
Deformation of Semi-Solid Sn-15 Pct Pb Alloy 

V. L A X M A N A N  AND M. C. F L E M I N G S  

The rheological behavior of semisolid Sn-15 pct Pb alloy was studied using a parallel-plate 
viscometer. Small nondendritic and dendritic semisolid samples of the alloy were deformed 
under a constant load at initial pressures up to 232 kPa (33.6 psi) and at fractions solid from 
0.15 to 0.60. Strain-time data for the nondendritic material obey the non-Newtonian, 
two-parameter,  Ostwald-de-Waele, power-law model, i.e. Ix = m'~ "-~, where Ix is viscosity,+ 
shear rate and m and n are constants. For fractions solid above about 0.30, the following 
empirical equation relates viscosity, shear rate and fraction solid 

Ix = a exp (bfs) ,~(~::a) 0.3 < f < 0.60 

where f s  is fraction solid and a, b, c, d are constants. The nondendritic alloy deformed 
homogeneously without cracking to very large strains (up to 80 pct). Dendritic alloys 
required much higher loads and cracked easily. For  the nondendritic alloys the forging 
pressures to obtain 50 pct compression were of the order of 7 to 70 kPa (1 to 10 psi) for 
fractions solid under 0.55 and 172.5 to 207 kPa (25 to 30 psi) for fraction solid of about 0.60. 
For the dendritic alloys, the forging pressure required to achieve 10 pct compression is about 
85 kPa at a fraction solid of 0.35 and increases rapidly with increasing fraction solid. 

O V E R  the last few years a new class of metal forming 
processes has been developed ~ 9 which rely on the fact 
that with vigorous agitation during the early stages of 
solidification, the primary solid which forms has a 
nondendritic structure. As a result, the semisolid be- 
haves as a "thixotropic" slurry. That  is, the viscosity of 
the alloy shows a time dependency and decreases with 
increasing shear rates. The semisolid alloys retain their 
fluid-like behavior well into the liquid-solid range and 
can be successfully formed or shaped in this region. 

The process which utilizes the slurry formed as above 
has been termed "Rheocasting". Alternatively, the 
slurry may be fully solidified and later partially re- 
melted without agitation. On shearing, it again assumes 
its fluid character, and so can be cast under pressure 
("Thixocast"), forged ("Thixoforged"),  rolled or ex- 
truded. Rheocasting and Thixocasting have been 
successfully employed for machine casting copper-base 
alloys 5 and high temperature ferrous alloys such as AISI 
440C stainless steel 6 and AISI 4340 low alloy steel. 7 

The central aim of this work is to study the rheo- 
logical behavior of partially remelted nondendritic or 
"Thixocast" alloys. Previous fundamental work on the 
rheological behavior of nondendritic alloys 8,9 has been 
confined to the original slurry (or Rheocast material). 
Figure 1 from Joly and Mehrabian is an example 
from that work. 9 

In this work, a compression apparatus similar to a 
parallel-plate viscometer was used to study the defor- 
mation behavior of Thixocast Sn-15 pct Pb alloy over a 
wide range of temperatures within the liquid-solid 
range. In this instrument, the semisolid alloy is squeezed 
under a constant load between two parallel disks, as 
shown schematically in Fig. 2(a), and the viscosity is 
calculated from the strain-time curve obtained during 
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compression such as the one shown schematically in 
Fig. 2(b). Devices employing this geometry have been 
used previously for quality control tests on materials 
such as asphalts and rubbers and in studying the 
deformation behavior of many plastics and poly- 
mers) ~ Since the test resembles closely an open 
die-forging operation, it also provides useful engineer- 
ing information on the deformability of partially solid 
alloys. 

E X P E R I M E N T A L  P R O C E D U R E  

Figure 3 is a schematic diagram of the compression 
apparatus used in this investigation. The compression 
plates are located in the center of a hollow stainless steel 
furnace (30 cm long, 3.75 cm diam, 1.6 mm wall 
thickness), open at both ends. Power is supplied by four 
200 W bandheaters spaced evenly along the furnace 
tube and the entire assembly is heavily insulated. The 
two compression plates are made of stainless steel disks, 
12.5 mm thick, accurately machined to provide a 
diametral clearance of approximately 13 thousandths of 
a centimeter (0.005 in.) between the plates and the 
furnace tube. 

