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Assuming ideal plastic behavior for an isotropic matrix containing a misfitting spherical 
precipitate, the total amount  of work expended during elasto-plastic deformation is 
calculated and compared with the total strain energy in the corresponding pure elastic state. 
For precipitates larger than one micron (/~m), the effective yield stress is taken as the 
macroscopic yield stress while for smaller precipitates, size-dependent yield stresses are 
obtained from the Ashby-Johnson model. In the case of coherent submicron precipitates, the 
effective yield stress becomes the theoretical yield strength and thus plastic relaxation is not 
possible unless the transformation stress is extremely large. For incoherent submicron 
precipitates, the effective yield stress is approximately inversely proportional  to the 
precipitate radius, r. Hence plastic relaxation again is not possible when r % 10 nm, but 
when r ~ 100 nm the strain energy can decrease by 10 ~ 40 pct at a misfit of 3 pct. For 
supra-micron particles, however, the ratio of the effective yield stress to the shear modulus 
becomes 10 _3 or less, and plastic relaxation can reduce the strain energy by factors of 3 to 15 
at misfits of 1 to 3 pct. Under  this circumstance, the plastic zone becomes wide, its radius 
ranging from 3 to 5 r. 

THE strain energy associated with a solid state phase 
transformation diminishes the net driving force and 
hence the rate of reaction. In some cases the strain 
energy is greater than the thermodynamic driving force, 
precluding the transformation itself. Plastic relaxation 
of the transformation stress and strain energy associ- 
ated with the formation of misfitting precipitates has 
been thought to assist the progress of the reaction. 
Examples of such relaxation in the matrix phase include 
the observation by Kinsman, Sprys and Asaro j of 
dislocation tangles in the Cu matrix surrounding Fe 
precipitates and the finding by Rigsbee and VanderA- 
rend 2 of a high density of dislocations in the ferrite 
regions near small martensitic regions in dual-phase 
steels. 

Because of the absence of basic laws governing 
plasticity, as compared with Hooke 's  law in elasticity, 
exact details of the plastic relaxation process remain to 
be worked out, and are furthermore likely to be 
material-dependent.  Nevertheless, considering the im- 
portant nature of the problem in relation to phase 
transformations, precipitation hardening, and so forth, 
it seems worthwhile to estimate the extent of plastic 
relief of the transformation stress by assuming a simple 
stress-strain behavior. For mathematical  tractability we 
assume perfect plastic behavior for the matrix phase 
and neglect the crystallographic nature of plastic flow. 
Thus the matrix phase is considered to yield under the 
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condition of a constant yield stress* and the yielding is 

* Strain-hardening behavior of the matrix phase will be considered 
in a follow-up paper? 

assumed independent of the orientation of the stress 
axis. However, a relationship between the precipitate 
size and yield stress will be considered based on the 
model of Ashby and Johnson?  

We shall first obtain the stress, strain and strain 
energy associated with a misfitting spherical precipitate 
in the absence of plastic relaxation, i.e., under purely 
elastic conditions, by the method of Chris t ian)  Then, 
employing the foregoing assumptions and the solution 6,7 
of a classical problem in plasticity theory, the elasto- 
plastic deformation of a thick hollow sphere under 
internal pressure, the total strain energy is determined 
for a misfitting spherical precipitate when plastic relax- 
ation takes place in the matrix with a particle size- 
dependent yield stress. These results will be compared  
with their counterparts  in the elastic case. 

T H E O R Y  

A. Pure Elastic State 

Let a misfitting spherical precipitate, whose radius is 
a(1 + e) in the absence of constraints, be introduced 
into a spherical hole of radius a in an infinite matrix 
with shear modulus/~ and Poisson's ratio e. The 
solution of the misfitting sphere model has been ob- 
tained and discussed by many  investigators 5,8'9 but is 
reformulated here in the manner  of Christian 5 for 
comparison with the elastoplastic case in a later section. 
We use spherical coordinates whose origin is at the 
precipitate center. Suppose that the effective radius of 
the precipitate is a(1 + fie) under the constraint of the 
matrix. Because of symmetry,  the tangential displace- 
ments as well as the shear stresses and shear strains are 
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all zero and the radial displacement  u is a funct ion of 
the radial distance r. Further,  the equilibrium equat ions 
in the absence of b o d y  forces reduce to 

do~ 2(o~ - %) 
d r  + r - O, [l] 

where o~ and  o e are radial and tangential  stress com-  
ponents,  respectively. The strains are related to the 
radial displacement  u by 

d u  u 
er ~" drr ' e~ = - r .  [21 

For  the third diagonal  components ,  o, = o o and e, = e 0 
are implicitly assumed. Hooke ' s  law provides 

1 
er = 2 ; ( l  + l') {Or -- 2rOe},  

1 
{ var + (I - v )o . } .  [31 e~ = 2/,(1 + p) 

Substituting Eqs. [2] into Eqs. [3] and combin ing  with 
Eq. [1] leads to: 

d2u 2 du 2u 
d r  2 + re = O, r d r  

whose general solution is: 

u = CLr + ( '2 / r  2. [4] 

