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In this  paper ,  a new ma thema t i ca l  model  recen t ly  outl ined by the p r e se n t  au thors  x is ap- 
pl ied to the case of un id i r ec t iona l  so l id i f ica t ion v ia  heat ex t r ac t ion  through mass ive  un- 
cooled molds of effect ively s e m i - i n f i n i t e  th ickness .  The model  p e r m i t s  m e a s u r e m e n t  of 
the Newtonian heat t r a n s f e r  coefficient  at the metaL/mold in te r face  and a complete d e s c r i p -  
t ion of the k ine t ics  and t h e r m a l  c h a r a c t e r i s t i c s  of so l id i f ica t ion  is subsequent ly  poss ib le .  
E x p e r i m e n t a l  r e su l t s  a re  compared  with p red ic t ions  for the case of lead and the effect of 
mold th ickness  in the effect ively f ini te  r eg ime  is  a lso  inves t iga ted .  

T HE ma thema t i ca l  t r e a tmen t  of the gene ra l i zed  
un id i rec t iona l  sol id i f ica t ion p rob lem p r e s e n t s  con- 
s ide rab le  complexi ty  and exact solut ions  a r e  ava i l -  
able for only a few r e s t r i c t e d  cases .  The ba s i c  
ma thema t i ca l  obstacle  to ana lys i s  is the s imu l t aneous  
t r e a tmen t  of heat flow through meta l  a n d / o r  mold by 
t he rma l  conduction and a c r o s s  the metaL/mold i n t e r -  
face by Newtonian heat t r a n s f e r .  The only gene ra l -  
ized solut ions  which place no r e s t r i c t i o n  on the i n t e r -  
facial  heat t r a n s f e r  coefficient  a re  those u t i l i z ing  
ma thema t i ca l  approximat ions  2-6 

The proposed model  u t i l izes  a novel  approach to 
the heat flow prob lem.  A bas i c  a s s u m p t i o n  is that 
the heat t r a n s f e r  coefficient r e m a i n s  constant  dur ing  
the sol id i f ica t ion process .*  The t h e r m a l  r e s i s t a n c e  

*Physically, this may be approximately valid in some situations but not in 
others. The formation of an 'air gap' between metal and mold as a result of con- 
traction has frequently been postulated 7"9 as a mechanism for a time dependence 
of h i (or a position dependence in a steady state process such as continuous cast- 
ing). In practice, the importance of this probably depends on metal, mold surface, 
geometry and so forth; in the experimental set-up used in this study, changes of 
h i with time would be expected to be small and this supported by the h~ternal con- 
consistency of experimental measurements both in this study and in the previous 
one. Mathematically, the case of variable h i is certainly not treatable by exact 
analytical methods. 

presen ted  by the in ter face  is then modeled by a " p r e -  
ex i s t i ng"  th ickness  of solid, which, for the purposes  
of heat flow ca lcula t ions ,  is addit ive to the r e a l  physi-  
cal  th ickness .  Heat flow may then be comple te ly  de-  
sc r ibed  by manipula t ion  of the ba s i c  F o u r i e r  conduc- 
t ion equat ions .  

Fo r  the p rev ious ly  desc r ibed  case 1 of a thin,  
highly r e f r i g e r a t e d  mold, where heat flow in the meta l  
only need be t rea ted ,  it was n e c e s s a r y  s imp ly  to in-  
t roduce a p reso l id i f i ed  th ickness  of meta l  to r e p r e s e n t  
the in te r face  r e s i s t a n c e .  In the p r e sen t  more  genera l  
case,  heat flow in both meta l  and mold a r e  s ignif icant ;  
a v i r t ua l  th ickness  of each mus t  be pos tu la ted  to ac-  
count for in te r face  r e s i s t a n c e  which is  divided into 
two components  separa ted  by a hypothet ical  plane of 
constant  t e m p e r a t u r e  (in accordance  with the n o r m a l  
approaches  to this  problem) ,  x~ T e m p e r a t u r e s  of 
meta l  and mold at the in te r face  a re  then pe rmi t t e d  to 
va ry  (approach the t e m p e r a t u r e  of the hypothet ical  
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plane) in a way d e t e r m i n e d  by the c h a r a c t e r i s t i c s  of 
the heat flow. 

T h e o r e t i c a l  p red ic t ions  a re  compared  with exper i -  
ment  for  so l id i f ica t ion  of lead both with and without 
an in su la t ing  l a ye r  coated on to the mold face.  The 
devia t ion  f rom theory in t roduced  by a f ini te  mold 
th ickness  is a lso  inves t iga ted .  