A linear voltage displacement transducer is used to 
obtain the displacement as a function of time during 
compression. The output voltage of the transducer is 
continuously recorded on a strip chart recorder. Four  
chromel-alumel thermocouples are used to assure tem- 
perature uniformity in the test specimen. Two are 
embedded in the bot tom plate, about 1.5 mm from the 
compression face, one in the top plate, 1.5 mm from the 
compression face, and one in a small hole drilled 
through the center of the top plate. This last thermo- 
couple is almost in direct contact with the metal. One 
thermocouple, placed along the shaft attached to the 
top plate, serves as the control thermocouple, in con- 
junction with a solid-state temperature controller, to 
regulate the heat input to the furnace. Temperature 
uniformity in the test specimen is further aided by small 
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heating coils wound around the stainless steel shafts 
at tached to the compression plates. Adjustment of the 
heat input to these coils made it possible to maintain the 
temperature in the region between the two compression 

7o  , l , t o  , l 

[ Sn-15 % Pb l ~ / 

,ot I t 
l CONTINUOUSLY / / 
i COOLED 230 see -I 

5 0  

-i ,,o / / I *o:3So , ,o- '  

30 1 ~ ,  - 

2o 

se C -I 
I0 

0 ~ , 1 I t 
0 .20 .40 .60 .80 

VOLUME FRACTION SOLID, g, 
Fig, l - -Apparen t  viscosity v s  fraction solid for continuously cooled 
Rheocast slurries of Sn-15 pet Pb alloy2 

i FORCE, F 

_ . L  v /  / / / / / / / / , /  / / / . /  / / l  

-f"--[///,/////////////] 
COORDINATE SYSTEM 

- - h  o 

t.9 

~ o 
TIME 

Fig. 2--Schematic diagram of parallel-plate viscometer. (a) compres- 
sion test, (b) height v s  time during compression. 

plates to within _+ 1 ~ throughout a test. In experi- 
ments conducted at the lower fractions solid (<0.40), 
where the fraction solid-temperature curve is steeper, 
special care was taken to hold the temperature to within 
_+0.5 ~ 

Test specimens were all of Sn-15 pet Pb alloy, and 
were cylindrical, 1.25 cm diam and 0.625 cm high (0.500 
in. diam, 0.250 in. high). The majority were non- 
dendritic, ("Rheocast") ,  machined from ingots made in 
a low-temperature slurry producer. 17Js A few experi- 
ments were also carried out with equiaxed dendritic 
alloys, columnar dendritic alloys with dendrites grown 
along the axis of the specimen cylinder and, finally, 
with the columnar dendrites grown perpendicular to the 
axis of the cylinder. Tests were conducted over a range 
of fractions solid of 0.15 to 0.60; the compressive loads 
applied varied between 10 grams and 3000 grams. At 
each fraction solid studied, compression was carried out 
with at least two different loads and in most cases, 
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Fig. 4--Typical strain-time curves for partially remelted Sn-15 pet 
Pb nondendritic alloy. Fraction solid, fs = 0.50. Tests conducted at 
four different initial pressures. 
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especially with nondendritic alloys, with four different 
loads. Typically, compression was continued to a strain 
of 0.50. The specimen was then quenched in place by 

turning on the cooling water which flowed around the 
specimen and cooled it far below the eutectic tempe r- 
ature within a few seconds. 

E X P E R I M E N T A L  RESULTS 

A. Engineering Studies 

Figure 4 is a typical displacement-t ime curve ob- 
tained during compression with a nondendritic alloy. In 
this figure, displacement has been converted into en- 
gineering strain, e, defined as, 

h 
e = 1 - -  [1] 

h0 

where h 0 = initial height of specimen, h = instanta- 
neous height during compression. 

Fraction solid, fs,  was calculated using the Scheil 
equation, 

Fig. 5- -Engineer ing  strain at 20 min vs initial pressure. Nonden-  
dritic samples.  

Fig. 6 - - P h o t o g r a p h s  of  typical test samples.  Top  row: Nondendri t ic  
samples with increasing amoun t  of  strain f rom left to right, P0 = 
11.62 kPa,  fs = 0.50. Bot tom row: Equiaxed dendritic sample,  P0 = 
183 kPa,  fs = 0.35 before and after squeezing. 

