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Controlled and effective p - t y p e d o p i n g is a key ingredient for in situ g r o w t h of
high performance H g C d T e photodiode detectors. In this paper, we p r e s e n t a
detailed s t u d y of p-type d o p i n g with two arsenic precursors in metalorganic
chemical v a p o r deposition (MOCVD) of HgCdTe. D o p i n g r e s u l t s from a new
precursor tris-dimethylaminoarsenic (DMAAs), are reported and compared to
t h o s e obtained from tertiarybutylarsine (TBAs). Excellent d o p i n g control has
been achieved u s i n g both precursors in the concentration r a n g e of 3 x 1015-
5 × 1017cm-3w h i c his sufficient for a wide variety ofdevices. Arsenic incorporation
efficiency for the same g r o w t h temperature and p a r t i a l pressure is f o u n d to be
h i g h e r with DMAAs t h a n with TBAs. For d o p i n g levels up to 1 × 1017 cm-3, the
alloy composition is not significantly affected by DMAAs. However, a t h i g h e r
d o p i n g levels, a n increase in the x-value is observed, possibly as a r e s u l t of
surface adduct formation ofDMAAs dissociative products with dimethylcadmium.
The activation of the arsenic as acceptors is f o u n d to be in the 1 5 - 5 0 % r a n g e for
films g r o w n with DMAAs following a stoichiometric anneal. However, a site
t r a n s f e ra n n e a l increases the acceptor activation to near 100%. Detailed tem-
p e r a t u r e dependent Hall measurements and modeling calculations show t h a t
two shallow acceptor levels are involved with ionization energies of 11.9 and 3.2
meV. Overall, the data indicate that DMAAs r e s u l t s in more classically behaved
acceptor doping. This is most likely because DMAAs has a more favorable surface
dissociation chemistry than TBAs. Long wavelength infrared photodiode a r r a y s
were fabricated on P-on-n heterojunctions, g r o w n in situ with iodine d o p i n g from
e t h y l iodide and arsenic from DMAAs on near lattice matched CdZnTe (100)
substrates. At 77K, for photodiodes with 10.1 and 11.1 ~m cutoff wavelengths,
the average (for 100 elements 60 x 60 pm2 in size) zero-bias resistance-area
product, RoA are 434 and 130 ohm-cm2, respectively. Q u a n t u m efficiencies are
>50% at 77K. These are the h i g h e s t RoA data reported for M O C V D in situ g r o w n
photodiodes and are comparable to state-of-the-art LPE g r o w n photodiodes
processed and t e s t e d u n d e r identical conditions.

K e y w o r d s : Arsenic doping, HgCdTe, metalorganic chemical v a p o r
deposition (MOCVD), photodiodes, tertiarybutylarsine,
tris-dimethylaminoarsenic

I N T R O D U C T I O N
A key requirement for in situ g r o w t h of b a n d g a p

engineered Hgl_ CdxTe devices by v a p o r p h a s e e p i t -
axy is the a b i l i t y to extrinsically dope with stable
d o n o r and acceptor dopants. The d o p i n g levels need to
be precisely controlled and d o p i n g profiles precisely
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positioned with respect to heterostructures involving
different x-values. Furthermore, the d o n o r and accep-
tor i m p u r i t y a t o m s need to be located a t the correct
lattice s i t e s to be f u l l y active. In metalorganic chemi-
ca l v a p o r deposition (MOCVD) of HgCdTe by the
interdiffused multilayer process (IMP), we have dem-
onstrated excellent control in iodine d o n o r d o p i n g
with e t h y l iodide (EI).1 The favorable dissociation
chemistry of E I and low diffusivity of iodine a l l o w
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Fig. 1. SIMS A s concentration data a s a function of TBAs and DMAAs
partial pressures. The Cd/Te ratio was maintained at 1.3 and other
growth condit ions were essentially the same in all of these runs.

ab rup t I-profiles while avo id ing t h e problems o f
m e m o r y effects with In precursors due t o t h e i r reac-
t iv i ty with t h e Te-precursors. I-doped HgCdTe films
have b e e n shown1 to exhibit electr icalproper t ies a n d
lifetimes comparable to t h o s e o f s ta te-of- the-ar t In -
d o p e d HgCdTe f i lms grown b y liquid p h a s e epitaxy
(LPE).

Fo r s table a c c e p t o r dop ing o f HgCdTe for photo-
d iode appl ica t ions , arsenic is t h e m o s t widely used
d o p a n t . In MOCVD, t h e precursors used fo r As-dop-
ing h a v e been ars ine a n d a n u m b e r o f s u b s t i t u t e d
a r s ines . Of t h e s e , t h e s u b s t i t u t e d ars ines ter t iary-
bu ty la r s ine (TBAs)2-7 a n d phenyla r s ine8 h a v e b e e n
t h e m o s t widely u s e d recent ly s ince they are liquid
sources a t ambient temperatures a n d are sa f e r alter-
na t ives to a rs ine . In MOCVD-IMP, good con t ro l in As-
dop ing with TBAs has b e e n obtained~.~over t h e range
o f 3 × 1015-5 × 1017 cra 3. We have repor ted i n situ
growth a n d t h e character is t ics o f long wave leng th
infrared (LWIR) a n d m e d i u m waelength infrared
(MWIR) HgCdTe homojunc t ion a n d he te ro junc t ion
photodiodes 6; as well as independent ly accessed back-
to -back MWIR/LWIR dua l -band photodiode 9 detec-
t o r s , u s i n g TBAs as t h e As precursor .

