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The apparent contradiction between the exact nature of the interaction parameter formalism as 
presented by Lupis and Elliott and the inconsistencies discussed recently by Pelton and Bale arise from 
the truncation of the Maclaurin series in the latter treatment. The truncation removes the exactness of 
the expression for the logarithm of the activity coefficient of a solute in a multi-component system. 
The integrals are therefore path dependent. Formulae for integration along paths of constant Xi or X~/Xj 
are presented. The expression for In 7so~vent given by Pelton and Bale is valid only in the limit that the 
mole fraction of solvent tends to one. The truncation also destroys the general relations between 
interaction parameters derived by Lupis and Elliott. For each specific choice of parameters special 
relationships are obtained between interaction parameters. 

I. INTRODUCTION 

FREE energy interaction parameters are related to the coef- 
ficients of the Maclaurin series for logarithm of the activity 
coefficient of a solute in a multicomponent system. The 
formalism is mathematically exact if the series is not trun- 
cated as in treatment of Lupis and Elliott. ~ However, higher 
order interaction parameters are rarely available for systems 
of practical interest. Moreover, the measurement of the inter- 
action coefficients beyond second order requires accuracies 
of measurement which are difficult to obtain in practice. It 
is therefore often necessary to calculate activity coefficients 
of solutes at finite concentrations using only the first or 
second order interaction parameters. The purpose of this 
communication is to show that the truncated Maclaurin 
series expansion is not exact and can therefore be integrated 
only along chosen paths. The general relations between 
interaction parameters derived by Lupis and Elliott ~ are 
also invalid when the Maclaurin series is truncated. For 
each mode of truncation special relationships are obtained. 
Pelton and Bale 2 have recently shown that the expression for 
logarithm of the activity coefficient of a solute in a multi- 
component system in terms of first order interaction parame- 
ters is thermodynamically inconsistent. They have indicated 
that the expression can be made consistent by adding a term 
for In Ysolvent- Their expression for In ')/solvent, however, is valid 
only for the limit that the mole fraction of solvent tends to 
unity. At finite concentrations of solute the expression for 
In ysolve,, is shown to be dependent upon the path of integra- 
tion, when the Maclaurin series for the logarithm of activity 
coefficient is truncated. Expressions for In ")/solvent are derived 
for paths of constant X~/X i or Xg. 

II. EXACTNESS OF EQUATION AND 
THERMODYNAMIC CONSISTENCY 

From the fundamental definition, the Gibbs free energy, 
G, is a state function and hence its differential is exact. In 

a mathematical sense the necessary and sufficient condition 
for exactness is given by Maxwell's relation: 

~n~ = Onj 

for all values of i and j ,  where ni and nj are the number of 
moles of components i and j in a multicomponent solution. 
Equation [1] can be modified and rewritten in terms of the 
partial property as 2 

0 In "Yi 0 In yj 
- - -  [2] 

anj Oni 

from which it follows that (Appendix I) 

0 In 7j _ ~  X, 0 In y j =  0 In y_______/ ~ X,O In Yi [3] 
0Xi k=2 OXk OXi k=2 0X~ 

where Xi indicates the mole fraction of component i. 
Any power series expansion chosen to represent the loga- 

rithm of the activity coefficient should conform to Eq. [3] 
and approach at infinite dilution Raoult's law for the solvent 
and Henry's law for each solute. Noncompliance of any 
formalism to relationship [3] implies that dG is inexact, 
which is thermodynamically inconsistent, 

Having expressed the partial property of the solutes as a 
power series expansion of composition, the solvent property 
is then deduced by integrating the Gibbs-Duhem equation 
for an m-component system. 

(1 - )(2 - X3 . . . . . .  Xm)d In ')/solvent + 

X 2 d l n y 2  + . . . . .  + X m d l n y m  = 0  [4] 

The subscripts 2, 3 . . . .  m denote the solutes and 1 repre- 
sents the solvent. 

