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The interdiffused multilayer process (IMP) is a novel approach to growing 
Hgl_xCdxTe. In this process, alternating thin films of HgTe and CdTe are grown 
and allowed to interdiffuse resulting in a bulk material of constant composition. 
A model of the IMP must include the effects of both the deposition of new material 
and the interdiffusion of the material. It must also be able handle the flush 
phases of the IMP where the growth rate decays to zero. Existing approaches to 
modeling epitaxial growth of Hgl_xCdxTe treat growth and interdiffusion as 
separate,  sequential  steps result ing in numerical  stability problems, 
pseudodiffusion effects, or flush phase modeling problems. The model presented 
here, however, is based on an incremental balance where growth and diffusion 
occur simultaneously, resulting in a model exhibiting none of the difficulties 
mentioned above. The IMP growth model is integrated with a model for calculat- 
ing reflectance from a laser directed at near normal incidence angle. The 
predicted reflectance is compared to experimental measurements and showed a 
good preliminary fit when the model employed default parameters. The agree- 
ment is greatly improved after parameter fitting. 

Key words:  HgCdTe, in situ monitoring, interdiffused multilayer process, 
laser reflectance, MOCVD, modeling 

INTRODUCTION 

The II-VI ternary compound semiconductor mer- 
cury cadmium telluride (MCT), Hgl_~CdxTe, is used in 
the fabrication of infrared detectors and focal plane 
arrays because the bandgap energy, and therefore the 
optical responsivity, can easily be adjusted by chang- 
ing the group II Cd mole fraction x. The interdiffused 
multilayer process 1-~ (IMP) is a novel approach for 
growing uniform layers of MCT at any desired x. In 
this process, metalorganic chemical vapor deposition 
(MOCVD) is used to grow alternating very thin (<0.2 
tan thick) layers of HgTe and CdTe. These layers 
interdiffuse during the growth and subsequent an- 
nealing period resulting in a film of MCT of uniform 
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composition. By adjusting the relative thicknesses of 
the HgTe and CdTe layers, any desired x can be 
achieved. An important advantage of the IMP is that 
it allows individual optimization of the HgTe and 
CdTe growth phases. 

In this paper, a model of the growth and inter- 
diffusion processes on the IMP is presented. The 
model takes into account deposition of new material 
on top of the wafer and interdiffusion between the 
CdTe and HgTe layers. This model is then integrated 
with a normal incidence laser reflectance model and 
tested against in situ IMP reflectance measurements. 

MODELING OF FILM GROWTH 
AND INTERDIFFUSION 

A mathematical model of the IMP must account for 
deposition at the top of the wafer and for HgTe/CdTe 
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Fig. 1. Integration iterative steps if deposit ion and diffusion are treated 
as separate sequential steps. 
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Fig. 2. Composit ion profile as a function of time for a deposition rate 
10A/s and D = 0 with increments At = 1 s and Az = 200A. The interface 
is at 60000A. The solid line shows the correct profile for all t. The 
dashed line is at t = 100 s, the dotted line at t = 200 s, and the dashed- 
dotted line at t = 300 s. 

interdiffusion along the wafer depth. A mass balance 
at an interior point yields the partial differential 
equation 

a x  a (.ax  
at az~, azJ (1) 

Here z denotes the perpendicular distance to the 
surface, t time, and D is the diffusivity. Before pro- 
ceeding with discretization of Eq. (1), an expression 
for D must  be obtained. 

Diffusivity Expression 

Several studies on diffusion in MCT have been 
published. 5-2~ There is a consensus that  at high tem- 
peratures (400-750~ HgTe/CdTe interdiffusion is 
fairly independent of the Hg partial pressureS-gwhile 
at lower temperatures  the effect of Hg partial pres- 
sures becomes significant, s,7,1o 

Interdiffusion probably involves both metal va- 
cancies and interstit ials with the interstit ials be- 
coming increasingly important  as the temperature  
decreases and x increases3 ,11 There is evidence s that  
at about 350~ the dominant  mechanism changes 
explaining why expressions for diffusivity developed 

for the high temperature  range extrapolate poorly to 
lower temperatures.  