In p rev ious work,7 we have demons t ra t ed t h a t
lifetimes a t 80K o f As-doped M O C V D HgCdTe with
TBAs were a lways be low t h e radiat ive limit. Wi th a
new precursor , tris-dimethylaminoarsenic (DMAAs)
however , t h e corresponding As-doped material exhib-
i ted lifetimes 7,1°a t t h e radiat ive l imi t a n d comparable
to t h o s e ach ieved in Hg-rich LPE grown HgCdTe.11

There are important differences be tween t h e TBAs
a n d DMAAs precursors which inf luence As-doping o f
HgCdTe. TBAs o r {CH3}3CAsH2 is a n ars ine b a s e d
p recu r so r where one - H from AsH~ has been subs t i -
t u t e d with t h e te r t i a rybuty l g r o u p . Clerjaud e t al.12

h a v e shown t h a t As-doping o f CdTe with AsH3 causes
t h e incorpora t ion o f As-H pairs in addi t ion t o As.
Since As incorpora t ion from TBAs in MOCVD-IMP
HgCdTe occurs in a n a n a l o g o u s manner, where TBAs
is in jec ted dur ing t h e CdTe growth cycle, it is conceiv-
able t h a t similar As-H complexes are incorporated.
A l t h o u g h t h e As-H complexes are expected t o b e
electrically neutra l , t h e y are likely t o b e recombi-
na t ion centers in t h e HgCdTe a n d t h u s c a u s e t h e
lifetimes t o b e reduced . In a P-on-n he te ro junc t ion
t h e i r presence in t h e cri t ical dep le t ion region would
t h u s b e detr imental a n d adverse ly affect t h e perfor-
mance o f t h e photodiodes.

A key r e a s o n fo r o u r choice of t h e DMAAs (or
[{CH 3}2.N]3-As) p recu r so r is t h a t it has n o As-H b o n d s
a n d therefore it is expected t h a t As-H complexes will
n o t b e incorpora ted in t h e As-doped films. The im-
p r o v e d lifetime resul t s7,1° with DMAAs are consistent
with this expecta t ion . In o u r init ial s t u d y o f LWIR P-
on-n heterojunctions grown in s i t u with DMAAs we
h a v e shown7 t h a t t h e photodiodes exhibited charac -
ter is t ics which are a t l e a s t comparable to t h e best
grown with T B A s . DMAAs also is a more convenient
p recu r so r fo r As-doping o f HgCdTe s ince its v a p o r
pressure (0.96 Torr a t 15°C) is two orders o f magni-
t u d e lower t h a n t h a t o f TBAs a t 15°C. Standard
bubb l e r opera t ion is t h u s possible with DMAAs in-
s t e a d o fdouble di lut ion inject ion required with TBAs
for controlled As-doping. 6,7

In this paper , we describe a deta i led s t u d y of As-
dop ing with DMAAs o f HgCdTe films grown on n e a r
lat t ice matched CdZnTe (100) s u b s t r a t e s . The i s sues
re la ted to t h e chemical incorpora t ion o f As are ad-
d r e s s e d as well as its ac t iva t ion efficiency as a n
acceptor. Detai led Hall measurements on homoge-
neous ly d o p e depilayers are repor ted a n d t h e da t a are
modeled to determine t h e acceptor ionizat ion e n e r g y .
In specific a r ea s , t h e resul t s are compared with As-
dop ing u s i n g T B A s . Finally, new resul t s on photo-
d iode d e t e c t o r p e r f o r m a n c e o f LWIR P - o n - n
heterojunctions, grown in situ with DMAAs are re-
p o r t e d . T h e s e m e s a e t c h e d photodiode ar rays were
fabr ica ted in a 64 x 64 a r r a y configuration with
backs ide il lumination. The character is t ics o f t h e
M O C V D in situ grown photodiodes are compared to
s ta te-of- the-ar t LPE grown double l a y e r he t e ro -
junc t ion photodiodes fabr ica ted a n d t e s t e d u n d e r
ident ica l conditions.