The boundary  condit ions are 

II  . . . .  = U a = l ~ C a ,  l l r =  0 = U . . . .  ~ -  0, 15] 

if the initial state is taken to be the introduct ion of the 
compressed precipitate into the hole of radius a. The 
displacements are thus 

u = fl~r; r < a [6(a)] 

H = f l s  r > a. [6(/))1 

Equat ion [6(b)] represents the displacement  in the 
matrix relative to the unstressed state. However,  since 
the initial state chosen for the precipitate is when it has 
been stressed from radius a( I + ~) to a, we have the 
displacement  u = (fi - l)cr relative to the unstressed 
state. Substituting u = (fi - I)r into Eqs. [2] yields the 
elastic strains within the precipitate: 

1 e, = e~ = (fl - l)c. [7] 

Again employing Hooke ' s  law when the precipitate has 
a shear modulus/** and Poisson's  ratio v* furnishes the 
elastic stress components ,  

1 + v *  
1 = o/ = 2/** (fi - l)c. [8] o~ 1 - 2v* 

Similarly, substi tution of Eq. [6(b)] into Eqs. [2] gives 
the elastic strains in the matrix phase as: 

ey = - 2 e ~  = - 2 f i e  - [91 
r j  

Again ,  appl icat ion o f  H o o k e ' s  law (Eqs. [3] to Eq. [9] ) 
provides the elastic stress componen t s  in the matrix as 

o , =  -2o~= --4/*fls ( a ]  3. [10] 
\ r !  

Since the matrix and precipitate are in equilibrium, the 
radial stress c o m p o n e n t  oy  must  be equal to the 
internal hydrostat ic  stress otr at the matrix: precipitate 
interface, r = a. This gives an expression for/3: 

,8 = a(~, - 1) + 1 '  [111 

where a = (1 + v) /3(1 - v) and 7 is the ratio of the 
bulk modulus  K* of the precipitate to that of the 
m a t r i x ,  K , i . e . , T  = K * / K  = /**(1 + v*)(1 - 2v)//*(l 
+ v) (1 - 2v*). Therefore,  the total elastic strain 
energy associated with a misfitting spherical precipitate 
becomes, per unit volume of the precipitate, 

1 z z 1(4 . .~3) - '  / 
Eel = ~ (30re , )  + ~ ( o y e ~  + 2o~e~ 4) 

a 

6/*o~T~ 2 
X 4 v r Z d r  . . . . .  [12] 

~ ( ' ) , -  1 ) +  I 

B. Plastic Deformat ion  

When an effective elastic stress exceeds the yield 
stress of a metallic crystal, the crystal will undergo 
plastic deformat ion rather than remain in a purely 
elastic state. As shown by Eq. [8], the stress state within 
the spherical precipitate is hydrostatic.  Since a hydro- 
static stress state does not induce yielding, m the pre- 
cipitate is considered to remain in a purely elastic state. 
t tence  plastic deformat ion may be taken to occur only 
in the matrix adjacent  to the precipitate, as shown 
schematically in Fig. I, where r r is the radius of the 
plastic zone. 

For  mathematical  simplicity two addit ional assump- 
tions are included in the model for the plasic behavior 
of the matrix. First we assume that the flow stress-strain 
behavior  of the matrix phase is independent  of the 
strain rate and of the stress orientation. Secondly, we 
neglect strain-hardening,  so that the matrix phase is 
taken to be a perfectly plastic material whose flow 
stress-strain curve is horizontal at the yield stress, %. 

1. E l a s t o - p l a s t i c  She l l .  Based on the previous 
assumptions,  we can now use the solution to the prob- 
lem of  the elasto-plastic de fo rmat ion  of  a thick 

~las• 

Fig. 1--Schematic of the plastic zone surrounding a misfitting 
spherical precipitate. 
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hollow sphere under internal pressure. 6,7 Consider the 
deformed region of the matrix to be the thick hollow 
sphere whose internal surface of radius a is subjected 
to a pressure p by the misfitting spherical precipitate. 
We note from Eqs. [8], [10] and [11] that by identify- 
ing p as 4#/3e, the stress components in the matrix can 
be expressed in a p u r e  elastic s ta te  as 

Or= --200= _p(a)3. [131 

We first let the misfit c be positive and add later a minor 
change for the case of c ~ 0. 

We adopt the von Mises yielding criterion 1~, namely 
that yielding occurs when an equivalent stress o e 
exceeds the yield stress %, where o e is given by* 

* Tresca's maximum shear stress theory ~ furnishes the same result. 
The yield criterion can also predict that no plastic deformation occurs 
within the spherical precipitate under a hydrostatic stress state. 