If the exactness criterion is not satisfied, then Eq. [4] 
does not possess a definite integral for In ')/solvent and can be 
integrated only along a chosen path in an m-dimensional 
space, but the integral will in general depend on the path of 
integration. 
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III .  I N F I N I T E  S E R I E S  
REPRESENTATION O F  in y 

It is conventional to express the partial thermodynamic 
properties of solutes in dilute multicomponent solutions as 
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a function of composition through a Maclaurin infinite series 
expansion. The partial excess free energy can be accord- 
ingly expressed as 

ct ct cc 

RT In Yi = RT ~ "'" ~ " "  ~ I(i) 
~ n  2 . . .  n j . . ,  n m 

n 2 = O  n j = O  n m = O  

�9 X ~ 2 . . .  X f J . . .  X~: [5a] 

where 

j (i) = 
n 2 . . . n j . . . n  m 

1 0 n2+'''+nj+'''+nm In Yi 

n2! . . . n j !  . . . nm! OX~ 2 . . . .  c3X~J . . . .  c3X n'. 

[5b] 

The coefficient J(~. , j  .... m is termed interaction parameter 
of order ~%2 n~. 

Lupis and Elliott ~ assume the existence of a Maclaurin 
infinite series for the logarithm of the activity coefficient 
of solvent also and derive reciprocal relationships between 
the interaction parameters of the solute and solvent through 
the Gibbs-Duhem equation. The general relationship is 
given by, 

] (i) = I ( l)  ni _+ 1 t (l) 
~ n  2 .  . n j . . n m  ~ n 2 . . n j . . n  m m d n 2 . . n i +  . . n m  

Y,n, 
j=2 

[6a] 

As shown in Appendix II, an algebraic manipulation of 
Eq. [6a] leads to: 

(hi + (J) 1)J,2..,i+l ..,m - 

(nj + h~ (0 
l ] ' a  n 2 . .  n j +  1 . .  n m - -  - -  

1 
--  (1(1~ --  l ( i )  .nrn) 

\ ~  n 2 . . n  i . , n m  ~ n 2 . . t l  j . 

nj 
j=2 

[6b] 

Expression [6b] shows the interrelationship between the in- 
teraction parameters of solutes. As shown in Appendices III 
and IV, the formalism of Lupis and Elliott I satisfies the 
condition for exactness and the Gibbs-Duhem equation. 

IV. CONSEQUENCES OF 
P O W E R  S E R I E S  TRUNCATION 

Very often higher order interaction parameters are not 
available for systems of practical interest and precise mea- 
surement of the interaction coefficients beyond second order 
must await major improvement in high temperature experi- 
mental techniques. Hence frequently the partial properties 
of solutes are expressed only in terms of the first order 
interaction parameters, i .e . ,  Maclaurin series truncated to 
first order. 

= e i X 2  + e 3 X 3  . . . . . .  + e m X m  In Yi In ') I~ --J- 2 

(i = 2 . . . . .  m) [71 

The first order interaction parameter formalism was first 
proposed by Wagner 3 and extensively used by Chipman. 4 
Sometimes a second order interaction parameter formalism 

is chosen to represent the logarithm of the activity coeffi- 
cient of solutes) 

l n y i =  l n y  ~ + ~E/Xj + ~ j ' ~ jk Pi Xj + Pi XjXk 
j = 2  j = 2  j = 2  k > j  

[8] 

Equations [7] and [8] do not satisfy Eq. [3] and so both the 
first order and second order interaction parameter formal- 
isms are thermodynamically inconsistent except at infinite 
dilution, i .e . ,  Xsolven t -->1, as discussed by Pelton and Bale. 2 
Any truncation of the infinite series expansion of In Yso~utr 
renders Eq. [4] inexact at finite solute concentrations. Also, 
upon truncation of the Maclaurin infinite series, the general 
reciprocal relationships derived by Lupis and Elliott 1 be- 
come invalid and one obtains a set of special relationships 
between interaction parameters for each specific choice of 
parameters. 