EXPERIMENTAL APPROACH

The MOCVD-IMP growth o f HgCdTe films was
performed on lat t ice matched CdZnTe (nominally 3 -
5% Zn) s u b s t r a t e s a t 360°C. In m o s t o f this work, t h e
or ien ta t ion u s e d was (100)4° toward t h e n e a r e s t (111)
b u t some experiments were performed o n t h e (211)B
or ienta t ion as well. No signif icant differences were
f o u n d in t h e As incorpora t ion in (100) vs t h e (211)B
or ien ted films. A hor izonta l geometry reac to r s y s t e m
was used with elemental Hg a n d s tandard organome-
tallic sources for Cd a n d Te, dimethylcadmium(DMCd)
a n d diisopropyltelluride (DiPTe), The source precur-
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sors were injec ted into t h e reac to r t h r o u g h a single
fas t - swi tch ing manifold. Addi t iona l details o f t h e
growth s y s t e m a n d t h e conditions used h a v e been
desc r ibed previously2, 7 Fo r As-doping with T B A s , the
bubb l e r was ope ra t ed in a dual-di lut ion f low configu-
ra t ion allowing t h e TBAs par t ia l p ressure to be con-
trol led in t h e range o f 2 x 1 0 4 - 5 x 104 atm. The
DMAAs bubb le r was ope ra t ed u n d e r s t andard condi-
t i ons a n d its par t ia l p ressure was var ied in t h e range
o f 5 x 10-s-3 x 10~atm. The As-precursor was injec ted
into t h e reac to r dur ing t h e CdTe growth cycle s ince
t h e Cd/Te ratio can b e easily controlled. The Cd/Te
ratio was var ied from 1.0 t o 1.5 to s t u d y t h e effect o f
this ratio o n As incorporation.

To analyze t h e chemical incorporation levels of As
a n d t o determine t h e d e p t h prof i les , secondary ion
mass spect rometry (SIMS) was employed with Cs* ion
bombardment . The SIMSd e p t h profile measurements
were performed a t Charles Evans a n d Associates o f
Redwood City , CA. Detai led Hall effect measure-
ments were performed as a func t ion o f temperature in
t h e range o f 300-10K. A magnetic field o f 50 kGauss
was u s e d to ensure t h a t t h e effect o f res idua l donors
were minimized.

P-on-n he te ro junc t ion films were grown in situ with
t h e n - type region doped with I a t ( 1 - 2 ) x 10~5 cm 3a n d
t h e p - type cap doped with As a t ( 1 - 3 ) x 10~7 cm-3. Fo r
I a n d As doping, EI a n d DMAAs were u s e d , r e s p e c -
t ive ly . The n- type reg ions were grown to th icknesses
o f 1 4 - 1 6 ~m a n d t h e p - type caps were 2-3 ~m. The
f i lms were subjected t o As site t r ans fe r ac t iva t ion a n d
stoichiometric anneals as described previouslyd

A R S E N I C I N C O R P O R A T I O N R E S U L T S

SIMS measurements were performed for HgCdTe
(nominally x~0.30) layers doped u s i n g TBAs a n d
DMAAs a t va r ious par t ia l pressures. The da t a are
p lo t t ed in Fig . I for epi layers grown with both precur-
sors a t Cd/Te ratio o f 1.3. The da t a clearly indicate
t h a t fo r a g iven p recu r so r par t ia l p ressure As-incor-
pora t ion from DMAAs is significantly h ighe r t h a n
from TBAs, by a fac to r o f 7 to 20, with increas ing
par t ia l p r e s s u r e . This occurs a t l e a s t in part d u e t o t h e
h ighe r dissociation o f DMAAs 13(~50%) t h a n TBAs~4
(~10%) a t t h e M O C V D growth temperature o f 360°C.

In Fig. 2, t h e SIMS d e p t h profile da t a o f a HgCdTe
film with two As-doped reg ions from TBAs a n d DMAAs
are s h o w n . The DMCd a n d DiPTe par t ia l p re s su re s
were kept t h e same a n d t h e Cd/Te ratio maintained a t
1.3 dur ing t h e entire growth r u n . The TBAs a n d
DMAAs par t ia l p re s su re s were ad ju s t ed to 2.2 x 10-6
a n d 3.0 x 10-7 a t m . , respectively, which p r o d u c e d
equiva len t As concen t ra t ion o f 1.2 x 10~7 atoms-cm4.
T h u s , to ach ieve this As concentration, a fac to r o f
a b o u t 7.3 grea te r par t ia l p ressure o fTBAs is required
as compared t o t h a t o f DMAAs. Also shown in Fig. 2,
is t h e composition d e p t h profile as determined from
t h e 12~Te secondary nega t ive ionyie ld , which has been
demons t ra t ed to b e a sens i t ive relat ive measure o ft h e
Cd mole f rac t ion .~5 The abso lu t e Cd mole fract ion o f
t h e layer was determined from IR transmiss ion mea-

surements to b e 0.29. A n inc rease in t h e Cd mole
fract ion d u e to t h e inject ion o f t h e As-precursors is
f o u n d to b e s m a l l a t Ax<0.002 u n d e r t h e s e dop ing
conditions. This is a n important resul t s ince it shows
t h a t t h e As incorpora t ion a n d t h e HgCdTe alloy
composition c a n b e independent ly controlled for dop-
ing levels <1.2 × 1017 c m 3 u n d e r t h e growth conditions
used in t h e p r e s e n t experiments . Some diffusion o fAs
is observed to o c c u r fo r As in t roduced from both
sources which may be due to a small pe rcen tage o ft h e
As atoms incorpora ted in to t h e m e t a lsub la t t i ce sites.