Fig. 8- -Typica l  strain-time curves for dendritic samples (a) co lumnar  
dendritiC, (b) equiaxed dendritic. 

Fig. 7- -Typical  microstructures of  deformed nondendri t ic  sample~ 
P0 = 38.72 kPa,  fs = 0.50, and final strain e = 0.58. (a) Vertical 
section, (b) horizontal  section. 

Fig. 9- -Typica l  microstructure  o f  deformed equiaxed dendritic sam- 
ple. P0 = 186 kPa,  f s = 0.50, and final strain = 0.15. 
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= - [21 

where k is the equilibrium partition ratio, T M is the 
melting point of the pure solvent, T L is the liquidus 
temperature of the alloy and T is the test temperature. 

Since the specimen is squeezed under a constant load, 
the forging pressure decreases continuously during 
compression. The instantaneous forging pressure, P, is 
given by 

P = Fh~ - e) [3] 
v 

where v = volume of specimen, constant, F = applied 
load, and the initial forging pressure, P0, is given by 

F h  o 
P0 . . . .  [41 

1: 

Strain as shown in Fig. 4 depends on time and the initial 
pressure, P0. It also, of course, depends on fraction solid 
and Fig. 5 summarizes some strain data for different 
fraction solid (at constant time). Table I summarizes 
results from all experiments, including temperature, 
fraction solid, initial pressure and total strain at the end 
of each run. 

The nondendritic specimens deformed without crack- 
ing as shown by the photographs in the top row of Fig. 
6. Deformation was nearly homogeneous, with only 
very slightly more of the primary solid particles at the 
center of a sample than at the edges as seen in the 
photomicrographs of Fig. 7. 

The dendritic samples deformed very differently from 
the nondendritic samples as seen from the strain-time 
data in Figs. 8(a) and (b). At the higher fractions solid, 

Fig. 1 I- Initial forging pressure, P0, for a compressive strain of 0.10 
in 5 rain vs fraction solid for dendritic and nondendrit ic structures. 

only small strains (<0.10)  are obtained even at very 
long times for a given initial pressure. See, for example, 
the lower curves in both Figs. 8(a) and (b). For lower 
fractions solid (~0.35),  however, the strain increases 
very slowly at first and then abruptly accelerates; this is 
shown by the upper curves of Figs. 8(a) and (b). This 
rapid increase in strain was found to be associated with 
visible cracks, such as seen in the photographs in the 
bottom row of Fig. 6, and /o r  exudation of liquid into 
cracks formed between dendrites or liquid flow out of 
the dendrites to the periphery of the sample as seen in 
the photomicrographs in Figs. 9 and 10. 

Moreover, the forging pressures required to achieve a 
given amount  of deformation in the dendritic samples 
are much higher than those for the corresponding 
nondendritic samples. This is shown in Fig. I 1, which 
compares the initial forging pressure, P0, to achieve a 
strain of 0.10 in 5 min at various fractions solid for the 
different types of structures. The pressures required 
with the nondendritic structure are approximately two 
orders of magnitude lower than for the dendritic 
structure. 

Fig. 10--Typical  microstructures of  co lumnar  dendritic alloy 
deformed with stress axis perpendicular to dendritic growth direc- 
tion. Po = 273 kPa,  f s  = 0.40, final strain = 0.10. (Note exuded li- 
quid layer.) 

B. Rheological Analys is - -Newtonian  Model 

The simplest way to analyze the results obtained in 
this study is to assume that the semisolid alloy being 
squeezed behaves like a Newtonian fluid. Such an 
assumption would be a reasonable first approximation 
for a thixotropic material, provided the shear rates are 
low and do not vary greatly within the sample during 
the test. As will be seen later, the results obtained using 
this simplified model are closely similar to those ob- 
tained using the more appropriate "power  law" model. 