Usually the IMP is run at temperatures  close to 
400~ The high temperature  diffusivity expressions 
agree that  D exponentially decreases three to four 
orders of magnitude as x increases from zero to one. 
Tang and S tevenson  n,~2 as well  as Zanio and 
Massopust  ~a provide expressions that  at constant 
temperature  become 

D(x) = A.  e -Bx (2) 

Previous Work in Solving the Diffusion 
Equation for MCT Growth 

Finding a solution to the diffusion equation is 
challenging because of the nonlinear dependence of 
the diffusivity on x, Eq. (2), and because of the moving 
boundary due to growth. Because of this, an analyti- 
cal solution is not possible. 

Previous numerical approaches to the problem laqs 
of modeling epitaxial growth of MCT treated the 
deposition and diffusion processes as separate se- 
quential steps. Let At and Az denote the time and 
distance increments used in the discretization of Eq. 
(1), respectively. Then the following iterative steps 
were used: 

1. A new film of thickness A1 = g At, where g is the 
growth rate of the new material,  is deposited on 
top of layer 1. This material  has a composition of 
X d �9 

2. New layers are created by shifting each of the 
previous layers upward by A1. The composition of 
a new layer is calculated by averaging the layer's 
pre-shift composition and the pre-shift composi- 
tion of the layer above it. This average is weighted 
using the thickness that  each of the pre-shift 
layers contributes to the new layer, i.e. 

A1 
Xnew'i - -  A Z  Xpre-shift '  i-1 

+(1 All 
~, --  ~ ' Z )  Xpre-shi~ ' i  

3. Composition changes due to interdiffusion in the 
time At are calculated for each layer according to 
a discretization of Eq. (1). 

After completion of step 3, time is increased by At and 
steps 1-3 are repeated. Figure 1 is a schematic of this 
algorithm. 

Zanio and Massopust  la and Zanio 14 used the above 
scheme with constant At and AI < kz. Eq. (1) and Eq. 
(2) were explicitly discretized. Due to numerical sta- 
bility considerations, step 3 was divided into n 
substeps, each of duration 5t = atIn. For a forward 
time centered space (FTCS) explicit scheme, numeri- 
cal stability requires 21 

At <(Az2~ 
~. 2D J (3) 
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I fD  is given by E% (2), in Eq. (3) requires that  At < 
0.08 s for Az = 50A and At < 0.003 s for Az = 10A. 

Step 2 of the above algorithm results in an error 
tha t  can be significant. The averaging of the composi- 
tions involved is equivalent to an infinite diffusivity 
between the bottom of layer i-1 and the top of layer i. 
This results in pseudodiffusion, even if the actual 
diffusivity is zero and can lead to considerable error. 
For example, if the actual diffusivity were zero and 
the deposition rate of HgTe on CdTe were g = 10A/s, 
increments of At = 1 s and Az = 200/~ would lead to an 
erroneous HgTe migration of 2000/~ in 300 s. Figure 
2 shows the effect of this pseudodiffusion. This error 
may be reduced by increasing At or decreasing Az but  
at the cost of possible stability problems by in Eq. (3). 
Furthermore,  increasing At decreases the integration 
accuracy, while decreasing Az increases the dimen- 
sionality, i.e. the number  of layers, of the problem. 
Errors due to averaging can be eliminated if A1 = Az. 
However, in Eq. (3) requires 

2D 
Az > -  (4) 

g 

For a typical HgTe growth rate of 15~Js and D given 
by Eq. (2) with x = 0 at a temperature  of380~ Eq. (4) 
requires Az > 2000/k which is thicker than the 300.s 
CdTe films in the IMP. 

To allow usage of At = Az/g (which eliminates 
averaging error) for a small Az an implicit dis- 
cretization scheme must  be used. Since the diffusivity 
is a nonlinear function of z, Eq. (2) must  either be 
linearized or a set of nonlinear differential equations 
must  be solved at each iteration step. Ludington 15 
linearized and used a Crank-Nicholson (Press et al.) 21 
numerical integration scheme. 

Stability problems, however, prevented usage of a 
reasonable Az (~50/~). Rossouw et al. TM used a differ- 
ent implicit scheme and At = Az/g, and encountered no 
stability problems with Az = 50•. However, their 
implicit scheme is of suspect accuracy since the right- 
hand side of Eq. (1) was discretized using at time t+l  
the diffusivity D(x(t)). A fully implicit discretization 
of Eq. (1) can be obtained by backward differencing 
the left-hand side, center space differencing the right- 
hand side, i.e. 

xi(t + 1) - x i ( t )  _ 

At 
(5) 

1 [D(.xi(t + 1) + xi+l(t + 1)) Xi+l(t + 1)- xi(t + 1) 
Az 2 Az 

-D(x i ( t  + 1)+ xi-l(t + 1) / 2 xi(t + 1)- Az x~-l(t + 1) 1 

and doing a Taylor series expansion on the right-hand 
side around t. This results in a tri-diagonal linear 
system which can be easily solved, and which is stable 
at At = Az/g for all Az tested (down to 10A). 