The effect o f h ighe r levels o f DMAAs inject ion on
As-incorporation a n d x-value was s t u d i e d by growing
a l a y e r with two As-doped reg ions with DMAAs par-
t ia l p re s su re s o f 4.2 x 10 7 a n d 2.1 x 104 atm. The
DMCd a n d DiPTe par t ia l p re s su re s were kept t h e
same a n d t h e Cd/Te ratio was maintained a t 1.3
t h r o u g h o u t t h e growth r u n . The SIMS As a n d 125Te
d e p t h profiles are shown in Fig. 3. The dop ing levels
ob ta ined a t t h e two par t ia l p re s su re s are 6 x 1017 a n d
1.6 x 10is a toms-cm-3. T h u s , for a fac to r o f 5 h ighe r
DMAAs par t ia l p r e s s u r e , a n inc rease o f only a fac to r
o f 2.7 in As concen t ra t ion is ob t a ined . Clearly, in this
regime As-incorporation does not inc rease linearly
with increas ing DMAAs par t ia l p re s su re s a n d b e g i n s
t o s a t u r a t e . Figure 3 also shows t h a t a t t h e lower
DMAAs inject ion only a very s m a l lc h a n g e in x-value
occurs, b u t a t h ighe r inject ion o f 2. I x 10-6 a tm there
is a s u b s t a n t i a l i nc rease in t h e Cd mole fract ion with
Ax = 0.08.
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switching the D M A A son and off no other changes were made during
the run.

The inf luence o f As-doping with TBAs on t h e
HgCdTe alloy composition in MOCVD-IMP has been
repor ted b y Bubulac e t al.15 T h e s e au thors observed
a n inc rease in t h e Cd mole fract ion with Ax = 0 . 1 1 5 for
a n As-doping level o f 2 × 1017 cm-3. This is a much
larger c h a n g e in composition t h a n in t h e p r e s e n t work
with TBAs shown in Fig. 2 a n d may b e rela ted to t h e
differences in t h e exact details o f t h e growth condi-
t i o n s . The inc rease in t h e x-value with As dop ing is
qu i te likely d u e t o a d d u c t formation o f TBAs o r a
dissociated As conta in ing p roduc t with DMCd on t h e
CdTe sur face resu l t ing in increased Cd incorporation.
The a d d u c t formation weakens t h e CH3-Cd bond a n d
qui te likely m a k e s t h e sur face DMCd dissociation
more kinetically favoredover desorption. Wi th DMAAs
a l so , in addi t ion t o unimolecular dissociation, a d d u c t
formation occurs with DMCd on t h e film sur face qui te
possibly with partially dissociated DMAAs. At low
inject ion ra t e s , t h e chemical incorpora t ion o f As var-
ies l inearly, b u t a t h igh inject ion second o r h ighe r
o rde r reac t ion kinetics are clearly ev iden t .

In t h e i r experiments on As-doping with A s H3 in
MOCVD-IMP, Capper e t al.16 f o u n d t h a t As was
selectively incorpora ted in t h e CdTe layers only. It
was repor ted t h a t A s H3 forms a n a d d u c t with DMCd,
even a t room tempera ture , a n d t h e pyrolysis o f t h e
a d d u c t a t t h e 410°C growth temperature resu l t ed in
t h e incorpora t ion o fAs in t h e CdTe layer. A s H3 is n o t
expected to pyrolyze a t this tempera ture . It was n o t e d

t h a t a t Cd/Te ratio o f 0.8 a n inc rease in HgTe growth
ra te was observed which resu l t ed in a reduc t ion in x-
va lue . Upon increas ing t h e Cd/Te to 1.2, t h e c h a n g e in
composition was n o t s igni f icant ,however , t h e associ-
a t ed dop ing level was n o t repor t ed . In direct al loy
growth o fHgCdTe both fo r As-doping with AsH317 a n d
T B A s ,5 a reduc t ion in x-value was repor ted when
e i the r o f t h e precursors were injec ted u n d e r o ther -
w i se similar g rowth conditions. This composition
c h a n g e was also a t t r ibu ted to a d d u c t formation o f t h e
As-precursor to DMCd in t h e gas p h a s e .