Consider the squeezing flow problem between two 
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Table I. Experimental Data 

Experiment Temperature,  Fraction Initial Total  
Number  ~ Solid, f~ Pressure, kPa Strain, e 

Experiments on Nondendri t ic  Structures 
1 186 --- 1 0.60 170.4 0.541 
2 186 + 1 132 0.456 
3 186 +-- 1 101 0.284 
4 186 • 1 85.2 0.271 
5 191 - 1 0.55 77.5 0.516 
6 191 • 1 62 0.502 
7 191 +-- 1 46.5 0.504 
8 191 • 1 38.75 0.503 
9 194 • 1 0.50 38.75 0.572 

10 194 • 1 31 0.492 
11 194 • 1 23.2 0.500 
12 194 • 1 11.6 0.506 
13 197 • 1 0.45 15.5 0.497 
14 197 +-- 1 13.6 0.484 
15 197 • 1 11.6 0.491 
16 197 • 1 7.75 0.504 
17 198 • 0.5 0.40 13.6 0.602 
18 198 • 0.5 9.3 0.551 
19 198 • 0.5 5.4 0.503 
20 198 • 0.5 3.9 0.505 
21 200 --- 0.5 0.35 11.6 0.502 
22 200 --- 0.5 7.75 0.502 
23 200 • 0.5 3.9 0.452 
24 200 -• 0.5 3.1 0.405 
25 202 --- 0.5 0.30 2.32 0.451 
26 203.5 • 0.5 0.25 3.9 0.507 
27 203.5 • 0.5 1.55 0.615 
28 205 • 0.5 0.20 1.55 0.666 
29 205 --- 0.5 0.8 0.500 
30 207 • 0.5 0.15 0.8 0.556 

Experiments  on Equiaxed Dendritic Structures 

31 194 • 1 0.50 186 0.152 
32 197 • 1 0.45 283.4 0.154 
33 197 • 1 180 0.151 
34 198.5 - 0.5 0.40 179.6 0.151 
35 198.5 + 0.5 98.8 0.138 
36 198.5 _+ 0.5 46.9 0.063 
37 200 • 0.5 0.35 183.2 0.603 
38 200 • 0.5 84.7 0.484 
39 200 ___ 0.5 80.3 0.318 
40 200 • 0.5 63.6 0.265 
41 200 • 0.5 38,1 0.313 
42 202 • 0.5 0.30 63.4 0.420 
43 202 2. 0.5 42.7 0.379 

Experiments  on Longitudinal  Columnar  Dendritic Structures (growth 
direction parallel to stress axis) 

44 202 --- 0.5 0.30 281.2 0.163 
45 202 • 0.5 276.5 0.649 
46 202 • 0.5 185.8 0.617 
47 2Q5 • 0.5 0.20 47 0.583 

Experiments  on Transverse Columnar  Dendritic Structures (growth 
direction perpendicular to stress axis) 

48 198.5 + 0.5 0.40 273 0.100 
49 198.5 - 0.5 139.3 0.051 
50 202 • 0.5 0.30 281.6 0.106 

Fraction solid was calculated using Scheil equat ion with a constant  
'partition ratio of k = 0.t0. 

plates where the material under test has an initial 
radius R0, height h0, at t < 0. A constant force, F, is 
now applied to the top plate and maintained for times 
t ) 0. As a result, the plate separation, h, changes with 
time t, Fig. 2. 

The original derivation for the plate separation 
equation for a Newtonian fluid is due to Stefan? 9 This 

solution was applied to the parallel-plate viscometer by 
Dienes and Klemm I~ and by Gearhart  and Kennedy? 6 
The differential form of their solution for the case when 
the fluid does not completely fill the space between the 
plates is: 

3 1 ~ v 2 ( d h )  
F = 27rh 5 ~ -  [5] 

w h e r e / ~  is  t h e  v i s c o s i t y  o f  t h e  f l u i d ,  v is  t h e  v o l u m e  o f  
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Fig. 12--Typical  plot of  3vh0(1 th 4 - 1 lh4)187rPo vs t ime for partially 
remelted nondendri t ic  samples.  Fraction solid, fs = 0.50. Tests  con- 
ducted at four  different initial pressures. 
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the material, h is the instantaneous height of the sample 
and t is time�9 In the usual case of the parallel-plate 
viscometer, the sample size is chosen equal to the platen 
size, so the area of compression remains constant 
during the test�9 In this work, the sample was always 
smaller than the platen area, and for this case, the 
solution of Eq. [5] was obtained by first integrating 
f romh  = h 0at t = 0 to yield: 

1 1 87rFt 
- [ 6 ]  h 4 h g 3/.tv 2 

Rewriting Eq. [6] and substituting [4] yields: 

87rP0 h 4 - ~ [71 

Equation [6] indicates that the viscosity ~ may be 
calculated by plotting (11h a - 1 /ha)  vs  time, t. This 
method was used by Dienes and Klemm to determine 
the viscosity of polyethylene and by Gearhart  and 
Kennedy for molten polystyrene and cellulose acetate 
butyrate (i.e. at low shear rates where these materials 
exhibit simple Newtonian behavior). 