1 
0 e = ~ [ ( 0  r - -  0 0 )  2 "]- (O 0 - -  Oq~) 2 + (Og a -  O~)Z] I/2 

= o o - o r .  [14] 
Substitution of Eqs. [13] into Eq. [14] yields o~ 
= ( 3 / 2 ) p ( a / r )  3 in the purely elastic state. Therefore, 
yielding will start at the matrix: precipitate interface 
when the pressure p reaches the critical value 2%/3. As 
the internal pressure p increases beyond the critical 
value, a plastic zone develops adjacent to the matrix: 
precipitate interface, extending to a radius depending 
upon the magnitude of p. Consider an instantaneous 
condition, when the plastic front of radius rp separates 
the inner plastic shell from the outer elastic region. The 
equilibrium equation (Eq. [1]) for the plastic shell, in 
conjunction with the yield condition, o 0 - o~ = Oy, 
becomes: 

do~ 2% = 0. [15] 
dr  r 

Integrating Eq. [15] and using the boundary condition 
o r = - p a t r  = a: 

Or = Oe - -  Oy = 2 o y l n ( r )  - p;  a < r < rp. [16] 

By substituting the critical value 2%/3 for p and rp for a 
in Eq. [13], the stress components in the elastic region of 
the matrix are obtained as 

o~ = - 2 o  o = - 3 -  rp < r .  [171 

Since the stresses must be continuous at the plastic 
front, the plastic zone radius rp is obtained by equating 
Eqs. [16] and [17] at r = rp. This yields an expression 
for r p: 

{, rp -- a e x p  2% [181 

By applying the relationship between the displacement 
and the radial stress in the purely elastic state given in 
Eqs. [6(b)] and [10] to the radial stress given in Eq. [17], 

the displacement outside thep las t ic  zone is found to be: 

O yr  p3 
u = 6/*r 2 ; rp ~ r. ~ [19] 

Substituting Eq. [19] into Eqs. [2]: 
3 

er = - 2e~ = - 3/* ; r p < r. [20] 

Within the plastic zone, the strains are the sum of the 
plastic and elastic strains. Since the elastic strains are 
related to stresses by Hooke's law, we may write 

du  1 
e, = dr  - 2/*(1 + v){~ - 2voo} + ee,, [21] 

and 

u 1 
e~ r 2/,(1 + v) { - v ~  + (1 - v)oe}  + eg. 

[22] 

Here, e[ and e G denote plastic strain components in the 
plastic zone. In order to obtain the displacement u in 
the plastic zone, we use the incompressibility condition 
for plastic strains, e~ + 2e G = 0. Multiplying Eq. [22] by 
2, adding the result to Eq. [21] and using Eqs. [16] 
yields: 

du 2u 2o~ ( r )  2 % - 3 p  
d~ + - r  = ~K In + 3K ' [23] 

for which the general solution is 

u = ~ r l n  - ~ r  + r~. [24] 
\ / 

Substituting Eq. [19] into Eq. [24] with r = rp and 
rearranging the result with Eq. [18] furnishes an ex- 
pression for u: 

(r) 3 2Oy p o, rp 
U = 3 K r l n  - 3 ~ r  + 6 a ~  ~ ;  a < r  < r p .  

[251 

From Eqs. [21], [22] and [25], the strains in the plastic 
zone are finally given as 

2Oy [r] p Oy [ r p ]  3 -  

e r = 3~[ln~a)+ 1] 3K 3a/* ~ r ]  

w 
e0 ln l s ] -  + 

o,{ 3} 
e f =  - 2 e ~ = 3 - ~  1 -- 

a < r  ~ r p .  

[261 

Equations [16] to [20], [25] and [26] completely describe 
the stress, strain, and displacement in the matrix 
provided that the internal pressure p is known. We note 
that if the incompressibility condition for the total 
strains, i .e. ,  er + 2e0 = 0 is assumed, the solutions given 
in Eqs. [25] and [26] would reduce to those of Eqs. [19] 
and [20] because K = ~ and a = 1 in that situation. 
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2. Equilibrium Internal Pressure. In order  to deter-  
mine the equi l ibr ium pressure p which obtains  af ter  
plastic relaxation,  we use the same procedure  employed  
in the case of the pure  elastic state. First, the cont inui ty  
of the (constrained)  d i sp lacement  at the matrix:  pre- 
cipitate interface requires that,  f rom Eq. [6(a)] and  Eq. 
[25] with r = a, 

pa o, r 3 
flea -- 3K + 6al~ a 2 

or 

Oy f ~  = exp - 1 , [27] 

where Eq. [18] is used. The  cont inui ty  of the radial 
stress o~ at the matr ix:  precipi ta te  interface yields, f rom 
Eqs. [8] and  [16] with r = a, 

p = 3K~,c(! - fl). [281 

Substi tut ing Eq. [28] into Eq. [27] for p provides an 
equat ion for fl: 

} 6a/~e(y + B - , / B ) =  exp 1. 20,. (I - B) - I . 
O'y 

[291 

Equat ions  [28] and [29] combined  with the stress, strain 
and d i sp lacement  in the previous section solves the 
p rob lem comple te ly  for a given set of mater ia!  pa ram-  
eters,/z,  v, %, c and ~. 