The mechan i sm o f As-incorporation with t h e pre -
cursors u s e d in t h e p r e s e n t work is dis t inct ly different
from As-doping with A s H3, A key difference is t h a t
A s H3 does not pyrolyze b y itself a t t h e HgCdTe growth
temperature whereas both TBAs a n d DMAAs p y r o -
lyzes albeit t o different degrees. DMAAs s ta r t s to
decompose a t 250°C, is 50% conve r t ed a t 350°C a n d
thermal decomposition is complete a t 450°C.'3 T B A s ,
by compar i son , s t a r t s t o decompose a t 350°C is 50%
converted a t 380°C a n d full dissociation is n o t ach ieved
even a t 550°C.14 The bond dissociation energies fo r
t h e three As precursors fol low t h e o rde r As-H>As-
C>As-N. T h u s , incorpora t ion o f As from DMAAs is
expected to b e m o s t eff ic ient . The t h e r m a l de-
composition temperatures fo r DMAAs suggest t h a t
t h e resul t s shown in Fig . 3 for As incorpora t ion a t
3 6 0 ° C are consistent with both unimolecular t h e r m a l
decomposition, which occurs a t lowinject ion ra t e s , as
well as surface-adduct formation o f As conta in ing
partially dissociated produc t s o f DMAAs with DMCd
a t h igh inject ion rates resu l t ing in increasedx-values .
The two incorpora t ion p a t h w a y s are expected to b e
kinetically compet i t ive a n d will probably be signifi-
cant ly al tered with relatively small changes in growth
tempera tures .

A C T I V A T I O N O F A R S E N I C A S A C C E P T O R S

The efficient incorpora t ion o f As in HgCdTe does
n o t necessar i ly indicate t h a t As atoms are ac t ive as
acceptors. In fac t , t h e amphoteric nature o f As in
HgCdTe is well e s t ab l i shedis a n d for t h e As to b e h a v e
as a n acceptor it m u s t subs t i tu t iona l ly occupy t h e T e -
sub la t t i ce sites. To determine t h e degree o f a c c e p t o r
ac t iva t ion o f t h e As from DMAAs seve ra l homoge-
neous ly As-doped films were analyzed by SIMS con-
cen t ra t ion a n d Hall measurements a t 80K. The film
thicknesses were typically 9-12 pm. Hall measure-
ments were performed on a section o f each film which
underwen t a stoichiometric a n n e a l only a n d a n o t h e r
section o f t h e same film which underwen t b o t h a n
ac t iva t ion a n d a stoichiometric anneal . The ac t iva -
tion a n n e a l was performed a t 4 1 5 ° C a n d t h e stoichio-
metric a n n e a l a t 235°C both u n d e r sa tu r a t ed Hg
pressures. In Fig. 4, t h e measured Hall concentrations
(1/eRH, where RH is t h e Hall coefficient) fo r b o t h
annea l ing conditions are p lo t t ed as a func t ion o f t h e
SIMS As-concentration.

Figure 4 shows t h a t when t h e films are subjected t o
a stoichiometric a n n e a l only t h e a c c e p t o rac t iva t ion is
general ly low vary ing from 15-50%. A t t h e lower As-
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concentrations, be low 1 × 1017 cm-3, t h e ac t iva t ion is
<25% increas ing to 50% at h ighe r concentrations. The
same films af te r t h e ac t iva t ion a n d stoichiometric
anneals exhibit Hall concentrations which are signifi-
cant ly h ighe r a n d c l o s e to 100% a c c e p t o r ac t iva t ion .
T h e s e da t a indicate t h a t in t h e as-grown films a t t h e
lower dop ing leve ls , t h e majority o f t h e As atoms do
n o t subs t i tu t iona l ly occupy t h e Te-subla t t ice s i tes
desp i t e a Cd/Te ratio >1. A t h ighe r dop ing leve ls , t h e
probabi l i ty increases to 50%. The ac t iva t ion a n n e a l
c a u s e s a n effective site t r ans fe r o ft h e As-atoms to t h e
Te-subla t t ice resu l t ing in t h e i r behav ing as accep-
t o r s . The conditions fo r t h e ac t iva t ion a n n e a l in this
work was n o t optimized b u t are similar to t h a t de-
sc r ibed previously 7 a n d fo r site t r ans fe r in As-im-
p lan ted HgCdTe films.19 It is conceivable t h a t a n
effective site t r ans fe r could b e performed a t lower
tempera tures .

The a c c e p t o r ac t iva t ion da t a in Fig. 4 also cor-
robora te t h e inferences made from Figs . 2 a n d 3 t h a t
a t low concentrations very little a d d u c t formation
with DMCd occurs (no c h a n g e in x-value) a n d conse-
quent ly t h e As does not necessar i ly g e t substitution-
ally incorpora ted in t h e Te-sublattice. However , a t
t h e h ighe r DMAAs inject ion rates sur face a d d u c t
formation becomes important a n d therefore forces
t h e As-atoms t o occupy Te-subla t t ice s i t e s . This re -
su l t s in t h e h ighe r a c c e p t o r ac t iva t ion efficiency ob-
s e r v e d when t h e As concentrations are >1 × 1017 cm 3,
pr ior to t h e s i t e t r ans fe r ac t iva t ion anneal .