Unfortunately, the above scheme runs into dif- 
ficulty when applied to the IMP. Deposition phases 
are followed by flush phases where diffusion takes 
place and the growth rate decays toward zero. Thus, 
using the formula At = Az/g causes trouble. In conclu- 
sion, previous work on solving the differential equa- 
tions for MCT growth is not suitable for the interdif- 
fused multi layer process. 

The New Approach 

In reality deposition and diffusion take place simul- 
taneously and not as separate and sequential steps. 
The partial differential equation for diffusion Eq. (1) 
can be derived by doing an incremental balance at an 
interior point with increments At and Az, and subse- 
quent ly taking their  limits to zero. In a sense, 
discretization of Eq. (1) simply inverts the second par t  
of this process resulting in an incremental balance. 
Therefore, growth rate and deposition can be modeled 
simultaneously by doing an incremental balance at 
the top of the wafer which is the only part  directly 
affected by deposition. 

Let layer I be the layer on which deposition takes 
place (Fig. 3). The thickness of layer 1, A1, is not 
constant, but  increases due to growth. A material  
balance on CdTe for layer 1 gives: 

.1_ 
A1 

Az 

Az 

l 

Addition by deposition 

Xl 

Diffusion 

II 

x2 

x 3 

Fig. 3. Top layers of the new algorithm. AI is the thickness of the top 
layer (layer 1) with composition x~. AZ is the thickness of the other 
layers, Layer t has transportation in and out due to n e w  growth and 
diffusion from layer 2. The remaining layers have transportation due to 
diffusion from the above and below lying layers. 
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Fig. 4. The shifting scheme of the new algorithm. Whenever AI 
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a(Aalcx) _ A g c x  d + (AD(x)c ax~ 
at \ az)~ 

(6) 

Accumulati~ = 

Rate ) 

Addition by~ (Rate in  from layer~ 

Growth j + ~  2 due to diffusion t 

where A is the cross-sectional area, c the overall 
concentration, x d the deposition mole fraction (0 or 1 
in IMP) and ( )1-2 denotes evaluation at the interface 
between layers 1 and 2. Assuming A and c are con- 
stant,  they cancel out giving: 

at = gxa + D(x) (7) 
1-2 

Since the rate of change of A1 is the growth rate, 

a(A1) 

at = g 
and 

(8) 

a(Alx) ax 
at - A1 -~- + gx 

Substi tuting Eq. (9) into Eq. (7) gives 

(9) 

a--t- = A--1 g(xd - x) + D(x) 
1-2 

(lO) 

Taking x at the interface between layers i and 2 to be 
the average of x~ and x 2 and noting tha t  the distance 
between the midpoints of the layers is (kl + Az)/2, the 
right-hand side of Eq. (10) is discretized as: 

(11) 

1 Q, 

Discretizing the left-hand side of Eq. (10) by either a 
forward or backward difference gives an explicit or 
implicit scheme, respectively. These options can be 
combined into one equation: 

x~(t + 1) = xl(t) + At[a,Q~(t + 1) + (1- al)Ql(t) ] (12) 

where a~ = 0 gives an explicit scheme and a 1 = I gives 
a fully implicit scheme. Intermediate values of a 1 give 
combination schemes with a~ = 0.5 giving a Crank- 
Nicholson analogue. 

A similar material  balance on layer i where i > 2 
results in 

ax_ 1 V(i)(x)aX  ] (13) 
at ~z L ~, az L-(i<, t. az)(~_l)_i 

which in the limit tha t  Az -+ 0 yields the diffusion 
equation Eq. (1). Proceeding to discretize Eq. (13) in a 
manner  analogous to the discretization of Eq. (10) 
gives 

X l ( t  + 1_) = Xl(t) + At[alQi(t + 1) + (1- al)Qi(t) ] (14) 
where 

and 

X 3 -- X 2 

Az 

Q2 z 

dxl+x2  x2-x, 
[, 2 )(A12Az ) (15) 

Q~ = (16) 

_1_1 I D (  Xi+l_-{- x i  x i  )Xi l z o(xi+x )xix<  
i =3,4,... 