3. Strain Energy. The elastic strain energy inside the 
spherical  precipitate,  Wpp ,, per unit vo lume of the 
precipi tate  is readily given as 

Wppt = 3~ = 2 p(I - fl)c = 27 K , [301 

where p and fl are given in Eqs. [28] and [29], 
respectively. 

The  total work consumed  in the plastic zone is the 
sum of the plastic strain energy and  the elastic strain 
energy. First, we seek the plastic strain e n e r g y ,  Wplasti c. 
The  plastic work  per  unit vo lume of an element  located 
at dis tance r is, by definit ion 7 

J ( r )  = y do~'(r) = y % d e ~  

eer e8 

= f orde: + f 2oodeg, [31] 
0 0 

where the usual tensor  suffix nota t ion  is used in the first 
equat ion.  F r o m  the incompress ibi l i ty  condit ion,  e~ 
+ 2eg = 0 for the plastic strains we have de~ = - 2deg. 
Subst i tut ing this relat ionship into Eq. [31] and noting 
that  Or -- 00 = -- Oy = a constant ,  we obtain  

e p 
r 

~ e ( r )  = f (O r - -  oo)de ~ = -Oye~ 
0 

_ _ o y  - -  1 *, 
3a> 

[321 

* Note that the result is path-independent. 

where the expression for eP in Eqs. [26] is used. 

In tegra t ing  ~ p (r) over  the plastic zone and  dividing the 
result by the precipi ta te  volume:  

rp 0 2  

Wphstic = (43a----~3)' a y 3 ~  { ( ~ )  3 - 1 } 47rr2dr 
2 1 = o~ { (~e) 3 In ( r 2 ) -  ~ (~P)3 -~ ~) . [33] 

The  elastic strain energy, W~last~ c, stored in theplastic 
zone is given as 

(47_)' 
+ 2o 0 (e0 

, a 2 

-- e , ) } 4 ~ r r 2 d r .  [34] 

Subst i tut ing Eqs. [16] for the stresses and  Eqs. [26] for 
the strains into Eq. [34] and rearranging,  

3 
02 ( r p ~  2 l oe, 

Welastic v ~ a ] 9K + 6al~ - 6a~t - 2K " 
[351 

Similarly, the elastic strain energy stored outside the 
plastic zone is 

W~ = 2 
rp 

X (o,e, + 2oeeo)47rr2dr, [36] 

and subst i tut ing Eqs. [17] and [20] into Eq. [36] yields: 

W"ut 6p~ \ a ! 

Combin ing  Eqs. [30], [33], [35] and [37], the total strain 
energy involved in elastoplastic de fo rmat ion  per unit 
volume of the spherical  precipitate is: 

W = W p p  t -t- Wplasti c "t- Welas6c-.[- W o u  t 

2P2K a~2{16 (r_p)3 ( r 2 ) )  = 1 Y) + Oy - + In . 

[38] 

Finally, in the case of c ~ 0, i.e., when the misfit 
parameter ,  c, is negative, the only change  required is to 
replace Oy with - % in all the above  relat ionships 
because the yield condi t ion now becomes  o 0 - o, 

- -  O'y. 

C. Effective Yield Stress 

A typical annea led  crystal  is known to have a 
dislocation densi ty of 106 ~ 108 c m / c m  3. If the size of a 
precipi tate  is of the order  of a mic ron  (/~m) or larger, the 
precipi tate  can have a high probabi l i ty  of having in its 
ne ighborhood  dislocat ions which contr ibute  to plastic 
de fo rmat ion  induced by the t r ans fo rmat ion  stress. In 
the case of a submic ron  particle, however ,  the availa- 
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bility of nearby preexisting dislocation which might 
contribute to the generation of further dislocations 
would be negligible. Therefore, the effective yield stress, 
ay, defined in the previous section, may be considered 
as a macroscopic yield stress for a supramicron par- 
ticle, but as a size-dependent critical stress for a sub- 
micron precipitate. 

Experimental results~Z.~3have indeed shown that for 
certain systems plastic relaxation of a misfitting pre- 
cipitate depends upon the particle size, i.e., for a given 
misfit, there is a critical precipitate size below which no 
plastic deformation is observed. The existence of a 
critical size for a given misfit is related to the fact that 
the transformation stress must be larger than the stress 
necessary for the generation of dislocations. Several 
models have been developed for nucleation of dislo- 
cations at the particle interface. Brown et al ~4.~5 con- 
sidered generation of prismatic dislocation loops while 
Ashby and Johnson 4 studied generation of shear dis- 
location loops. Although other investigators ~6.j7 have 
extended or modified these two models, a relationship 
of the form e* "" Aa" for the critical misfit, e*, to just 
cause nucleation of a dislocation for a given particle 
radius, a, seems to prevail regardless of the details of the 
model. The theoretical value of the exponent, n, is about 
0.7 ~ 0.9 and is in good agreement with experi- 
ments) 2,~3 Therefore, in order to formulate the size- 
dependence of the effective yield stress, we employ 
Ashby and Johnson's modeP with some modifications 
for mathematical simplicity. 