H A L L C H A R A C T E R I Z A T I O N R E S U L T S

Hall measurements were performed on a large
n u m b e ro f homogeneously As-doped HgCdTe films (x
- 0 . 3 0 ) with DMAAs. The Cd/Te ra t ios dur ing growth
were 1.2 a n d 1.5. The da t a repor ted here were all
t a k e n a t 50 kGauss . The Hall da t a were taken af te r
t h e films were subjected to a n ac t iva t ion a n d a sto-
ichiometric anneal . Film thicknesses were in t h e 9-12
~m range . In Fig. 5, t h e 80K Hall concentrations are
p lo t t ed as a func t ion o f t h e DMAAs par t ia l p ressure
u s e d dur inggrowth . The da t a clearly indicate t h a t t h e
incorpora t ion o f As acceptors is higher , a t t h e h ighe r
Cd/Te ratio a n d t h a t t o ach ieve dop ing levels a t
> 3 × 1017cm-3a ratio o f 1.5 is necessary. Fo r controlled
low dop inglevels o f ~1 × 1016 cm-3, however , t h e lower
ratio o f 1.2 is preferable .

D e t a i l e d t e m p e r a t u r e d e p e n d e n t Hall mea-
surements from 3 0 0 - 1 0 K were performed for As-
d o p e d HgCdTe u s i n g both TBAs a n d DMAAs. The
measured mobility a n d carr ier concentration (1/eRH)
as a func t ion o f i n v e r s e temperature for two x = 0.30
films are shown in F igs . 6a a n d 6b fo r TBAs a n d
DMAAs, respectively. The two films have carr ier
concentrations (NA - ND) a t 80K t h a t are closely
comparable a t 1.82 × 101~ a n d 1.74 × 1016 cm-3. Both
show t h e expected carr ier f reezeout behav io r b u t
exhibit somewhat different temperature dependence.
The da t a for t h e TBAs d o p e d film suggest t h a t more
t h a n one acceptor ionizat ion ene rgy is involved, in
c o n t r a s t to t h e DMAAs d o p e d film for which t h e

i n v e r s e temperature dependence follows a single ex-
ponen t i a l a n d therefore involves a single ionizat ion
e n e r g y . Secondly, t h e 80K mobility fo r t h e TBAs
d o p e d film is lower with a va lue o f 241 cm2/V-s as
compared to 313 cm2/V-s fo r t h e DMAAs d o p e d film
with t h e same carr ier concentration. A t lower tem-
pera tures also t h e mobility o f t h e film d o p e d with
DMAAs is h ighe r t h a n t h e one with TBAs. T h u s ,
a l t hough both precursors p roduce p - type doping o f
HgCdTe, there are c lear differences in t h e tempera-
ture dependence o f t h e Hall d a t a .

M O D E L I N G O F HALL C O N C E N T R A T I O N S
The measured Hall carr ier concentrations for fou r

x = 0.30 As-doped films with DMAAs are p lo t t ed vs
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rec iprocal temperature in Fig . 7. Fo r low carrier
concentrations, <1 x 1017 cm-3, t h e freezeout behav io r
is pronounced b u t less so a t h ighe r concentrations.
A l s o , except a t t h e l o w e s t c a r r i e r concen t ra t ion
(-2 × 10T M cm-3 a t 80K) t h e i n v e r s e temperature
dependence o f t h e log(NA - ND) does n o t fol low a
s t ra igh t line indicat ing t h a t more t h a n one ionizat ion
ene rgy is involved. This behav io r has previously been
n o t e d b y F i n k m a n a n d Nemirovsky2° for both As-
d o p e d a n d Au-doped bulk HgCdTe crystals. T h e s e
au thors f o u n d t h a t two a c c e p t o rlevels were required
to explain t h e temperature dependence accura te ly .

In this work, we h a v e also u s e d two sha l low ac-
c e p t o r levels to model t h e Hall concentration da t a vs
temperature a n d t o determine t h e ionizat ion ener-
gies. The ac t iva t ion energies E 1 a n d Ea2 in meV for
fi t t ing t h e measured Hall da t a are :

E~ = 1725.4/~(x) 2 - [(1.158 × 10~)/dx)](N:) 1/3 (1)

Ea2 = 467.5/e(x) 2 - [(1.158 × 10-4)/~(x)](N )"3 (2)
where t h e sta t ic dielectric c o n s t a n t dx) as a func t ion
o f x-value was determined from empirical re la t ions ,21
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Fig. 7. Experimental ( d a t a points) and calculated (so l idcu rves ) tem-
perature dependence of Hall car r ie r concentration for As-doped
Hgo70Cd0 3oTe films with DMAAs fo r a range of As concentrations.

a n d where N : is t h e number o f ionized acceptors p e r
unit volume. Equa t ions (1) a n d (2) are ident ica l in
form to t h e commonly used express ion22 fo r single
a c c e p t o r levels:

E a = E0 - c~(N a - Nd)l/3 (3)

The hole concen t ra t ion p0(T) as a func t ion of t e rn -
perature was computed from t h e following charge
neutra l i ty equa t ion :

P0 + Nd = Nal/(l+g exp[(Eal - E y k T ] )
+ NaJ(l+g exp[(Ea2 - Ef)/kT]) (4)

where Po is t h e hole concentration, Nal a n d Naz are t h e
concentrations o f t h e acceptors with ac t iva t ion ener-
gies E 1 a n d Eaz, respectively, Efis t h e F e r m i level a n d
g is t h e degeneracy o f t h e a c c e p t o r s t a t e s a n d is
a s s u m e d to be 4.

