem.  
However, the scripts themselves are more instructive than 
this crude summary of successes and failures.  What is 
most revealing is the remarkable uniformity of the crass  
error in Tom, Dick and Harry (which emphasises the 
need for standard templates as an aid to student thinking), 
and the bewildering variety of almost random approaches 
which students adopted “on the hoof” in Simultaneous 
equations, with each student creating a unique 
concoction of errors, and a uniquely personal wrong 
answer.  

In Tom, Dick and Harry, ten students wrote nothing 
more than some abbreviated version of the given data; 
four students produced moderately intelligent estimates 
(such as 4/3 hours), though without admitting that they 
were guessing.  Of the remaining 62 students, 58 wrote 
the equations:  T+D=2,   D+H=3,   H+T=4, and 
proceeded to try to solve them, while four students wrote 
some unexplained variation on this theme (one of which 
looked interesting, but remained incomplete).  Not one of 
these students ever fully realised the meaninglessness of 
what they had written: some efforts petered out; others 
made simple arithmetical or algebraic mistakes. 30 
students ground their way to the conclusion "combined 
time = 4.5 hours"; but only eight of these remarked: "This 
must be wrong"; and not one felt any apparent obligation 
to identify their error, or to do anything about it. 

In the third problem just three students derived the two 
answers more-or-less correctly (e.g. omitting only to 
justify division by x+y or by x-y at some point).  One 
student simply wrote down the two solutions without any 
explanation - presumably spotted by trial and error.  
Three students obtained the “answer” x=±2, y=±3 
without realising the need to pair each value of x with a 
single value of y (the two possible values of x having 
been simply substituted into the first of the given 
equations to obtain  y2=9).  Five students obtained x=2, 
y=3 only (some by ignoring the negative root of x2=4, but 
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some via other algebraic errors and guesses).  One 
student obtained the single answer x=-2, y=-3 (by making 
the remarkable step  y2 + xy - 15 = (y+3)(y-5)  to infer the 
solution y=-3).  Three other students got as far as 
showing that 2y = 3x, with the usual algebraic oversight 
of dividing by x±y without justification.  The remaining 
60 students made a bewildering variety of algebraic 
errors of varying degrees of crassness. 

The student scripts for these three problems reinforce 
the impression gained from (Gardiner 2003a, 2003b): our 
fear of teaching and practising mathematics within a 
thoughtful framework of interconnected rules and 
standard templates would seem to guarantee that only a 
tiny handful of students emerge at age 18 with any 
understanding or mastery of elementary mathematics.  
Though there are clear pedagogical dangers in using such 
rules and templates blindly and inflexibly, the danger of 
abandoning (even fairly able) students to operate without 
such a supporting framework seems to be far greater.    

This interim conclusion has one consequence which is 
directly relevant to the issue raised in the next section.  If, 
on the one hand effective mass education in mathematics 
requires a supporting framework of rules and standard 
templates, while on the other hand rules and templates 
have a tendency to degenerate, then school mathematics 
should concentrate on mathematical topics (a) which are 
recognised as being of central importance, and (b) which 
are sufficiently rich in connections and problems to make 
it possible to counteract any tendency to degeneration. 
The second of these conditions is especially important 
whenever the material is to be assessed through formal 
written examinations.  (It may be that, at school level, 
certain traditional domains - such as arithmetic, 
measures, percentages, fractions and ratio, euclidean 
geometry, algebra, analytic geometry, trigonometry and 
calculus - can be taught and assessed in ways that satisfy 
these requirements, while more recent topics - such as 
sets, transformation geometry and data-handling - 
cannot.) 

1.5 The case of discrete mathematics  
For the last 10 years or so, discrete mathematics has 

been available in England as an alternative to mechanics 
and statistics for the 10% of students who continue 
studying mathematics at age 16-18.  The resulting 
experience suggests that discrete mathematics may be an 
example of a domain which, at the high school level, fails 
the second requirement (b) in the previous paragraph. 