It should be pointed out tha t  for a 1 = 0.5, Eq. (14) and 
Eq. (16) are exactly the Crank-Nicholson scheme. 

To implement Eqs. (11), (12), (14),(15), and (16) 
with D given by Eq. (2), the Qi are linearized with 
respect to xi(t+l). This results in the tridiagonal 
system: 

l~_(t+l) -- v_ or x(t+l) = R-'v_ (17) 
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where v and the nonzero elements of R are given in 
Appendix I. 

A scheme that  propagates as in Eq. (17) would 
result  in an ever increasing top layer thickness A1, and 
a resulting loss of accuracy. To avoid this, when A1 
surpasses Az, the top layer is split parallel to the 
surface into two parts, with the bottom having a 
thickness of Az. This layer becomes the new layer 2, 
increasing the indices of the underlying layers by one 
(Fig. 4). This algorithm involves no averaging since 
only layers of thickness Az are shifted. 

It is not practical to have the dimensionality of the 
vector_x always increasing. Furthermore,  reflectance 
is effectively a function of the composition of only the 
top 2000 to 3000A. For these reasons, whenever  a new 
layer is created by the division of the top layer into two 
parts, the bottom layer is discarded. 

A final issue to be addressed is the boundary condi- 
tion for the bottom-most layer. Let n denote the index 
of this layer. Then, in general, the composition of the 
layer below is not available (with the exception being 
the occasion when a new layer was created in the 
previous time step). So a boundary condition is needed 
for layer n, or equivalently, x§ must  be estimated. 
Three possible choices were considered. 

The first is zero compositional slope, i.e. 

X n ~--- Xn+ 1 (18) 

The rationale for this boundary condition is that  the 
composition profile becomes uniform at a large dis- 
tance from the top due to interdiffusion. 

The second candidate for the boundary condition is 
no net diffusion where 

o(% x)%xo (19) 

The rationale is tha t  sufficient time has elapsed since 
the n th layer was grown so that  x n has approached its 
s teady-state value 

The third candidate for the boundary condition is 
constant compositional slope, i.e. 

Xn+ 1 - -  X n = X n - -  Xn_ 1. (20) 

The impact of these conditions on the IMP model (17) 
is given in Appendix II. 

If  the actual slope at the n th layer is zero, as is the 
case at the beginning ofinterdiffused multi layer pro- 
cess growth on a CdTe substrate  when the n th layer is 
deep in the substrate,  then all of the above truncation 
schemes are exact. For example, after one typical IMP 
cycle, 1300A of alloy have been deposited with an 
accompanying 250-300A erosion of the CdTe sub- 
strate due to diffusion. The model with Az = 50/~ and 
n = 50 has its n t" layer in the substrate,  a region of zero 
slope and x = 1. 

Figure 5 compares the composition profile after one 
IMP cycle for the model with n = 50 (solid line), which 

has no truncation error, with the profile with n = 30 
using the three truncation schemes. The first scheme 
is represented by the plusses, the second by the 
dashes, and the third by the dots. Errors are only 
evident after the 26 th layer (60075/k) with the second 
and third schemes giving very good results. 

The model, Eq. (17), using boundary condition (19) 
gives no stability problems for a 1 = 1 (fully implicit) 
and allows a Az of 50A with At = 0.2 s and a 1 = 0.5 
(Crank-Nicholson). 

MODELING OF GROWTH RATE 

The previous development does not address model- 
ing of the growth rate g(t) that  affects the top layer 
[see Eq. (11)]. Atypical  IMP cycle consists of, in order, 
a HgTe growth phase, a HgTe flush phase, a CdTe 
growth phase, and a CdTe flush phase. During a HgTe 
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growth phase, mercury vapor and diisopropyl tellu- 
ride (DiPTe) are the precursors. In the subsequent 
flush phase, the flow of DiPTe is halted and the 
growth rate  decays toward zero. In the CdTe growth 
phase dimethyl cadmium (DMCd) and DiPTe are fed 
in as precursors. The flow of these precursors is 
stopped in the ensuing CdTe flush phase, and again 
growth rate decays to zero. 