As an example, consider a ternary system and a second 
order Maclaurin series expansion for the solutes as well as 
solvent. The reciprocal relationships between interaction 
parameters can be derived through the Gibbs-Duhem equa- 
tion. A second order Maclaurin series expansion for In 3/2 
and In )/3 where subscripts 2 and 3 denote solutes yields: 

In Y: = In 77 + E~X2  + E3X3  + p2X22 2 + p2X33 2 

+ R23X2 X 3 [91 

In Y3 = In y~ + EEX2 + E~X3 + p3X22 2 .~_ R3X33 2 

+ p 2 3 X 2 X  3 [10] 

Similarly, 

In )'~olveat = J~o + J~lX3 + l 2 Jo2X3 + J l o X 2  + J I 1 X 2 X 3  

+ JloX ~ [11] 

The Gibbs-Duhem equation for a ternary system, after some 
modification, can he written as 

(1 - X 2 - X 3 )  Oq In Ysolvent _~_ X2 0 In Y.________~2 + X3 0 In y _ . _ _  3 _ 0 
OXi OXi OXi 

(i = 2, 3) [12] 

Differentiating expressions [9], [10], and [11] with respect 
to X2 and substitution into [12] yields 

Jlo + x~(2J;o - Jlo + e~) + 

x 3 ( g h  - glo + e~) + 

XzX3(p~ 3 + 202 - Jll - Zl~o) + 

X~(202 - 2jlo) + X~(P3:3 - Jll) = 0 [13] 

Since X2 and X3 are independent variables, each term in 
Eq. [13] is null and hence the following relationships result: 

1 p3:3 Jlo = o; J~'o : - 7 ~  = p~; J l l  = -~3: = 

p23 + 2p3: = p3:3 + 2p2 : _e2 _ e~ [141 
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Similarly, differentiation with respect to X3 and application 
of Gibbs-Duhem equation yields the relationship 

1 3 P~; Jim -e~ p23 J~l  = 0 ;  J12 = - - ~ -  E3 = = = 

p23 + 2023 = 2p~ + p23 = _e3 _ e~ [151 

Equations [14] and [15] are different from the general re- 
lationships derived by Lupis 5 for a ternary system. If the 
expressions for In Y2 and In 73 are approximated by a first 
order interaction parameter formalism and if a Maclaurin 
series expansion is assumed to exist for In Ysolvont, applica- 
tion of a similar procedure results in: 

E~ = E'~ = E~ = E~ = 0 

which is absurd, a result of the inexactness of the first 
order representation. The convention adopted here for 
superscripts and subscripts is the same as that of Lupis 
and Elliott. m 

Recently Pelton and Bale 2 have indicated that thermo- 
dynamic consistency can be achieved by adding a term for 
In '~solvent in the expression for In y~, where i is the solute. 
They have derived expressions for In Ysolve,, by solving the 
Gibbs-Duhem equation for a first and higher order inter- 
action parameter formalism for In yi. Their expression for 
In Ysol~e,t, however, is valid only for the limit that the mole 
fraction of solvent tends to unity. 

Differentiation of Eq. [7] yields: 

d In Yi = ~ eidXj [16] 
j=2 

At X~ol~o.t--+1, the Gibbs-Duhem relation takes the form 
m 

d In Yso~w,t + E Xi d In Yi = 0 [17] 
i=2 

Combining Eqs. [16] and [17] and after some modification 

d i n  Ysol~e.. + ~,E]XsdXs + ~, ~,Eid(XiXs) = 0 [18] 
j=2 i=2 j>i 

where e~ = El. Integration of [18] yields an expression for 
In ysol~e., at the limit Xsol~e.~ -'+ 1 

= - - -  E/X~Xj [191 In Tsolvent 2 i=2 S=2 

Similarly, it can be shown that with a second order inter- 
action parameter formalism for In g~ (i = solute) and at the 
l i m i t  Xsolven t ~ 1 

1 ~ ~ E/X~Xj 
I n  ')/solvent ----- - -  -~- 1=2 j=2 

3 i=2 i=2 7=2 kr 

[20] 

For binary systems even with a truncated Maclaurin series 
approximation for In yi, a precise expression for In Ysolve., 
can be derived through the Gibbs-Duhem equation, given by 

In Ysolve.t = e2[ln(1 -- X2) + X2] 

[ + 3r In(1 -X2) +X2 + - ~ +  -~] + . . .  

[211 

where e 2, p2, and r22 are the first, second, and third order 
free energy interaction parameters, respectively. Hence 
there is no justification for including a term for In ysol~e.t in 
an expression for In Yi in a binary. 

V. PATH DEPENDENT 
INTEGRALS FOR in YSOLVENT 

The truncated Maclaurin series for the solutes is inexact 
at finite concentrations and hence In 'Ysolvent is dependent 
upon the path of integration. 