The most basic theme within discrete mathematics is 
that of counting.  But though the associated sum and 
product rules for counting can be understood in the 
simplest cases, their use in harder examples requires a 
flexibility of thinking which makes intellectual demands 
that stump many students.  Problems involving 
“permutations and combinations” soon separate a class 
into the few who can, and the many who cannot, see how 
to begin.  And it is not easy to move beyond the common 
sense version of the inclusion-exclusion rule (filling in 
numbers on a Venn diagram) to more mathematical 
applications. This may explain why the natural theme 
“counting” does not really feature in discrete 

mathematics syllabuses (binomial coefficients are defined 
as part of algebra at this level, but they are not used for 
counting). 

In the 1980s numerous reports advocated discrete 
mathematics as being more appropriate than calculus for 
many college students.  Since then the claims for discrete 
mathematics have been extended to high school level 
(NCTM 1989, 1991), though without indicating which 
topics “of lesser importance” should be discarded.   

We focus here on two claims made on behalf of 
discrete mathematics, which are relevant to our 
consideration of “proof”: “Discrete mathematics fosters 
critical thinking and mathematical reasoning” (NCTM 
1991, p. vii); and “In grades 9-12, the mathematics 
curriculum should include topics from discrete 
mathematics so that all students can … develop and 
analyze algorithms” (NCTM 1989, p. 176).  In reality, 
there seems to be a marked temptation to skirt round 
matters of proof and analysis in discrete mathematics - 
even at undergraduate level.  At age 16-18 the temptation 
is all but irresistible.  Thus the English experience of the 
last 10 years suggests the precise opposite of the two 
bold claims above.  

The example of “counting” illustrates two reasons why 
discrete mathematics is inappropriate for most beginners.  
Problems in discrete mathematics tend to be either 
mindlessly routine or impossible!  Non-trivial looking 
problems are mostly too hard; so they can be included 
only by restricting attention to a tiny number of artificial 
stereotypes, for which students are taught to apply rules 
blindly, without any real expectation of understanding.  

For example, the first serious chapter in (Hebborn 
2000) - the official textbook for the most popular discrete 
mathematics syllabus - introduces “modelling with 
graphs”. The second serious chapter then introduces a 
sequence of “algorithms on graphs”, beginning with 
Kruskal’s algorithm for a minimum spanning tree: 
“Step 1 Sort the edges in ascending order of weight. 

Step 2 Select the edge of least weight. 
Step 3 Select from edges not previously selected the 
edge of least weight that does not form a cycle together 
with the edges already included. 
Step 4 Repeat step 3 until selected edges form a 
spanning tree” (p. 52). 
No attempt is made here - or anywhere else in the text - 

to encourage the student (or the teacher) to consider the 
question as to why this should always produce a 
minimum spanning tree.  Hence the impression conveyed 
is that a “greedy” algorithm is automatically globally 
optimal.   

The very next section presents Prim’s algorithm for a 
minimum spanning tree.  Again no proof is offered.  The 
algorithm is interestingly different from the Kruskal 
algorithm, and may produce a different output.  Yet the 
comparison of the two algorithms is restricted to a single 
comment, concerning the need in Kruskal’s algorithm to 
sort the edges in ascending order by weight, and the need 
to check whether a new edge creates a circuit.  However, 
since all the examples students ever meet are small, they 
are unlikely to appreciate the significance of this remark.   