There are two extreme conditions for modeling the 
changes in growth rate as the phases are switched. 
The first is plug flow of the precursors (Fig. 6a), in 
which case growth rate is zero at the beginning of a 
HgTe growth phase until the time required to trans- 
port the precursors, AHgTe , elapses and then g(t) steps 
up to a constant value, gHgr~" In the following flush 
phase, the growth rate steps down to zero, but  only 
after Asgwe has passed�9 The growth rate for these two 
phases can be expressed as 

0, t l<  t_< tl + Asgw~ 
g(t) = gHgW~, t~ + AH~r~ < t < t 2 + AH~r~ 

0, t > t  2 +AHgTe 
(21) 

where t I denotes the time at the start  of the HgTe 
growth phase and t 2 the time at the start  of the flush 
phase. 

The growth rate during the CdTe growth and flush 
phases follows a similar pattern. It steps up to gCdTe 

after a transportation lag Acdwe has passed in the 
growth phase and steps down to zero after an interval 
ACdTe in the following flush phase. 

The second extreme condition is a perfectly mixed 
t ank  which resul ts  in immedia te  concentrat ion 
changes at the beginning of each phase according to 
exponential functions (Fig. 6b). At the beginning of 
the HgTe growth phase, the growth rate increases 
according to 

f / t - t ~  l1 g(t) = gHg'r . . . .  1-  exp - -  , , t~ < t < t 2 (22) 
0HgTe growth ] J  

where 0~:~ ~o~th is the residence time, or the time 
constant, oft~e tank. The growth rate follows Eq. (22) 
until the HgTe flush phase where g(t) starts decreas- 
ing with 

g(t)= g(t2)exp( 0H:et--t2nush/'/ t2 < t <t3 (23) 

This growth rate condition holds until the start  of the 
CdTe growth phase in which g(t) increases according 
to an expression similar to Eq. (22). The growth rate 
then decreases during the CdTe flush phase following 
an expression similar to Eq. (23). 

In reality, precursor concentration, and therefore 
growth rate, varies according to conditions intermedi- 
ate to the above two extremes. This intermediate  
state is modeled here by combining aspects of the two 
extreme conditions. Consider the following expres- 
sion for growth rate: 

0, t < t 1 + A'HgWegro~n h 

/ I ( t - ( t~  + m'HgTegrowth)~] 

[ t 1 Jr A'HgTegrowt h < t _ t 2 + A'HgTeflush 

which results from integrating a first order plus t ime 
delay model. 

Both extreme models [Eqs. (21), (22), and (23)] can 
be viewed as special case of Eq. (24). The plug flow 
case is obtained for values A'HgTegrowt h ~- A H ~  e and �9 . gl . 
0H:e go~th = 0, while the perfectly mLxed tank case is 
obtained for A'H_ o,th = 0 and 0H_ e wth = 0H-- "" gle~y gl gro gl e.grow~n" 
Thus, an intermediate state can be modeled using 

0 < n'HgTe growth < AHgTe 

0 < 0H: e growth < 0S:e ~wth 

Modeling all phases in similar manner  gives the 
following expression for growth rate: 
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g(t) =g(t) 

t~ + A'~:~growt h < t < t 2 + A ' ~ a ~  h 

t - ( t z  +A'H~r~,h) , 

t 2 + A'HgTeflush *:~ t _< t a + A'caTegrowt h 

t 3 ~- ACdTeflush < t < t 4 + ~CdTeflush 

gCdT. [exp(t - (t~dT~n~h) I], 
t 4 + A'CdTen~,h < t < tl,~ ~ + A~H:~owth 

(25) 

To reduce the number  of tunable parameters,  the 
time constants 0' are chosen so that  the total depo- 
sition equals the deposition obtained in the plug flow 
case, i.e. equal areas under  the two corresponding 
growth rate curves of Fig. 6. This results in the 
implicit expression given below, for 0~:~ ~o~th and in 
similar expressions for the other time constants 

AHgTe ----- Z~'HgTe growth + 0HgTe growth 

f,  2o 0 :eo  ,j 
To further reduce the number  of tunable parameters,  
we assume that  the ratio of a delay A' to the corre- 
sponding delay A in the plug flow model is indepen- 
dent  of the material  being deposited, in which case the 
tunable parameters  in the growth model reduce to the 
transportat ion lag fractions: 

~'CdTe growth 
O~ growt h ~ z~ CdTe 

and 

A':~growth (27) 