As shown in Fig. 2, the Ashby and Johnson model 
begins with a shear dislocation loop which resides in the 
plane of maximum shear stress due to the misfitting 
precipitate. In terms of Cartesian coordinates, the stress 
in the matrix in the purely elastic state (Eq. [10]) is given 
by4.8 

a~=2ffe,.a3[ 6Ur3 3xiXJ]r5 [39] 

where r  2 = x 2 + x22 + x 2,e~ = f l e and6  u i s t h e  
Kronecker delta function. The maximum value of the 

X 2 

/ /  \ \  
/ ,, 

I ~ ~ : 2  x, 

,, / oo, 

ppteJ~'\\x.. ~ ~ / / / /  

---- .J..---- A 3 - 

Fig. 2--A shear dislocation loop of radius r~ in the plane of x 3 
= a / - V f 2 .  

shear stress, og, occurs in the plane x 3 -- a~ V ~. The 
change in energy of the system, A~, due to the 
introduction of a shear dislocation loop of radius, r l, is 4 

ttb2rt[2-p][ (8~) ] 
/Xq~ = 4 ~1-~,][ In - 2 + f f  o~bdA, 

[40] 

where the first term is the self strain energy of the 
dislocation loop, the second term is the interaction 
energy between the dislocation and misfitting precip- 
itate, the integration is over the loop area and b is the 
Burgers vector. Ashby and Johnson numerically inte- 
grated the interaction term by considering a rectangular 
loop with the same area as the circularly shaped loop. 
For mathematical simplicity, we use a circular loop but 
instead of integrating employ an average shear stress 
approximated by the o~ value at the loop center. By 
using o~ at the loop center (see Fig. 2), Eq. [40] 
becomes: 

I~b2r:[2-P~[ln(~-)- 21 
A~/, = 4 ~l-z,][ 

( 1 + V/2p ) [411 - 3~rl~br]ec (1 + V~/~ + p2)5/: ' 

where O = r/a. Taking p = 1/3 and dividing Eq. [41] 
by/~b3: 

~b3 - 0"625 ( ~ )  [ 1 ~ )  - 2  ] 

- -3q r (~ )  2ec ((1 ! + !f-2p __ 
"[- V/2p --b p2) 5/2 } ' 

[42] 

1. Without Activation Energy: Weatherly Criterion. 
The introduction of a dislocation loop into the system 
without an activation energy barrier requires that Aqb be 
negative for all r:. Assuming a minimum dislocation 
loop size of rz = 2b* and requiring A~ = 0 from Eq. [42]: 

* The difficulty associated with the definition of the dislocation 
core limits the meaning of a dislocation loop of "minimum" size. 
However, the choice of r t = 2~4b  does not change Eq. [43] 
significantly. 

e~=0.0256( (1 + V:2p+pz)Sn) 
1 + Vrjp ' [431 

where t) = 2b/a. Since the equivalent stress o e is equal 
to 6/~ec(ec = /3e) at the precipitate: matrix interface 
before plastic deformation starts (see Eq. [14]), we 
may infer that 

Oy = 6ffe~ 

= 0.154 ((1 + V/2O + oz)'n'~ 

Since p << 1 in typical cases, o~ is essentially inde- 
pendent of particle size and thus approximates the 
theoretical yield strength,/~/2~r. ~8 This is referred to as 
the Weatherly criterion ~9 by Ashby and Johnson. 

[441 

METALLURGICAL TRANSACTIONS A VOLUME 11A, NOVEMBER 1980--1841 



2. 
feasible to in t roduce a shear dis locat ion into the system 
even when an act ivat ion energy barr ier  must  be over-  
come  by  a mechan i sm such as one based  upon  a 
supersa tura t ion  of point  defects. 4 In this case, the 
cri terion for  genera t ion of a shear loop is given by two 
s imul taneous  condit ions.  For  a given precipi ta te  radius, 
a, they are A~( r  t = rT, e~ = e~) = 0 a n d  OAqb(r I = r~, 
e~ = e~) / Or / = 0. 4 These  condi t ions  yield: 

l[8rT'~ 3 + 3 V~ o - 7p 2 - -  5 V/2p 3 

nl, -I = l + o/v  - 50 - 3 v %  
[451 

and  

e ; -  

With Activation Energy. It  can also be energetically 

2] 3~r kr,][ln(-8-~) - 

X [(1 + k/gp + 02) 5/2 ] 
[ I + k/2p . . . . . . .  ] '  [46] 

where p = rT/a. As in the previous case, we again 
define ayx as 

% = 6~e~ 

2] 
[ ! !  + ~/20 + O2)s/e 1 • 1 + V21, ] " '  147] 

For  a given precipi tate  radius, a, the values of r 7 and p 
are first de te rmined  from Eq. [45] and  then used in Eq. 
[47] to evaluate  o,.. 