In Eq. (4), Nd is the free d o n o r concentration, a n d in
m o s t DMAAs doped films a good fit fo r p0(T) was
ob ta ined with Nd= 0. Since E 2 is much lower t h a n E~a,
N 2 is fully ionized a t a much lower temperature t h a n
Nal. Hence in comput ing Eal, Na2 is inc luded in t h e
concentration o f t h e ionized acceptors.

In Fig. 7, t h e model ing resul t s fo r t h e carr ier con-
cen t ra t ion Po(T) are overlaid on t h e measured Hall
d a t a . Except for t h e low acceptor concentration sample ,
t h e fits to t h e experimental da t a are excellent . Fo r t h e
low concentration sample , a single acceptor level
description is sufficient; b u t a t t h e h ighe r concen t r a -
t i o n s , t h e inc lus ion o f two a c c e p t o rlevels is e s s e n t i a l
to fit t h e d a t a .

In Fig. 8, t h e values o f Eal a n d E 2 , determined b y
t h e best fit o f t h e ca lcula ted p0(T) to t h e experimental
Hall d a t a , are p lo t t ed vs a c c e p t o r concentration fo r a
n u m b e ro f As-doped x = 0.30 films fo r which DMAAs
was u s e d . The solid lines are t h e fits u s i n g t h e two-
level model described above a n d h a v e t h e form:
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E~I = 11.94 - 9.63 x 10-6(Nal) u3 (5)
a n d Ea2 = 3.23 - 9.63 x 10~(Na2)1/3 (6)

The concentration independen t As-acceptor ionizat ion
energies Eol a n d Eo2 are thus 11.94 a n d 3.23 meV,
respectively, fo r M O C V D HgCdTe with x = 0.30.

Kenwor thy e t al.23 h a v e repor ted a n empirical ex-
p re s s ion fo r a c c e p t o r ionizat ion energies in bulk
HgCdTe doped with Cu, Ag, As, a n d Sb u s i n g a single
acceptor level. Since this express ion is n o t specifically
der ived from As-doped HgCdTe da t a a lone , it c a n only
prov ide a r o u g h est imate o f t h e ionizat ion e n e r g y .
Us ing t h e i r express ion a n ionizat ion ene rgy o f 13.96
meV is es t imated fo r x = 0.30 HgCdTe. Kal isher24 has
determined E0 o f 10.5 meV for As-doped HgCdTe (x =
0.20) grown from Hg rich LPE. The p r e s e n t work is
t h e f i r s t deta i led analysis o f ionizat ion energies from
M O C V D As-doped HgCdTe a n d are in t h e same range
as t h o s e ob ta ined from bulk a n d L P E material.

P H O T O D I O D E R E S U L T S

P-on-n he te ro junc t ion films, grown in situ with
DMAAs a n d EI p recu r so r s , were processed in to back-
side-i l luminated m e s a e t c h e d 64 × 64 photodiode
ar rays with CdTe passivation. The unit cell area was
60 × 60 ~tm2 a n d t h e junc t ion area was 35 × 35 pm2.
Electrical measurements o n selected photodiodes in
each a r r a y were performed a t 77K by m a k i n g c o n t a c t
t o each se lec ted indium bump by a compute r con-
trol led mechanical probe. The c e n t e r 10 × 10 elements
o f each a r r a y were cryoprobed in this manner. The
zero-bias res i s tance-areap roduc t s RoAoewwere deter -
m i n e d b y u s i n g t h e op t ica l area Aopr o f t h e junc t ions ,
60 × 60 pm2. The spec t r a l responses, cu tof f wave -
l e n g t h s , a n d q u a n t u m efficiencies were measured a t
77K in t h e backs ide illuminated mode for se lec ted
elements o f each a r r a y af te r it h a d been bump-inter-
connected to a 64 × 64 Si CMOS readou t chip.

15-

10"i
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;o 5-

M O C V D H g C d T e (x = 0 . 3 0 )
As-doped with DMAAs

= . - .

, . . . . . . . : • 5 , . . . . : J , i i i - "

1015 1016 1017 1018

NET ACCEPTOR CONCENTRATION (cm-3)
Fig. 8. Ionization energies of severa l As-doped Hgo.7oCdo.3oTe f i l m s
with DMAAs ( d a t a points) determined from the two-level fits shown in
Fig. 7. The so l id l ines are from the two equat ions fo r E,1 and fo r E~.