This overt neglect of “critical thinking” and of 
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“mathematical reasoning” permeates the whole text - and 
presumably the way the material for this popular syllabus 
is taught and assessed.  The first edition of the text 
(Hebborn 1997) had included outline proofs; but perhaps 
because there was no easy way to test the proofs in the 
final exam, students and teachers tended to ignore them, 
and the text has since been streamlined. This “functional” 
approach ignores the fact that proofs in mathematics - 
and especially in discrete mathematics - are often 
essential for alerting the learner (and the teacher and 
textbook author!) to hidden subtleties. For example, both 
editions fail to note that Kruskal and Prim apply only to 
connected graphs, so the first step should be to check 
whether the graph is connected (if the graph is small and 
is represented graphically - rather than being specified by 
a matrix - this move may seem redundant; but under such 
conditions, the algorithms themselves are unnecessary). 
Such oversights are typical - reducing the mathematics to 
a set of half-comprehended rules.  For example, in 
(Hebborn 2000) the given “algorithm” to test for the non-
planarity of a graph (p. 72) begins blithely “Step 1: 
Identify a Hamiltonian cycle in the graph”!  In discussing 
Eulerian graphs, an outline indicating the necessity of the 
standard condition is presented, and the impression is 
then given that the condition has been proved to be 
sufficient (p. 89).  And when discussing the algorithm for 
finding a maximum matching, the words maximal and 
maximum are used interchangeably (e.g. p. 207-208), 
ignoring the crucial distinction - for beginners as well as 
for mathematics - between a maximum matching (with 
the maximum possible number of edges) and a maximal 
matching (one which cannot be extended).   

If a mathematical technique is to be understood, and 
used intelligently, then it should ideally be mastered 
together with some suitable version of its proof.  The 
main problem with discrete mathematics is that, if stu-
dents are to have any chance of understanding such a 
proof, they must feel completely at home with the under-
lying universe of mathematical objects.  And, though the 
universe of “all finite graphs” is elementary in the sense 
that it is “discrete”, it is considerably more elusive than 
the universe of familiar numbers. 

Thus the student is reduced to implementing 
uncomprehended algorithms, in unrelated and stereo-
typed problem situations, like some very slow and unreli-
able computer.  Discrete mathematics could easily give 
rise to a supporting framework of “standard templates”; 
but at this level it lacks the necessary richness of problem 
material, and the logical connections between topics are 
perhaps too subtle. Hence it neither manages to cultivate 
flexibility and mathematical reasoning, nor to avoid 
degeneration. 

As a result the assessment, and hence the teaching, of 
this material has degenerated.  Many students (and their 
teachers) “like” the discrete mathematics options, 
because the material is felt to be “different”, and because 
the assessment items are so predictable that an 
industrious student can score high marks.  But in the 
hands of most teachers there is little chance of any 
“critical thinking”.   

Such degeneration is in no way restricted to discrete 

mathematics. There is a widespread reluctance in 
mathematics education to recognise, when revising 
curricula, that the impact of assessment procedures on 
day-to-day classroom practice is a key factor in the 
ultimate success or failure of reform.  It is disingenuous 
(and, given increasing public interest in “accountability”, 
probably futile) to argue for the abolition of formal 
written assessment, or for it to be incorporated within 
instruction.  So we need an approach to core content and 
its assessment which encourages quality teaching and 
learning of mathematics. 

One of the advantages of developing suitable standard 
templates for key topics from sufficiently rich problem 
domains within school mathematics is that they provide 
an obvious way of ensuring that “proof” is routinely 
assessed - and hence routinely taught. 

2. From calculation to proof: recognising calculation  
as “proto-proof” 

We take a (proto-)proof to consist of: 
• any sequence of statements, each of which is clearly 

formulated and clearly laid out, and is either self-evident 
from standard known facts or from the structure of the 
argument presented, or is clearly justified in terms of 
previous steps, or known results; 
• with the first statement being known to be true (or 

being a clearly identified hypothesis which will be 
disproved), and the last statement being that which was 
wanted. 

    This broader-than-usual conception of proof is taken 
from Gardiner (1999b), and is echoed by Barnard (2002): 
“We shall take the term ‘mathematical proof’ to mean a 
hierarchy of links between givens and a concluding 
statement, where a ‘given’ is something that is assumed 
(explicitly or implicitly) without relating it to anything 
more primitive. A basic ingredient in the building of such 
links is the manipulation of mathematical statements” (p. 
121). The formulation is aimed at mathematics educators, 
and is not intended (at least not initially) for students. It 
applies to, but extends far beyond, those areas 
traditionally associated with proof (such as euclidean 
geometry); for it has been worded so as to apply to any 
mathematical argument or calculation involving at least 
two steps.  As preliminary examples we offer:  

 
Example 1: Evaluate 13 + 26 + 37 + 44 as efficiently as 
possible. 