Figure 12 is a typical plot of strain-time data, from 
this work, based on Eq. [7]. Viscosity is the reciprocal 
slope of  this plot�9 It is seen to vary only slightly within 
a given test (after initial startup) and to vary more 
markedly with P0. In using this Newtonian approxi- 
mation to describe the data herein, the viscosity, 
instead, was calculated from the differential expression 
in Eq. [5] at several different times during the test. 

For a Newtonian fluid, the shear rate, "~, at any 
instant during compression is given by, 

6 r z  d h  

= h 3 d t  [8] 

where r is the radial distance from the center of the 
specimen and z is the vertical distance from the 
centerline. The average shear rate, ~;av, obtained by 
integrating throughout the volume is: 

2~r R hi2 
zf, v = y y ~ , r d r d z  [9] 

V 0 0 

Combining [8] and [9] and integrating yields: g. 

R d h  
" Y a v -  2h 2 d t  [10] o"' 

Q. 

where R is the radius of the specimen at time, t. ~" 
ca) 

Combining [10] and [5] and using v = TrR2h gives, 
r 

r 

The maximum shear rate, 3) . . . .  obtained by substituting >t~ 
r = R , z  = h / 2 i n E q . [ 8 ] i s  

3 R  d h  E 

"r - h 2 d t  = 6~aV [12] "-~ 
t~9 
o In analyzing the experimental results, using the 

simpler Newtonian model, the viscosity was calculated 
directly from Eq. [5] and the average shear rate from 
Eq. [111. 

Figure 13 is a plot of these calculated viscosities and 
shear rates for all the nondendritic runs listed in Table 

I. It may be seen that the viscosity decreases with 
increasing shear rate at constant fraction solid, indi- 
cating that the material is not Newtonian. Moreover, 
the data points lie along straight lines over a range of 
shear rates greater than 3 orders of magnitude, while the 
viscosity itself varies by as much as 2 orders of 
magnitude�9 

Perhaps surprisingly, data for the equiaxed dendritic 
specimens (before cracking) also plotted linearly vs the 
average shear rate. This is shown in Fig. 14. Calcu- 
lations were made along points on the strain curves 
before the rapid increase in strain rate that is associated 
with cracking or segregate formation. 

C. Rheological Analysis--Power Law Model 

The non-Newtonian, two-parameter, Ostwald-de- 
Waele or "power-law" model is widely used to describe 
the rheological behavior of pseudoplastic materials and 
has been used for a number of liquid-solid slurries, 
including clay-water-oil slurries, polymer blends and 
filled polymers. 2226 This model assumes a relationship 
of the form, 

/x = m,~(" ~) [13] 

where m and n are experimentally determined con- 
stants. 

The original solution to the plate separation problem 
for a power-law fluid is due to Scott. ~ ~.]2 Others, notably 
Leider and Bird, ~3 Na ~4 and more recently Grimm ~5 
have rederived Scott's equation. These authors have all 
considered the case where the fluid being squeezed fills 
the region between the plates, and is continuously 
ejected from the plate region during compression. The 
area of contact is thus always constant. In this work, a 
closely similar equation is derived but for the case of a 
sample of constant volume being compressed between 
two large plates. The derivation is given in Appendix A. 
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The final result is: 

h o (3n + 5"~ i,J, kt [14] 
h= l+t  )ho 

where 

k --- ~ d ~ ( n  + 3) [15] 

Equation [14] is valid only in the limit h << R which 
generally corresponds to long times of deformation. 

Using these equations, it is possible to calculate the 
power-law parameters m and n for all the nondendritic 
experiments performed. Briefly, this involves replotting 
the experimental data using the following equation, 
valid for long times. 
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Fig. ! 8 ~ a l c u l a t e d  viscosity v s  fraction solid at different shear  rates 
using power-law equat ion for partially remelted Sn-15 pct Pb 
nondendri t ic  alloys. 