A. Path Xi/Xj = K U 

For simplicity an expression for In Ysolve.t will be derived 
initially for a ternary system and later generalized to a 
multicomponent system. 

Along the path X2/X3 = K23 (Figure l(a)) the Gibbs- 
Duhem equation can be written as 

[1 - X3(K23 + 1)]d In ')/solvent "[- 

Kz3X3d lny2 + X 3 d  lny3 = 0 [22] 

If a first order Maclaurin series expansion is considered for 
the logarithm of the activity coefficient of solutes: 

In 72 = In Y7 + e~X2 + E3X3 [23a] 

In Y3 = In y~ + eE3X2 + e]X3 [23b] 

and these expressions are differentiated along the path 
X2/X3 = K23 and substituted into Eq. [22], one obtains: 

d In ysolve.t = -KE3X3[E2K23 + e3] -- X3[E2K23 + e 3] 

dX3 [1 - X3(K23 + 1)] 

[24] 

Integrating Eq. [24] along the path XJX3 = K23 between the 
limitsA (pure solvent) and an arbitrary point E (Figure l(a)), 
an expression for In ysomvo,t is derived as [ ,2] E2X 2 -Jr E3X2X3 + E2X2X3 + E 3 X 3  

In  ')/solvent = (X  2 + X3)2 

�9 [(X2 + X3) + In{1 - (X2 + X3)}] [25] 

Similarly, if a second order Maclaurin series expansion is 
considered for In Y~omu~, it can be shown that along the path 
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Solvent  (1) 
A 

2 X 2 / X  3 = k23 3 

- -  X 3 
(a) 

Sotvent (1) 

F D 

2 1 X3----~ 3 

(b) 
Fig. 1 - -Pa ths  of integration in a ternary system. (a) Path of constant 
XJX3; (b) paths of constant X~. 

XdX~ = K. 

e2X2 + E32X2X3 + 82X2X3 + e3X3 
In y~olvc.t = (X2 + X3) 2 

�9 [(X2 + X3) + ln{1 - (X2 + X3)}] 

Ix x~x~p2 x~x~p~ x2x~p3 p!] XzX3P2 + + + + X 3 + 2 3p~ + 2 3 2 23 2 2 2 23 

(X2 + X3) 3 

ln{1 - (X2 + X3)} + (X2 + X3) + [26] 
2 

At infinite dilution, approximating the logarithmic term by 
a truncated power series expansion, Eqs. [25] and [26] re- 

duce to the form given by Eqs. [ 19] and [20], respectively, 
for ternary systems (m = 3). For a multicomponent sys- 
tem, an expression for In Yso~ve,t along the path XJXk = Kik, 
with first order Maclaurin series approximation for In Yi is 
given by 

n(1- 4 
In Y$olvent : ~ ~ ~ X i X j  m 2 

and with second order Maclaurin series approximation for 
In Yi by 

In 'solvent = ~ ~ E{XiXj m 2 

" ~  
+ 2Eo /x?  + 2 E  J~ Pi XiXjXk 

i=2 i=2 j=2 kq:i 
k=2 

�9 i=2 \ i=2  / 

[281 

At infinite dilution, Eqs. [27] and [28] reduce to Eqs. [191 
and [20], respectively, and are identical to those derived by 
Pelton and Bale. 2 

B. Path of Constant Xi 

Analysis of a multicomponent system along paths Xi = Ki 
is complex and hence only a ternary system is considered 
(Figure l(b)). Along the path AD, Xz = 0 and the Gibbs- 
Duhem equation reduces to, 

(1 --  X3)d In "Ysolvent + X3d In 73 = 0 [29] 

Differentiating Eq. [23] along the path Xz = 0 and com- 
bining with [29] yields: 

4 I n  ~.~...solvent~ _ X3E] 
dX3 ]x2=o (1 - X3) [30] 

Integrating Eq. [30] between the limits A to D gives: 

[In Ysolve.t]x2=0 = e][ln(1 - X3) + X3] [31] 

Along DE, X3 = K3 and the Gibbs-Duhem equation takes 
the form 

(1 - X2 - /(3)d In ')/solvent + 

Xzd l n y z +  K 3 d l n y 3  = 0 I32] 

Differentiating Eq. [23] along X3 =/ (3  and substituting into 
[31] yields: 