13 + 26 + 37 + 44  = (13 + 37) + (26 + 44)  
=       50      +      70  
=   120. 

 
Example 2: I buy 7 apples and get 16p change from £1.   
What does each apple cost? 
Suppose each apple costs x pence. 

∴ 7x + 16 = 100 
∴ 7x = 84 
∴ x  = 12. 

 
Example 3: Multiply out  (a-b+c)(a+b-c) as efficiently  
as possible. 
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(a-b+c)(a+b-c)  =  [a - (b-c)][a + (b-c)] 
∴  (a-b+c)(a+b-c)  =  a2 - (b-c)2 
∴  (a-b+c)(a+b-c)  =  a2 - b2 - c2 + 2bc. 

 
In the context of “learning to prove”, these examples 

need to be embedded in a classroom setting where the 
standard template (or some alternative) which underpins 
each example has already been made available as a 
natural frame of reference.  In particular, each standard 
format needs to be developed, practised and internalised 
by writing out solutions to lots of simple problems, 
before it can be used to extend the range of problems 
which can be solved successfully by all students.   

Such problems could of course be tackled and solved 
by individual pupils using “their own reasonings”. One 
may even hope that most such approaches would arrive at 
the “right answer”.  But some would inevitably be flawed 
in some way, and many would lack clarity.  Requiring 
students from time to time to present their solutions in the   
agreed line-by-line format of a standard protocol would 
help to make the inner logical structure explicit. 

The proposed approach is scarcely sophisticated.  Yet 
honesty compels one to concede how much work would 
be needed to implement such an approach on a wide 
scale.  Proof is a way of organising calculations within a 
given framework - whether with numbers, with symbols, 
with geometrical entities or with logical propositions.  
There is no escape from the fact that this presupposes two 
things.  First, a social discipline which allows the teacher 
to insist on a measure of conformity in adopting and 
using mundane frames of reference and deductive 
principles, which are common rather than idiosyncratic, 
and which are perceived not as shackles, but rather as the 
soil within which creativity can flourish.  Second, a 
three-fold appreciation on the part of the student that 
mathematics is exact; that if one looks at things in the 
right way, one can expect answers to be comprehensible - 
and frequently simpler than expected; and that proof, or 
exact calculation, offers the only reliable way of 
harvesting this simplicity.  

To echo what we wrote earlier, the problem - at least 
with English 18 year olds entering university to study 
numerate subjects - would seem to be not that students 
have some incidental difficulty in adhering to and 
implementing such common procedures, but rather that 
they have no clear conception of the deductive character 
of calculation, and so do not see the need for working 
within a standard framework which might allow them to 
take responsibility for and to evaluate the correctness of 
their own solutions.  However, if we are to teach 
mathematics at school level, such difficulties need to be 
understood and faced. 

Example 1 and Example 3 illustrate the pedagogical 
advantages of using “contrived calculations” to counter-
act the incomprehension referred to in the previous para-
graph.  Problems involving “real data” often encourage 
students to hack through every calculation from the 
beginning, without ever internalising the routine expecta-
tion that what may at first appear complex is generally 
simpler than it looks, and can often be analysed and com-
prehended by the human mind.  If one wishes to encour-

age structured thinking, with solutions laid out in a stan-
dard way to make the internal logic clear, then the num-
bers need to be chosen precisely to reward and to culti-
vate the kind of irrational optimism without which the 
beginner sees no reason to look beneath the surface to 
identify the hidden structure in a problem.  In the absence 
of this instinct for sense-making, students resort too eas-
ily to unstructured, and hence error-prone, calculation, or 
to apparently random moves.  Effective mathematics 
education actively cultivates such “irrational optimism” 
in students, so that they learn to look for - and expect to 
find - helpful structure just below the surface.  