3. Brooks Criterion. Clearly, a necessary condi t ion for 
a dis locat ion loop to generate  at the interface of a 
misfi t t ing precipi tate  is that  the d i sp lacement  must  be 
larger than Burgers vector,  b This is known as the 
Brooks criterion 2~ which may  be expressed as 

ae, >_ b. [481 

Again employ ing  the relat ionship o,  = 6tree, we have, 
for the yield stress, 

% = 6t~b/a. [49] 

As we will see later, when a precipi tate  is large (a >>b), 
the Brooks criterion is usually satisfied. However ,  when 
the particle is small, say, less than 400 in radius, this 
cri terion canno t  be met,  and  the sys tem remains  in a 
purely elastic state. 

R E S U L T S  

A. Large Precipitates (Supramicron  Radii)  

As poin ted  out  earlier, the effective yield stress, Oy, 
can be considered as a macroscop ic  yield stress for 
precipi tates  of abou t  a micron  or above  in radius. This 
is due to the l ikelihood that  preexist ing dislocat ions will 
be avai lable  in its immedia te  ne ighborhood .  The  yield 
stress is, therefore,  part icle size independent .  We now 
calculate  the stresses, strains, and  strain energy as 
funct ions of the stress-free t r ans fo rmat ion  strain for two 

different  yield stresses and  for var ious rat ios of the 
precipi tate  to the mat r ix  bulk moduli ,  3'. The  yield 
stresses are selected so as to represent  low and high 
t empera tu re  behavior ;  the var ia t ions  in modul i  exem- 
plify the difference in behav ior  be tween hard  and soft 
precipitates.  

Figure 3(a) and  (b) por t ray  the ratio of the total strain 
energy with plastic relaxat ion to the total strain energy 
in the cor responding  pure elastic state as a funct ion of 
the misfit, e, for three different  y's. In Fig. 3(a) the value 
of % / ~  is t aken  as 10 -3 while 10 5 is used in Fig. 3(b). 
No te  that  the energy scale in the latter case is enlarged 
by a factor  of 10 to po r t r ay  the greater  plastic relaxation 
at the lower yield stress. The  a m o u n t  of plastic relax- 
at ion is seen to increase as the bulk modu lus  of the 
precipi ta te  increases relative to that  of the matrix.  

When  -/>> 1, i.e. when the precipi tate  is elastically 
much harder  than the matrix,  all of the elastic strains 
are a c c o m o d a t e d  within the matr ix  phase (see Eqs. [7], 
[9], [1 I[). In the reverse case of , / ~  0, the elastic strains 
are fully a c c o m m o d a t e d  within the precipitate.  Hence  
when "y is large, since the pressure, i.e., the radial stress 
at the matrix:  precipi tate  interface (see Eqs. [10] and 
[16]), is propor t iona l  to the magni tude  of the misfit, the 
extent of relaxation increases with misfit as shown in 
Figs. 3(a) and (b). 

Figure 4 shows that  the fract ion of the t ransformat ion  
strain energy dissipated as plastic work and the plastic 
zone size both increase with t r ans fo rmat ion  strain, e. 
This reflects the limited ability of the matr ix  to ac- 
c o m m o d a t e  large strains elastically. Figure 5 presents 
the normal ized stress as a funct ion of the normalized 
radial dis tance for o ,  = 10 3/*, ~, = 5 and  e = 0.2 pct. 
The  value unity for r /a  cor responds  to the matrix: 
precipi tate  interface. The  stress dis t r ibut ions in the 
purely elastic state are represented by dashed  curves 
while those of the elastoplastic state are displayed by 
solid curves. We note that the difference in stress state 
between the two cases are substant ial  within the pre- 
cipitate as well as in the plastic zone, but not  in the 
elastic region of the matrix.  Inside the plastic zone, the 
tangential  stress, %, is quite different  f rom its coun- 
terpar t  of the pure elastic case in that  its sign is 
reversed. 

Figure 6 exhibits the total strains (e r, e0) as well as the 
plastic strains (e~P, eg) as a funct ion of reduced radius. 
We note  that  the plastic strains d isappear  at the plastic 
front,  i.e., at r = rp. A s  in the case of the stress, the 
elastic strain within the precipi tate  is reduced by a 
factor  of ca. 4 by plastic relaxat ion in this example.  

As ment ioned  in In t roduct ion,  the assumpt ion  of 
ideally plastic behavior  is a severe approx imat ion .  
However ,  in a s tudy of the de fo rma t ion  of tungsten 
single crystals, Rose et a121 found a fairly b road  plateau 
in the stress-strain curve for a [110] tensile axis, and a 
less b road  one for a [100] axis at r o o m  temperature .  
Their  results give an effective Oy/lZ ~ 5 • 10 -3. In 
addit ion,  the model  requires an average  yield stress 
taking into acount  all the or ienta t ions  of the tensile 
axes. In view of these arguments ,  the results of Fig. 3(a), 
ob ta ined  with Oy = 1 0 - 3 / _ t ,  is considered to represent  
bet ter  the actual  si tuation at r o o m  tempera ture .  On the 
other  hand,  oy = 10-5/, (Fig. 3(b)) m a y  be appl icable to 
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Fig. 3 - -The  ratio of the total strain energy 14" 
with plastic relaxation to the total strain 
energy Ee~ in the corresponding pure elastic 
state vs the misfit ~. Three different values for 
the bulk modulus ratio T are considered in 
each case. (a) o.,. = 10 3# and (b) o, 
= 10-~ff. 
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some high temperature situations, say, above the re- 
crystallization temperature, at which there is practically 
no strain hardening. Note that at a misfit of 1 pct, the 
total strain energy W is --40 times less at % = lO-Sff 
than a t  10-3/,i , .  