2/7 
log(1 - e) 3n + 51~  

2n ( 3 n + 5  ho(,+i)/,k)) [16] 

so that m and n may be obtained from the slope and 
intercept of a plot of log (1 - e) vs log t at long times. 
The details of this analysis may be found in Appendix 
B. The calculated values of m are plotted in Fig. 15 as a 
function of fraction solid. The experimental points fall 
essentially on a straight line on a semilog plot and a 
least square fit yields: 

m = 10.5 exp (20.6f,) 0.15 < f ,  ~ 0.60 [17] 

Figure 16 is a plot of the calculated values of n vs 
fraction solid. There is more scatter here than in the 
case of the parameter m, but for fs  ~ 0.30 the data may 
be adequately described by a straight line, yielding the 
following relationship between n and fraction solid, f~, 

n = -0 .3 9  + 1.78fs 0.30 < fs  < 0.60 [18] 

Combining Eqs. [13], [17] and [18] yields the follow- 
ing relationship between viscosity, shear rate and frac- 
tion solid for the semisolid, nondendritic, Sn-15 pet Pb 
alloy, 

log/~ = 1.02 + 8.94fs 

+ 1.78fs log "~ - 1.39 log "~ [19] 

o r  

/~ = a exp (bfs) ~l (~i~+<t) [20] 

wherea  = 10.5, b = 20.6, c = 1.78 a n d d  = - 1.39. 
Equation [19] is plotted in Fig. 17. Note the close 
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Fig. 19--Plot of viscosity v s  shear rate for Sn-15 pct Pb nonden- 
dritic alloys. High shear rate data obtained from Rheocast slurries. 
Low shear rate data are for the remelted or Thixocast slurries. 

quantitative agreement of the results obtained using this 
power law analysis with those obtained using the 
simpler Newtonian expressions (Fig. 13). Figure 18 
plots the same data as/~ vsf~ for different constant 
shear rates, that is, in a form comparable to the earlier 
data of Joly and Mehrabian in Fig. 1. Finally, Fig. 19 
shows data from this work plotted on the same graph 
with earlier data of Joly and Mehrabian 9 and Spencer et 
aL ~8 obtained at much higher shear rates. Note that if 
the data obtained in this work were extrapolated to the 
much higher shear rates of the earlier studies, the 
predicted viscosities would be much higher than those 
observed in the studies on Rheocast slurries. Stated 
differently, the "power law model" used herein, with 
constant coefficients m and n, is valid only over a 
limited range of shear rates (10 -5 ~ 3; < 10-') and not 
over the entire seven orders of magnitude range in this 
figure. 

DISCUSSION 

In all suspensions reported in the literature, the 
power-law constant, m, increases with increasing vol pct 
solids. 2~-29 This work shows similar results for the Sn-15 
pct Pb Thixocast slurry. 

In the case of the power-law index, n, rather different 
results are obtained. In particular, this appears to be the 
only reported instance of a pseudoplastic (or thixo- 
tropic) material where the index n increases with 
increasing fraction solid. 

In many pseudoplastic suspensions (examples are 
CaC% filled polypropylene, polystyrene/polypropylene 
blends and clay-water-oil slurries), 21 ~4 nearly parallel 
curves are obtained on a log-log plot of viscosity vs 
shear rate for different wt pct or vol pct of the second 

phase. Thus, in most pseudoplastic suspensions the 
power law index, n, is relatively independent of fraction 
solid. In most dilatant suspensions, however, (for ex- 
ample corn starch in glycerin) 25 the power-law index, n, 
is found to increase with vol pct solids. In other dilatant 
suspensions (such as TiO 2 in water, or sucrose solutions) 
n is relatively constant, especially at low shear rates; at 
high shear rates, the slope of the viscosity-shear rate 
plots change considerably and n is greatly influenced by 
vol pct solids. 26 Finally, in some pseudoplastic latexes 
(for example, polystyrene latex) the power-law index, n, 
increases with vol pct solids but in others such as 
Neoprene latex, 28,29 the power-law index, n, is a function 
of vol pct solids as well as the shear rate or shear stress. 