None of the examples is what is normally understood 
by a “proof”.  Yet each provides pupils with a clear yard-
stick which can help them refine “their own (subjective) 
reasonings” into mathematical proof.  In the first example 
- as with most calculations at this level - the goal is to 
reduce the calculation to a short sequence of indisputable 
steps, which removes all doubt, while the deductive char-
acter of each step remains implicit.  The second example 
adopts a standard approach and layout which makes the 
underlying logical structure explicit: each line represents 
a new step, and the connections between successive steps 
are established via the use of the “therefore” symbol.  
The third example is an algebraic variation on the first - 
avoiding the error-prone strategy of multiplying out all 
nine terms before cancelling and collecting, seeking 
instead to reduce all calculation to the two well-known 
identities for (a+b)(a-b) and for (a+b)2. 

There is another important aspect of Example 1 (at age 
6/7), of Example 2 (at age 12/13) and of Example 3 (at 
age 15/16).  Pupils’ own calculations at each level are 
often inefficient, even when successful.  If they are ever 
to appreciate the decisive, objective character of the 
underlying steps, it is important to have a standard format 
which allows one to summarise those calculations which 
can be presented simply in short objective written form - 
so that the advantages of re-grouping in Example 1, of 
the standard approach to Example 2, and of recognising 
the difference of two squares in Example 3 can be clearly 
grasped, and the indisputability of the answer recognised. 

These examples should be seen as simple instances 
within an extended sequence, which systematically ex-
ploits children’s early appreciation of “objective” reason-
ing (reinforced, as Piaget showed, by experience of the 
world and by the use of language) to help them develop 
over time a clear idea of what is meant by deductive 
proof, and its marked difference from subjective 
reasoning.   

Early examples from the realm of calculation - whether 
with numbers or with symbols - are sufficiently simple 
that the sequence of steps can usually be chosen so that 
each line follows naturally from the previous line, with 
no need to appeal to interim conclusions or external 
results.  The justification for each step is then clear from 
the ordering of the steps.  Thus, while each step should 
be explained verbally when presenting such a proof, there 
is no need to require that it be written out explicitly. 
Moreover, with arithmetical calculations, or with linear 
problems, each step is reversible; thus, while there may 
be good psychological reasons to insist that the answer be 
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checked, it would be pedantic to see this as part of the 
proof structure at this level.   

However, the advent of problems involving squares or 
square roots leads to steps which are definitely not 
reversible. There is then no escaping from the need to 
confront - in some form - the fact that deduction yields a 
list of candidate answers, rather than guaranteed answers. 
At this point - if not before - it becomes clear that each 
step in a proof sequence may need to appeal to more than 
just the immediately preceding step, and that where this 
is needed, the justification (for example, when 
eliminating certain candidate values) has to be made 
explicit.   

More sophisticated proofs routinely involve steps 
which can only be justified by explicit reference to 
clearly identified external results.  This is especially true 
of euclidean geometry, where in each given problem one 
looks for ways of exploiting one of a relatively small 
number of standard external results (the angle sum of a 
triangle; criteria - vertically opposite, alternating, etc. - 
for two angles to be equal; isosceles triangles; the SAS 
and SSS congruence criteria; Pythagoras’ theorem; 
formulae for the area of a triangle; the sine and cosine 
rule; angles in the same segment; etc.). Euclidean 
geometry may provide the richest accessible example; but  
the need to identify and apply some standard external 
result is typical of mathematics and characterises the 
solution of many beautiful elementary problems (see 
Gardiner 1997, 1999a).    

Implementing such an approach in a manner that 
avoids degeneration will not be easy.  But the present 
situation is unacceptable. And moves to re-interpret 
mathematics-for-all in terns of mere “numeracy” may yet 
make things worse! So it is essential for committed 
educators and mathematicians to work together to devise, 
implement and refine strategies which reflect both the 
discipline of mathematics and the way ordinary students 
learn.  
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