AHCre 

A'caTe"~" A's:e~u'h (28) 
(~flush -- - -  = - -  

ACdTe AHgTe 

EXPERIMENTAL DETAILS 

The diffusion and growth model was tested using 
laser reflectometry measurements  of IMP growth of 

MCT. The material  was grown in a horizontal rectan- 
gular duct silica reactor at atmospheric pressure. A 2 
cm diameter  optical window was mounted in a turre t  
approximately 3 cm above the top reactor wall. The 
window was flushed with helium gas and no deposi- 
tion on the window was observed during growth. A 
chopped beam from a 2 mW high stability HeNe laser 
operating a 6328/~ was directed at a near  normal 
incidence angle onto the wafer, and the intensity of 
the reflected light was measured by a silicon detector. 
A schematic diagram of the experimental setup can be 
found in Bajaj et al. 3 

The IMP experimental run used to test  the model 
was done at 380~ using a pyrolytic boron nitride 
heater  and started with a 60.8 s HgTe growth phase. 
During this phase, the blanket  flow rate was 5 L/min. 
The Hg vapor came from a liquid-Hg-filled boat  placed 
at the entrance zone of the reactor and heated to 
210~ The Hg growth phase was followed by a 20 s 
HgTe flush phase in which the blanket  flow rate was 
ramped to 8 L/min. During these first two phases, 
936A of HgTe were deposited. Next, without altering 
the blanket  flow rate, a 19 s CdTe growth phase was 
initiated. A 20 s CdTe flush phase followed where the 
blanket  flow rate was ramped down to 5 L/min. 
During these last two phases, 276/~ of CdTe were 
deposited. The total cycle period, then, was 119.8 s. 

The IMP run was designed to give a homogenized 
alloy composition of x = 0.23, corresponding to a 
longwave infrared absorber layer. This final composi- 
tion was confirmed by ex situ infrared transmission 
measurements .  

COMPARISON WITH EXPERIMENTAL 
RESULTS 

The process was modeled using Eq. (24) and the 
equations given in Appendices I and II. To simplify 
modeling, changes in the blanket  flow rate were 
treated as steps occurring at the start  of deposition in 
the two growth phases. This results in plug flow 
delays of A~cre = 10.8 s and AcaTe = 6.3 s. 
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Fig. 9. Composition profile vs thickness as a function of time for a 
portion of an IMP growth run. The solid line represents the profile 300 
s into the growth run, the dashed line at 335 s, the dotted at 350 s, and 
the dot-dashed at 480 s. 
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Reflectance was calculated from theoretical expres- 
sions that  give the reflectance intensity from a stack 
of thin films with abrupt  interfaces and varying 
optical indices. 3,22,23 The reflectance expression used 
can be found in Bajaj et al2 The complex refractive 
index of each layer of the MCT alloy was calculated 
using the average of the complex refractive indices of 
HgTe and CdTe, weighted by the mole fraction of the 
individual components. 

Parameters  were initially set to values which were 
reported in l i terature or based on best  engineering 
estimates.  The complex refractive indices for CdTe 
and HgTe were initially set to 

NCdT~ = 3.04 -- i 0.253 (29) 
Ns~re = 3.93 -- i 1.19 (30) 

which were based on ellipsometry measurements  by 
Rhiger. 24 The transportat ion lag fractions were ini- 
tially set at the intermediate value c~ o~th = (~ush = 0 5 

. . g r  " " 

For  the  d i f fus ion  p a r a m e t e r s ,  the  Tang  and 
Stevenson 11,12 expression gives at 380~ A = 1.56.10 -4 
~tm2/s and B = 9.06, while the Zanio and Massopust  13 
expression gives A = 4.02 �9 10 ~ ~tm2/s and B = 8.13. It 
should be noted that  these values were from expres- 
sions that  were obtained by fitting data  from higher 
temperatures.  

Figure 7 compares the experimental reflectance 
profile (solid line) with the predicted profiles obtained 
using the Tang and Stevensonn, 12 diffusion param- 
eters (dotted line) and the Zanio and Massopust  13 
parameters  (dashed line). The figure shows that  the 
model with the Zanio and Massopust  ~3 parameters  
agrees fairly well with the experimental data. The 
model with the Tang and Stevenson 11,12 parameters  
predicts very poorly the extrema but  predicts well the 
intermediate regions. The significant difference in 
model behavior show that  the model is quite sensitive 
to the diffusion parameters.  