It is also interesting that the semisolid "Thixocast" 
alloys exhibit pseudoplastic behavior at shear rates as 
low as 10 -5 s ~. Most polymers and other pseudoplastic 
materials become Newtonian at these low shear rates. 

Finally, from an engineering standpoint it has been 
shown that extremely low forging pressures are needed 
to deform semisolid Thixocast alloys to very large 
strains. The forging pressures used in conventional 
forging of fully solid alloys are of the order of tens of 
thousands of pounds per square inch. For the Thixocast 
alloys studied here, the forging pressure is only of the 
order of tens of pounds per square inch, that is, lower 
by approximately three orders of magnitude. While the 
strain rates used in this investigation were about 1 to 2 
orders of magnitude lower than the strain rates used in 
forging fully solid alloys, the fact that these Thixocast 
alloys are "pseudoplastic" or "thixotropic" would only 
improve the gains in forging pressures that may be 
obtained by using an initially Rheocast charge to forge 
industrial components at high strain rates. 

CONCLUSIONS 

1) Over the range of shear rates obtained in this 
investigation (10 -5 to 10-~ s-~), the semisolid Thixocast 
alloys are pseudoplastic and the viscosity decreases with 
increasing shear rates. The pseudoplastic behavior of 
these alloys may be described by the power-law model, 
~t = rn~;"-'. 

2) The power-law parameters, m and n, may be 
obtained directly from an analysis of the long-time 
behavior of the measured strain-time curves. 

3) Both the power-law parameters, m and n, increase 
with increasing fraction solid. The power-law constant, 
m, increases exponentially with fraction solid, fs, being 
given by 

m = a e x p ( b f s  ) 

while the power-law index, n, increases following a 
linear relationship of the form, 

n =  c f s + d  

for fraction solids greater than about 0.30. 
4) The forging pressures for the Thixocast alloys are 

about three orders of magnitude lower than the forging 
pressures used in forging fully solid alloys and about 
two orders of magnitude lower than forging pressures 
with semisolid dendritic alloys. The Thixocast alloys 
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deformed easily without cracking to very large strains 
while the dendritic alloys needed much higher loads, 
cracked easily and deformed with great difficulty. 

APPENDIX A 

Analysis of Strain-Time Relation 
for Power-Law Fluid Compressed 

Between Two Large Parallel Plates 

For a power-law fluid, 13 

Or. ,- i  Ov. [211 "r,~ = - m  3z 3~- 

where v~ is the radial velocity and m and n are 
constants. 

Assuming h << R (which normally corresponds to the 
limit of long times), the normal velocity of flow, v,, can 
be neglected in comparison with the radial velocity, v~. 
Also, from circular symmetry, v o is zero. With these 
assumptions, the basic equations for the flow field 
become, 

1 3 3v~ 
Continuity - (rv,) + = 0 [22] r G  G 

0e 0 ( 0q~ 
Momentum 3~-- = - m 3zz - 3z ] [231 

3P 
- 0 [ 2 4 ]  

3z 

With the boundary conditions 

z = 0: 3v./3 z(r,o) = 0 [25] 

z = ~ :  v~ r, - d r  

[26] 

r = 0: v~(o,z) = 0 [27] 

r = R: p (R )  = P0 [28] 

Equation [24] means that p is independent of z. Hence, 
integrating [23] twice with respect to z, 

Vr = ( _  1),/. dp~l/~ 
dr] 

• [ ( ~ ) ( " + ' ) / " - z  ("+o/"] [29] 

Next, integrating the continuity equation over z, 

dh 2 3 [ h/2 
dt - r 3r kr o f v,dz) [301 

Integrating [30] over r 

r dh hi2 
dt  = - 2  f vrdz [311 

0 

Substituting [29] in [31] and integrating the pressure 
gradient so obtained gives, 

P - P ~  1 ( -  

[32] 

Here R is radius of the specimen at time, t. 
Integrating over the surface of the plates gives, 

F = ( -  1) n ~rR n+3 

• { [2n + 1~ -la,+,,/,I dh'~" 

Since the fluid does not completely fill the space 
between the plates, R varies with time, t. However, 
since the volume is constant, 