B. Small Precipitates (Submicron) 

The general argument presented in the previous 
section is still valid for a small precipitate, but the yield 
stress must be considered to be dependent on the 
precipitate size and is thus higher than the macroscopic 
yield stress of --10 -3 - 10-5/.t. In Fig. 7, the nearly- 
horizontal line (broken) represents the yield stress 
without the need to overcome an activation energy (Eq. 
[44]). This is the Weatherly criterion ~9 and is essentially 
particle size-independent except for very small precip- 
itates. The yield stress is basically equal to theoretical 
yield strength, ff/2~-. Weatherly lz~9 suggested that co- 
herent  precipitates such as Ni3A1 in Ni-A1 alloy* may 

* Strictly speaking, the present analysis is not valid for non- 
spherical precipitates. However, for a given misfit, it should be easier 
for cuboidal precipitates such as Ni3A1 to have plastic relaxation than 
for spherical precipitates, because of the large stress concentrations at 
the corners and edges? 4 

require a transformation stress higher than the theo- 
retical yield strength in order to have plastic relaxation. 
The transformation stress in the Ni-based creep resis- 
tant alloys is actually less than the yield stress and thus 
there should be no plastic deformation around the Ni3 
(A1, Ti, Si) particles, which is consistent with experi- 
mental observations. 

An incoherent boundary is a source of point defects as 
well as dislocations. Therefore, for a given transfor- 
mation stress an incoherent precipitate will be able to 
undergo a plastic deformation with greater ease than 
the corresponding coherent case. The yield stress with 
activation energy given in Eq. [47] represents this case 
and is indicated by a solid line in Fig. 7. The yield stress 
is now strongly dependent on the particle radius, a. For 
comparison with actual observations, several experi- 
mental results 12 14.22.23 are given in Fig. 7. Although the 
experimental data are somewhat scattered, probably 
due to the variations in experimental technique, they 
are in a good overall agreement with the yield stres's as 
predicted by Eq. [47]. Since % and a are linearly related 
on a log-log scale, we may approximate the relationship 
between them as 

% = 3.131.t/a 0"794, [50] 

where a is in units of  the Burgers vector, b. The 

METALLURGICAL TRANSACTIONS A VOLUME 11 A, NOVEMBER 1980-- 1843 



exponent n = 0.794 is in excellent agreement with the 
Ashby and Johnson value 4 of  0.79 and in quite good 
agreement with the Brown and Woolhouse value of 
0.86. u 

Figure 7 also displays the Brooks criterion (Eq. [49]) 
as the broken-dashed line in the upper left-hand corner. 
When the particle is very small, say, less than 40b ( ~  10 
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Fig. 4 - - T h e  plast ic  z o n e  radius r~, vs  the misfit  c and  the ratio 
Wr~,,~,i~/W vs the misfi t  c. a is the p rec ip i t a te  radius and  Wo~,,,,,r is the 
plas t ic  s t ra in  energy.  

nm), the necessary and sufficient condition for plastic 
deformation becomes the Brooks criterion. Therefore, it 
is unlikely that a precipitate of less than 10 nm would 
have in its vicinity dislocation tangles due to a trans- 
formation strain of the usual magnitude, i.e., 2 ~ 5 pct. 
The Brooks criterion may indicate that there should be 
no substantial plastic relaxation associated with G.P. 
zone of 5 nm in radius even though their stress-free 
transformation strains are often quite large. 25 

Finally, Fig. 8 displays the ratio of the total strain 
energy with plastic relaxation to the total strain energy 
in the corresponding pure elastic state as a function of 
precipitate radius for three different bulk modulus 
ratios, y. Here, the misfit e is taken to be 3 pct, and the 
Brooks criterion (Eq. [49]) is used for the yield stress 
requirement when a ~ 2 4 b  and Eq. [50] is employed for 
a > 24b. The corresponding plastic zone radii are also 
plotted with broken curves in Fig. 8. We note that when 
the particle size is less than 5 0 b ( ~ 1 3  nm), plastic 
relaxation is not energetically favorable compared to 
the purely elastic state, even if the precipitate is three 
times harder than the matrix phase (y = 3). For this 
misfit of 3 pct, Fig. 8 also shows that the plastic zone 
size is about I to 4 times larger than the precipitate 
radius and is not sensitive to the bulk modulus ratio. 