( d  In 7solvent / - - E 2 X 2  - /(3 e 2 [33] 

-d-~2 /x3=r3 = (1 - X2 -- /(3) 

Integrating Eq. [33] between the limits X2 = 0 at D to 
X2 = X2 at E 
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[ l n  Ysolvent]E = E]X3 + E2X2 
+ (E 3 - -  E 2 -'J- X 3 E 2 - -  X 3 E3 2) ln(1 - X3) 

+ (e 2 - X3 e~ + X3 e3:) ln(1 - X2 - X3) 

[341 

Similarly, if we consider the path AFE it can be shown that 

[In "Ysolvent]E = e ] S 3  + ~:2X2 

+ (e 2 - X z e  3 -  e 3 + X . , e  3) In(1 - X 2 )  

+ (X2e 3 + e ~ - X 2 e  3) In(1 - X 2 - X 3 )  

[35] 

VI. EXAMPLE: SYSTEM Ni-Fe-Cr AT 1873 K 

Activities of all components for Ni-Fe-Cr alloys at 
1873 K have been measured by a Knudsen effusion-mass 
spectrometry and analysis of condensed vapors by Gilby and 
St. Pierre. 6 The first order interaction parameters for Fe- and 
Ni-base alloys were deduced by these investigators. The 
function In YNi was calculated employing Eqs. [25], [34], 
and [35] in the range 0.5 < XN~ < 1.0 at several composi- 
tions along the paths XFe/Xcr = constant, Xve = constant, 
and XCr = constant using interaction parameters of Gilby 
and St. Pierre. 6 The value of In ')/Ni was also calculated using 
Eq. [19] which is identical with the equation proposed by 
Pelton and Bale. 2 The calculated values for In YNi along 
various paths are shown in Table I, along with the experi- 
mental data. 

It is seen that integration along paths using interaction 
parameters given by Gilby and St. Pierre 6 gives values for 
In Yso~e~t in closer agreement with experimental data than 
Eq. [19]. It is also observed that the difference in the loga- 
rithm of the activity coefficient of the solvent, derived along 
different paths, is not very significant. A closer conformity 
to the experimental In ')/solvent may be achieved by adopting 
a second order interaction parameter formalism for In yi, 
followed by integration along the various paths. 

VII. CONCLUSIONS 

The general interaction parameter formalism presented by 
Lupis and Elliott I is thermodynamically consistent. Trun- 
cation of the Maclaurin series removes the exactness of the 
equations for logarithm of the activity coefficient of the 
solutes. The activity coefficient of the solvent derived by 
integration of Gibbs-Duhem equation will therefore depend 
on path of integration. Formulae have been derived for 
calculating the activity coefficient of the solvent along de- 
fined paths. The expression given recently by Pelton and 
Bale 2 for In Yso~ve.t is valid only in the limit that the mole 
fraction of solvent tends to one. The general relationships 
between interaction parameters derived by Lupis and Elliott l 
based on infinite series are also invalid when only the first 
and second order terms are employed. For some modes of 
truncation special relationships have been derived. It is 
shown that the expression for the activity coefficient of the 
solute employing only first order free energy interaction 
parameters leads to relationships between parameters that 
are difficult to accept from a conceptual point of view. 

APPENDIX I 

Thermodynamic requirement for exactness of dG 

From [2] one obtains 

a l n y i  t = ( a l n y ,  t 
On--'~/,l..nj..,m \ - ~ n j  /,~..,,...m [A1] 

Expressing the mole fraction Xi as, 

X i  ~--"  ni/(nl + n2 + . . . .  + nm) [ A 2 ]  

and differentiation with respect to ni's yields, 

OXj = - X j .  OXi _ (1 - Xi) OX____ 2 = - X i .  

On i n ' On i n ' Onj n ' 

OXj _ (1 - Xj) [A3] 
Onj n 

Table I. Comparison between Computation and Experimental Values for in VN~ (Ni = Solvent) 
Fe Cr F~ 19r eFe = 1.92<6); ecr  = 1.85<6); ECr = 2. 