R2h = R~h o 

Substituting this in [33] and letting d o = 2Ro gives, 

dt [k2n + 1] 
~ r n ( n  +3))  i/, ho- l (n+ 3)/2.1h[5(.+ l)/2nl 

[341 

Let 

k = ~ a ~ ( n  + 3) 

Thus, 

dh 
dt = kh~ (" + 3)/2n1 h [5(, + o/2,1 

Integrating from h = h 0 at t = 0 

(n+3)/2n] t 

[351 

[361 

[37] 

For n = 1, m = /x this reduces to Eq. [6] in the text. 
The shear rate, 37, at any point (r,z) within the fluid is 

given by 

~V r -- 2(dh/ /d t )  ~2FI + l~[_Z .~l/n [38] 
~" = 3z = h2 k ~ - n  ] ~ - ~  ) r 

For n = 1, this reduces to the Newtonian shear rate 
quoted in the text, Eq. [8]. 

Rewriting [37], 

h =  h 0 ( (3n + 5~ ]2n/(3n+5, 
1 + k ~ J h o ( " + O / " k t ~  [39] 

Equation [39] is the modified form of Scott's equation 
for the case where the fluid does not completely fill the 
space between the plates. The original Scott equation, 
applicable where the fluid completely fills the space is, 
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( ( w )  ).',-', h~ = 1 +  h0(" + 1)/. kt 

The engineering strain, e, is given by 

[40] 

e =  1 -- 

, ink,) ,4,, 
Equat ion  [41] is the theoretical strain-time curve for a 
power- law fluid. 

Let  t = fin when h = ho/2. Then  f rom [39], 

Fho do / ho [42] 
d 3 - k~ tl/2 

where 

k~ = 4 ~)n 4 5 1  .... ~ ....... ~n + 3]  [43] 

A P P E N D I X  B 

Determinat ion of Power-Law Parameters 
m and n from Experimental  Data  

Equat ions  [36], [41] and [42] suggest three inde- 
pendent  methods of determining the power-law pa- 
rameters n and m. 

Method  I 

F rom [36] 

( d h )  5 ( n + l )  
l~176 - d t  - 2n logl0h 

+ logj0 (kh0-[~.+31n.1} [44] 

Hence, a plot of lOgl0 ( - d h / d t )  vs log~0 h should yield a 
straight line with a slope of [5(n + 1) ]/2n. The 
intercept at log~0 h = 0 gives the values of m. This 
method  has been discussed by Oka  2~ and Van Wazer  et 
al 3~ but  no experimental  results were presented. Gandhi  
and Burns 32 used a modif ied form of this equat ion to 
determine the power- law parameters  for glass-filled 
D M C  in a constant  strain-rate experiment.  

Me thod  II 

Rewrit ing Eq. [42] 

[Fho~ ( d ~ 1 7 6  [45] 
lOgl0 [ ~ 0  ~) = logl0 k 0 + n log,0 \ tl/2 ] 

so that  a plot  of  log (Fho/d3o) vs log [ (do/ho)/qn] should 
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yield a straight line with a slope n for a power-law fluid. 
Leider and Bird 33 used this method  to determine m and 
n for a hydroxyethylcel lulose solution. Accord ing  to 
these authors  only a single point  on the strain curve 
(h0/2, tt/2) is necessary to determine m and  n and a 
complete  analysis of the strain curve is unnecessary,  as 
in Me thod  I. 

Method  I I I  

F r o m  Eq. [41] 

In (1 - e) = - x 

( /3n+5 '2n  ] 0 ) I . . . .  I h ~"+ I)/n In 1 + ~  kt [46] 

For  l << ([3n + 5]/2n) ho{"+~)/"kt, i.e. at long times, 

( 2n ) 
l n ( l  - e) = - J~n--+-5 l n t  

3Ji + 5 In t 2,~ [471 

which is of the form, 

l n ( l  - e) = a l n  t + b  [48] 

Hence a plot of In (1 - e) vs In t should yield a straight 
line at long times: n being obtained from the slope of 
this line and m from the intercept at In (1 - e) = 0. 
This approach  allows the power-law parameters to be 
obta ined directly f rom the measured strain-time curves 
and does not  seem to have been used previously. The m 
and n values plotted in Figs. 15 and 16 were calculated 
using this long time approx imat ion ,  Eq. [48]. 
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