S U M M A R Y  

The degree of plastic relaxation is strongly dependent 
on particle size. When a precipitate is of the order of 
micron or above, the effective yield stress is identified 
as a macroscopic yield stress while for smaller particles 
we deduced a size-dependent yield stress from the 
Ashby-Johnson model. 4 In the latter case, there are two 
effective yield stresses which depend upon the 
coherency of the matrix: precipitate interface. One is 
essentially independent of the precipitate size and equal 
to theoretical yield strength, ff/2Tr. For coherent pre- 
cipitates, the transformation stress must overcome this 
high yield stress in order to have plastic relaxation. ~9 
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curves exhib i t  the stresses in the cor respond-  
ing pure  elast ic  state.  The  stresses are nor- 
ma l i zed  wi th  respect  to o,.  
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The other effective yield stress is a strong function of 
precipitate radius. It approaches the low-temperature 
macroscopic yield stress, 10-3/t, when the precipitate 
size becomes of the order of a few microns. It applies to 
misfitting incoherent precipitates and is shown to be in 
good agreement with the published experimental data. 
With this yield criterion, the strain energy associated 
with a spherical precipitate of r = 100 nm(- -400b)  is 
found to decrease by 10 ~ 40 pct at the misfit value of c 
= 0.03 through plastic relaxation. The theoretical plas- 

tic zone size is shown to be 1.5 ~ 1.8 precipitate radii, 
and is in a fair agreement with the plastic zone size of 2 

4 precipitate radii observed in the work of Ashby, 
Gelles and Tanner  in the Cu-SiO z system. ~3 When the 
precipitate becomes much smaller, the effective yield 
stress increases beyond the theoretical yield strength 
because of the Brooks criterion, 2~ and thus practically 
no plastic deformation can occur for small precipitates 
of r < 10 nm unless their t ransformation strains are 
exceptionally large. 

These results are relevant to nucleation kinetics, 
since, from the present analysis, there would be no 
plastic relaxation for small nuclei of < 10 nm whether 
they are coherent or incoherent. Since interfacial energy 
is in most cases the dominant  term during nucleation 
and coherent interfaces have a lower energy than 
incoherent interfaces$ 6 a precipitate can be considered 
coherent or at least partially coherent during its early 
stages of nucleation and growth. Therefore, the 
coherency of the interface dictated by the nucleation 
barrier may further delay the onset of plastic defor- 
mation until the precipitate grows to substantial size. As 
the precipitate becomes large, the interface may change 
from a fully coherent to a partially coherent structure 
by punching out either prismatic or shear dislocation 
loops provided that the t ransformation stress exceeds 
the theoretical yield strength. On the other hand, if the 
structures of the precipitate and matrix phases are much 
different from each other, the maintenance of 
coherency will be difficult even in the early stages of 
precipitation and plastic relaxation will occur easily as 
long as the t ransformation stress is larger than the 
corresponding size-dependent yield stress. 

When coherency is maintained during growth and the 
transformation stress is less than the theoretical yield 
strength, the particle may grow without plastic relax- 
ation until it reaches a size of a micron or above. 
Preexisting dislocation sources in the neighborhood of 
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the precipitate may then become active in generating 
dislocations since the macroscopic yield stress can be 
easily surpassed by the transformation stress. Under 
this circumstance, the strain energy associated with a 
misfitting spherical precipitate of supra-micron size can 
decrease by a factor of 3 to 15 at misfit of 1 ~ 3 pct 
through plastic relaxation. The plastic zone becomes 
wide, its radius ranging from 3 to 5 precipitate radii. 

When plastic relaxation is possible, the stress and 
strain distributions are altered quite drastically in the 
elasto-plastic state relative to those in the purely elastic 
state. Plastic relaxation can markedly reduce the 
stresses in both the precipitate and the plastic zone and 
in addition causes the tangential stress component  to 
change sign in the latter region. Outside the plastic 
zone, however, the stress and strain distributions are 
similar in both cases. We admit  that the present model 
has rather considerable limitations resulting from the 
assumption of elastic isotropy, ideal plastic behavior 
and a spherical precipitate morphology, which were 
made in order to make the problem mathematically 
tractable. To achieve wider applicability anisotropic 
elasticity effects must be considered, and strain-harden- 
ing of the matrix and deviation from sphericity in shape 
should be taken into account. Although these factors 
may change some of the present results, the general 
aspects obtained with the present simple model may be 
indicative of the behavior to be expected in the more 
general case. 

N O M E N C L A T U R E  

a spherical precipitate radius 
e, radial strain component  
e~ radial plastic strain component  
e 0 tangentials train component  
eg tangential plastic strain component  
K bulk modulus of the matrix phase 
K* bulk modulus of the precipitate phase 
rp plastic zone radius 
u radial displacement 

~ equal to(1 + v)/3(I  - v) 
fl constrained displacement parameter  
7 equal to K * / K  

misfit parameter  
ff shear modulus of the matrix phase 
if* shear modulus of the precipitate phase 
v Poisson's ratio of the matrix phase 
v* Poisson's ratio of the precipitate phase 
o,. equivalent stress 
o, radial stress component  
o,. yield stress of  the matrix phase 
o~ tangential stress component  
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