With parameter  fitting, the agreement of the model 
with the measurements  can be improved consider- 
ably. Parameters  fitted, in addition to the diffusion 
parameters,  were the transportat ion lag fractions 
(a~wth and a,u~h) , and the complex refractive index 
N.gTe. The latter was fitted because somewhat  differ- 
ent values have been reported. TM The curvature of the 
reflectance curve from the HgTe growth phase of the 
first IMP cycle is mostly dependent on a~o~t h. Fitt ing 

owth using this first growth phase gave ~o~th = 0.61. 
e remaining five parameters  were fitted using a 

Levenberg-Marquardt  method 25 of nonlinear least 
squares optimization resulting in the following val- 
ues: 

A = 1.14 x 10 ~ ~me/s 
B = 16.90 

N~gwo = 4.01 - i 1.18 
a~u~h = 0.54 

The reflectance from the model with the fitted pa- 
rameters  is compared to measured output  in Fig. 8. 
Very good agreement is observed. It is noteworthy 
that  the values for the complex refractive index of 

HgTe are close to the default values in Eq. (30). 

DISCUSSION 

The fitting of the dynamic interdiffusion model to 
the reflectance data  in Fig. 8 enables new insights to 
the dynamics of the IMP. The relaxation of the com- 
positional profile cannot be deciphered from ex situ 
characterization because the compositional profile is 
by then fully interdiffused. The dynamics of interdif- 
fusion are important  when considering the possibility 
of introducing misfit dislocations due to the 0.3% 
lattice mismatch between CdTe and HgTe. The t ime 
evolution of the composition profiles, shown in Fig. 9, 
was obtained using the fitted diffusion and growth 
parameters  given above. During the HgTe growth 
phase, the compositional profiles show that  the inter- 
diffusion is so rapid that  the surface composition 
never reaches that  of the binary. This is a significant 
factor in the relaxation of the lattice and is a conse- 
quence of the larger diffusion coefficient at the HgTe 
end of the pseudobinary. By contrast, the much thin- 
ner CdTe layers do achieve a binary composition but  
rapidly erode as Cd diffuses into the surrounding Hg 
rich alloy. Interdiffusion becomes even more rapid as 
the Cd composition of the peak decreases, resulting in 
a largely homogeneous alloy composition within 180 
s of deposition. This is consistent with ex situ charac- 
terization such as Rutherford backscattering which 
shows no residual compositional modulation for nor- 
mal IMP period thicknesses and compositions. 26 

CONCLUDING REMARKS 

A dynamic model was developed for the inter- 
diffused multi layer process which has enabled, for the 
first time, insight to the interdiffusion process in the 
Hgl_xCdxTe system during IMP growth and has im- 
portant  consequences for the optimization of growth 
conditions to avoid inhomogeneities and strain in- 
duced defects. These features are critical for the 
application of this material  to longwave infrared 
detection. Other possible uses of the model include: 
screening of feedback control methods, development 
of state est imators which can then be used for control- 
ler design, and the development of model predictive 
control laws. It  is anticipated that  this model would 
also be applicable to the interpretation of in situ 
reflectometry of other material  systems where inter- 
diffusion is a significant parameter.  

ACKNOWLEDGMENT 

The authors at the University of Florida gratefully 
acknowledge the support of Rockwell International 
Corporation. 

REFERENCES 
1. J. Turnicliffe, S.J.C. Irvine, O.D. Dosser and J.B. Mullin, J. 

Cryst. Growth 13, 245 (1984). 
2. J.B. Mullin, J. Geiss, S.J.C. Irvine, J.S.Gough and A. Royale, 

Mater. Res. Soc. Symp. Proc. 90,367 (Pittsburgh, PA: Mater. 
Res. Soc., 1987). 

3. J. Bajaj, S.J.C. Irvine, H.O. Sankur and S.A. Svoronos, J. 
Electron. Mater. 22, 899 (1993). 



A Model of the IMP 1569 

4. S.J.C. Irvine, J. Bajaj and H.O. Sankur, J. Cryst. Growth 21, 
654 (1992). 

5. S.J.C. Irvine, E.R. Gertner, L.O. Bubulac, R.V. Gil and D.D. 
Edwall, Semicond. Sci. Technol. 6, C15 (1991). 

6. M.-F.S. Tang and D.A. Stevenson, J. Vac. Sci. Technol. A 6, 
265O (1988). 

7. M.-F.S. Tang and D.A. Stevenson, J. Vac. Sci. Technol. A 7, 
2650 (1989). 

8. C.G. Morgan-Pond, J. Electron. Mater. 20, 399 (1991). 
9. Y. Jianrong, Y. Zhenzhong, L. Jiming and T. Dingyuan, J. 

Cryst. Growth 114, 351 (1991). 
10. Y. Kim, A. Ourmazd and R.D. Feldman, J. Vac. Sci. Technol. 