Composition 

Xcr XFe XNi XFJXcr = K 

In ~/Ni 

Path of Integration Eq. [19] XNi ~ 1 Experi- 
Xcr = K XFe = K Approx. ment (6) 

0.05 0.2620 0.6880 -0.1234 -0.1232 -0.1238 -0.0969 -0.1385 
0.05 0.1560 0.7490 -0.0497 -0.0497 -0.0498 -0.0428 -0.0517 
0.05 0.0988 0.8512 -0.0250 -0.0250 -0.0251 -0.0225 -0.0432 
0.05 0.0528 0.8972 -0.0116 -0.0116 -0.0116 -0.0108 -0.0135 
0.10 0.2080 0.6920 -0.1222 -0.1223 -0.1226 -0.0963 -0.1561 
0.10 0.1570 0.7430 -0.0816 -0.0817 -0.0818 -0.0673 -0.0842 
0.10 0.1050 0.7950 -0.0498 -0.0499 -0.0498 -0.0428 -0.0650 
0.10 0.0530 0.8470 -0.0263 -0.0263 -0.0263 -0.0236 -0.0348 
0.20 0.2060 0.5940 -0.2341 -0.2350 -0.2346 -0.1680 -0.2341 
0.20 0.1030 0.6970 -0.1166 -0.1171 -0.1165 -0.0923 -0.1399 
0.20 0.0545 0.7455 -0.0771 -0.0775 -0.0770 -0.0637 -0.1030 
0.30 0.1040 0.5960 -0.2253 -0.2270 -0.2248 -0.1620 -0.2504 
0.30 0.0541 0.6459 -0.1610 -0.1619 -0.1607 -0.1216 -0.2340 
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where 

Now, 

O l n % _  

On~ 

n = nl + n2 + . . . . .  + nm 

Combining [A5] with 

0 1 n % _  1 [ 0 
0n~ n / 

O ln y j (  oX2] + . . .  

a l n y ~  ( O X i ]  + . . .  

+ cgX""'~, \ On---~d,l..ti, . . . .  

[A3], 

Similarly, 

O In Yi 

an t 

[A41 

[A5] 

In YJX2 . . . .  + a In %(1 - X~) 
OX 2 a X  i 

O axmln yLX m ] [A6] 

_ _  = 1 [ / a In YiX2 . . . .  + 
n I OX2 

0 In %X~ ] 
OX,, I 

Substituting [A6] and [A7] into [A1]: 

0 1 n y j  ~ x k a l n y ~ -  0 1 n %  
a X  i k=2 OX k OXj 

Oln%(1  - X j )  
oxj 

[A7I 

~Xk O In y_________~, 

k=2 aXk 

APPENDIX II 
Interrelation between the interaction parameters of solutes 

We have from Eq. [5] 

[ I ( 1 )  ] ( i )  = l ( l )  - -  (ni + 1) , , j | . , , z . . t im 
~ n 2 . . n i . . n  m ~ t i 2 . . n i . . n  m 

[A8] 
Therefore, 
j (i) 

n 2 . . tij + l . . n m 

0) 
= Jn2..nj+l. .nm 

[ - (ni + 1) nj + 1,- ,2 . . , ,+ , , , j+1. . ,  m 
/ j=2 

Similarly, 

(J) = l (1) 
J n 2 . . n i + l . . t i m  o n 2 . . t i i  + ] .  . t im 

- n ~ + l  n j + l  

[A9] 

]j 0) 
n 2 . . n i + l , n j + l  . . n  m 

[A]0] 

Multiplying [A9] by (nj + 1) and [A10] by (n~ + 1) and 
subtracting one from the other, 

(n~ + 1 ~1 (J) 
l ~ n 2  . . n i +  I . . t l  m 

(n i + 1~I  (i) = (n  i + 1~I  (1) 
x ] 'J  ti 2 . . n j+  l . . t im t ] 'J  n2  , . ni  + l �9 .r im 

(~) 
- (nj + 1)J,:..tiA~..,,, 

[All]  

Now, 

I (J) = 1 (l) 0) -"2.."i .... -"2..",..", - nj + 1 nj ..,~ 

[AI2] 

Subtracting [A8] from [AI2] and substituting [A l l ]  into the 
resultant equation, one obtains, 

(n~ + (J) 1)J,  2. . n i + l . . n  m - -  

1 (nj + 1 "II (i) - -  r l  (J) - -  l (i) 
- / ~ n  2 . . n j + l  . . n  m L~n 2 . . n j . . n  m o n 2 . . n  j . . n  m ]  

j=2 

[A13] 