The average RoAoFr va lue fo r t h e c e n t e r 10 × 10
elements o f each 64 × 64 a r r a y a t 7 7 K i s p lo t t ed vs t h e
measured cutof f wave leng th a t 77K in Fig . 9. In -
c luded in t h e plot are similar da t a from Loral's s t a n -
dard LPE grown HgCdTe ar rays . The processing a n d
t h e t e s t i ng o f t h e M O C V D a n d L P E grown ar rays
were performed u n d e r essent ia l ly ident ica l condi-
t i o n s . Also shown in Fig . 9 is t h e theore t ica l ca lcula-
t ion o f RoA vs cutof f wave leng th a t 77K, fo r n-s ide
diffusion cur ren t a n d A u g e r limited lifetimes fo r no =
1 × 1015 cm-3.

The measured RoAo~r da t a fo r t h e M O C V D films
shown in Fig . 9 app roach t h e diffusion l imi t ca lcula-
t i ons a n d show a t rend ident ica l to t h e LPE d a t a . Fo r
photodiodes with 10.1 a n d 11.1 ~tmcutof fwave leng th ,
t h e average RoA are 434 a n d 130 ohm-cm2, r e s p e c -
t ive ly . T h e s e are t h e h i g h e s t RoA da ta repor ted to-
da t e for M O C V D grown LWIR HgCdTe photodiodes.
The average q u a n t u m efficiency o f t h e MOCVD ar-
r ays are ___50% a n d t h e spec t r a l responses are classi-
cal. Add i t iona l details o f t h e performance o f t h e
M O C V D photodiodes will b e desc r ibed e lsewhere .

S U M M A R Y AND C O N C L U S I O N S

In this paper , we h a v e desc r ibed a deta i led s t u d y o f
arsenic dop ing in MOCVD-IMP HgCdTe with t h e new
precu r so r DMAAs. Control led As-doping in t h e range
o f 1 × 1016-5 × 1017 cm 3 was achieved. This dop ing
range meets t h e requirements fo r m o s t HgCdTe de-
vice applications. S IMSconcen t ra t ion measurements
show t h a t As is incorpora ted in a signif icantly more
efficient m a n n e r from DMAAs t h a n t h e previous ly
a n d more widely used precursor , T B A s . As-doping
from DMAAs c a n be controlled independent ly o f a n y

, 0 4

103~-.

v
, 02

O

101 -

lO0

1 • MOCVD P-ort-n

\ 12 2'2;:,°• L__'"m'n'__L_____

•

P-on-n HgCdTe 84x64 Arrays

A o ~ = 6 0 x t 0 ~ I"T ] K d ~

Average of(enter10xl0 elements

I ' I ' I ' I ' I
8 9 10 11 12 1 3

CUTOFF WAVELENGTH AT 7 7 K ( i l m )

Fig. 9. 77K RoAopT data fo r MOCVD P-on-n heterojunctions (filled
squares) grown in situ with DMAAs fo r As-doping. Each data point is
the average of the cen te r 100 e lements from a 64 x 64 array. For
compar ison s im i la r data from Lora l ' s LPE grown junctions (emp ty
squares) are included. Both types of films were processed and tes ted
in an identical manner .



Improved Arsenic Doping in MOCVD ofHgCdTe and in situ
Growth of High Performance LWIR Photodiodes 1335

changes in the HgCdTe alloy composit ion when the
doping l e v e l is 1 × 1017 cm% For higher doping levels,
the concentration of As does not increase linearly with
the D M A A s partial pressure, most likely d u e to sur-
face adduct formation with D M A A s dissociative prod-
ucts . As a consequence, at high As concentrations the
x-value of HgCdTe increases. For a doping l e v e l of
6 × 1017 cm-3, the change in x-value is negligibly s m a l l
but at 2 x 1018 cm-3 an increase with Ax = 0.08 was
observed.

As-grown, the As-doped films with D M A A s show
only partial activation of acceptors. However, follow-
ing a site transfer activation anneal , the As impurity
exhibits near 100% activation. Detailed temperature
dependent Hall effect measurements indicate that
classical p- type characteristics are achieved. An analy-
sis of the Hall data on x = 0.30 H g C d T e show that two
shal low acceptor levels with ionization energies of
11.94 and 3.23 meV are involved.

LWIR P-on-n heterojunction films g r o w n with I-
doped n- type regions and As-doped p- type caps with
D M A A s have produced the highest R0A v a l u e s in
M O C V D HgCdTe to-date. T h e present photodiode
array data provides compelling evidence that D M A A s
is a highly effective precursor forAs-doping in M O C V D
of HgCdTe. T h e results also demonstrate that the
improvements in both donor and acceptor doping
have contributed to advancing M O C V D to produce
H g C d T e photodiodes of the same quality as that
achieved from state-of-the-art LPE material at 77K.
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