A 8, 1116 (1990). 
11. M.-F.S. Tang and D.A. Stevenson, J. Vac. Sci. Technol. A 5, 

3124 (1987). 
12. M.-F.S. Tang and D.A. Stevenson, Appl. Phys. Lett. 50, 1272 

(1987). 
13. K. Zanio and T. Massopust, J. Electron. Mater. 15,103 (1986). 
14. K. Zanio, J. Vac. Sci. Technol. A 4, 2106 (1986). 
15. B.W. Ludington, Mater. Res. Soc. Symp. Proc. 90, 437 (Pitts- 

burgh, PA: Mater. Res. Soc., 1987). 

16. C.J. Rossouw, G.N. Pain, S.R. Glanville and D.C. MacDonald, 
J. Cryst. Growth 106, 673 (1990). 

17. D.K. Arch, J.P. Faurie, J.-L. Staudenmarm, M. Hibbs-Brenner 
and P. Chow, J. Vac. Sci. Technol. A 4, 2101 (1986). 

18. K. Zanio and K. Hay, Mater. Res. Soc. Symp. Proc. 90, 39 
(Pittsburgh, PA: Mater. Res. Soc., 1987). 

19. J.G. Heming and D.A. Stevenson, J. Cryst. Growth 82, 621 
(1987). 

20. N. Archer and H. Palfrey, J. Electron. Mater. 20, 419 (1991). 
21. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. 

Vetterling, The Art of Scientific Computing, (Cambridge: 
Cambridge University Press, 1988). 

22. W. Southwell, personal communication. 
23. H.A. Macleod, Thin-Film Optical Filters, 2nd Ed., (New York: 

Macmillan Publishing Company, 1986). 
24. D. Rhiger, J. Electron. Mater. 22, 887 (1993). 
25. T.R. Cuthbert, Optimization Using Personal Computers with 

Applications to Electrical Networks, (New York: John Wiley 
& Sons, Inc., 1987). 

26. A.J. Avery, D.J. Diskett, D.W. Lane, J. Giess and S.J.C. 
Irvine, Nucl. Instr. Meth. Phys. Res. B45, 181 (1990). 

A P P E N D I X  I 
T h e  IMP Model 
The discretization and linearization of the growth and diffusion equations result in a tridiagonal system of 
equations of the form 

Rx(t+l) = v or x(t+l) = R-lv (A1.1) 
where the nonzero components of R are 

Rll = 1+ a~At .g(t + At) 
hl(t + At) 

2alAt D(Xl(t)+x2(t)~(l+Btx (t) x (t))~ 
+Al(t+At)(hl(t+At)+Az) (~ 2 )(, 2 ~ : - 1 j) 

(A1.2) 

2a,At D(xl(t) 2 x 2 ( t ) B ( x g ( t ) _  xl(t))/ 
R12= Al(t+At)(Al(t+At)+Az ) -- ) ( 1 -  (A1.3) 

2alAt D(Xl(t) 2 x2(t)/(l+ B (x2(t) _ xl(t)) / 
R2~ = Az(Al(t + At) + Az) 

(A1.4) 

R22 = 1+ 2a~At DIxl(t) 2 x2(t)/(l_ B (x2(t) _ xl(t))/ 
Az(Al(t + At) + Az) 

+ alAt D~x3(t) 2 x2(t)/(l+ B (x3(t)- x2(t)) / Az 2 (A1.5) 

Rii+l - .  alAtAz 2 D/Xi+ l ( t )+  x i ( t ) . / ( 1 - B ( x i + l ( t ) - x i ( t ) ) / ;  for  i =  2,3._ (A1.6) 

)/ Rii 1 alAt 
, -  n Z  2 2 - " 2 - (  i - - X  i l ( t )  ; f o r i = 3 , 4 . . .  (A1.7) 

~ l(t )/1 

x 4 (A1.8) 