A P P E N D I X  III 

Conformity of the formalism of 
Lupis and Elliott to Maxwell's relation 

Equation [5a] gives 
o o  ~o oo 

In " Y i  ~ -  E ~ 1 7 6  E � 9 1 4 9  E J (i) X ~  2 . X ~  j . X n m  m n 2 . . ti j . . n m  Z . . . .  

n2=0 n j=O n m = O  

[A141 

0 In Yi ~ ~ 
- E " " E  " ' "  E jc,  ti. 

n2=0 n j = O  n m = O  

�9 n : X ~ 2 . . . X f F ' . . . X ~ , m  [A15] 

d i n % _  ~ . . . ~ . . . ~  l(J) 
O X i  n2=0 t i j = o  n m = o - -  n2  " " n j .  . nra 

�9 niX~ 2 . . . X[  '~-~ . . . X,~" [A16] 

l n y i _  2 " " 2 " ' "  2 l(i) 
v n 2 . . tij . . n m 

k=2 OXk k=2 n2=0 ti)=0 nm=O 

�9 n k X ~ 2 . . . X ~ k . . . X , ~ "  [A171 

xk = E . . . . . .  E g.?ti  . . . .  
k=2 OXk k=2 ti2=O n)=O .m=O 

�9 nkX~ 2 . . .  X~ ~ . . .  X~, m [A18] 

The coefficient of the general term X~ 2 . . .  X~ ~ . . .  X,~- in the 
expression, 

O l n y j  Olny__., + ~ Xk .O ln % Olny~ 
aX~ OX; k=2 OXk OXk / [A19] 

is, 

[(n, + l~t (J),v,2..,i+, �9 ,,. - (ni + 1)J,~..,A, .... ] 
m 

- -  1 (J) . nm] + E nk[J(i~..nj . . . .  -ti2..ti , .  
k=2 

[A20] 

Subtracting [A12] from [A8] we have, 

~ r l  (i) 
t l ' k l . d  n 2  . . n ) .  . n m 

k=2 

- -  I (J) vti2.., j .... ] = (nj + 1)J,~']..nj+, .... 

(ni + o) - 1)Jti2..ni+l 

[A21] 
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Substituting [All] and [A21] into [A20] 

[(ni + 1~1~;) - (nj + 1)J.~'~...j+, .... ] + l ~ n  2 . ,  h i +  1 . .  n m 

"~ ~ r l  (i) - -  I (J) ] : 0 
I t k L d n 2 . - n j . . n r n  o n  2 . .rid..nmd 

k = 2  

[A22] 

Hence each coefficient of the general term in expression 
[A19] is null which implies that, 

Olny,oXi O ln y----~' + ~ X k [  O ln *=2 OXk Olny~] = 0 0 X ,  J 

APPENDIX IV 

Conformity of the formalism of Lupis 
and Elliott to the Gibbs-Duhem equation 

The coefficient of the general term X~ 2 . . . X ?' . �9 �9 X ~ m in 
the Gibbs-Duhem equation, 

0 In y______.~ + 0 X j  ;=2~Xi[ olny;0Xj 0 In yj]0_Xj J 0 is 

(nj + 1)J(12)..n:+l..n,,, 
rn 

+ X' r z  (i) - t o )  
[ d n 2 "  . n i _ l , n j + l  . . . .  ~ n 2  " . n i _ l , n j + l  . . . .  ] (nj + 1) 

i = 2  

[A23] 

The reciprocal relationship [5] after some modification can 
be written as, 

J~(~..n;-1,nj+l . . . .  (1) _ = Jn2..ni 1,nj+l..n m 

. ~li, nj+ l . .nm 

[A241 

Substituting [A24] into [A23] we get, 

(nj + 1)J~l~!..j+l .... + 

m 

~? rj ~i) (i) 
/ "  L n 2 . . n i - l , n j + l . . n r n  - -  J.2...;-1,~:~ . . . .  ] (n: + 1) = 0 
i=2  

[A25] 

Hence the coefficient of the general term in the Gibbs- 
Duhem expression is null, which implies that 

01nyl  + Xi " = 0 
OXj 0 2  i OXj J 

i . e . ,  Gibbs-Duhem relation is satisfied. 
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