MATHEMATICAL MODEL 

The bas i c  a s sumpt i ons  of the model  a r e  s i m i l a r  to 
those p r e s e n t e d  in the previous  paper  1 (and, indeed, 
to those gene ra l l y  a s s u m e d  when t r e a t i n g  the k ine t ics  
of un id i r ec t iona l  sol idi f icat ion) .  2'5'~2-14 They a r e :  

1) Conductive heat flow is un id imens iona l ,  
2) The Newtonian in te r face  r e s i s t a n c e  is r e p r e -  

sen ted  by a heat t r a n s f e r  coefficient,  hi, which r e m a i n s  
constant  throughout  the p rocess ,  

3) The me t a l  f r eezes  with a ma c r osc op i c a l l y  plane 
so l id / l i qu id  in te r face  and at a congruent  t e m p e r a t u r e ,  
TI, 

4) Superheat  is a s s u m e d  negl ig ib le  and spur ious  
heat l o s ses  f rom the liquid, by convect ion and r ad ia -  
tion, a re  sma l l ,  

5) T h e r m a l  p r o p e r t i e s  of meta l  and mold a re  inde-  
pendent  of both pos i t ion  and t ime .  

The heat flow is  now t r ea ted  in two r e g i m e s ,  con- 
nec ted  by the hypothet ical  p lane of constant  t e m p e r a -  
t u re .  In both these  components ,  a v i r t u a l  s y s t e m  is 
se t  up in which the Newtonian r e s i s t a n c e  is r e p r e -  
sented  by a p r e - e x i s t i n g  adjunct  of m a t e r i a l .  (The 
two v i r tua l  s y s t e m s  produced in this  way a r e  ac tua l ly  
equivalent  except  for a change of or ig in) .  The sub-  
d iv is ion  of the r e a l  s y s t e m  into two components  and 
the de r iva t ion  of the v i r t u a l  s y s t e m s  is  i l l u s t r a t ed  i n  
F ig .  1. It is  impor t an t  to note that in the r e s t  of this 
ana lys i s ,  heat flow for the two components  of the s y s -  
t em a r e  t r ea ted  independent ly  (being l inked only by 
equal i ty  of heat flux a c r o s s  and t e m p e r a t u r e  at the hy- 
pothet ical  plane) so that the d i f fe rence  in se lec ted  o r i -  
gin for  the two v i r t u a l  s y s t e m s  wil l  in t roduce  no e r r o r .  
The p a r a m e t e r  x '  is  t he re fo re  used to denote pos i t ion  
in both v i r t ua l  s y s t e m s .  An out l ine of the mean ing  of 
a l l  the symbols  used in the a n a l y s i s  is  given in Ap- 
pendix I. 

The r e l a t i onsh i p s  between p a r a m e t e r s  in the r e a l  
and v i r t u a l  s y s t e m s  a re  iden t ica l  to those out l ined in 
the f i r s t  paper ,  ~ with the addi t ion that x '  is  given by 
(x - Eo)  in the mold component .  The F o u r i e r  f ield 
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Fig. 1--Division of system into mold and metal components 
and relationship between real and virtual systems in these 
regimes. 

equation is now valid between appropr ia te  l i m i t s  in 
both components ,  and has the genera l  solut ion:  

T = A + B er f  ('---:=---). 
2 a4-~r 

[1] 

i) Solidification T ime  and Rate 

By applying the boundary  condition T = T f  = con- 
s tant  at the l iquid/sol id  in te r face  and putting the 
a rgumen t  of the e r r o r  function in the solution to the 
F o u r i e r  equation equal to the constant  ~b for  this case,  
it is s imple  to show I that:  

S2 S ~  [2] 
t -  4 a s ~  2 + 2 a s r  e 

which desc r ibe s  the kinetic behav ior  in t e r m s  of the 
constants  ~b and S o which will  shor t ly  be defined. 

ii) T h e r m a l  P ro f i l e  

a) Metal  Component.  Applying the boundary  condi- 
tion T = T i = constant  at the metaL/mold in terface ,  to-  
ge ther  with the p rev ious ly  mentioned condition at the 
l iquid/sol id  in ter face ,  the constants  of the solution of 
Eq.  [1] for  the profi le  in the meta l  can be wri t ten down 
immedia te ly ;  it follows f r o m  the definit ion of ~b that:  

(Tf - T;;) S + x  
T s  = T i  + err(C)' err(q5 ~ )  [3] 

and subst i tut ion of x = 0 will  give the meta l  t e m p e r a -  
tu re  at the metaL/mold in ter face ,  T i s  , which will 
c l ea r ly  tend to T i as  S b e c o m e s  la rge .  

b) Mold Component.  Applying the boundary  condition 
T L-- ~-~o = c o ~  r ~ o t e  f r o m  the metaL/mold in ter -  
face  (x '  = - ~ ) ,  toge ther  with the previous  ly mentioned 
condition at  this  in ter face ,  the constants  in the genera l  
Eq.  [1] a re  seen in this case to be:  

A m  = T i [4a] 

B m =  T i -  T o .  [4b] 

Now, because  of the identity: 

X t X p X t 

where  

the genera l  solution is given by: 

[ T m = r i +  (T  i -  T O ) err  N~b(S-~-~- ~) . [6] 

Substitution of x = 0 in this equation wilt give the mold 
t empe ra tu r e  at the mo ld /me ta l  in terface,  T i m  , which 
will tend to T i as S becomes  la rge .  

iii) De te rmina t ion  of T i 

Applying the boundary condition of identity of heat 
flux f rom meta l  r eg ime  to mold r eg ime  a c r o s s  the 
hypothet ical  plane and obtaining the appropr ia te  gradi -  
ents  by different ia t ing Eqs .  [3] and [6], on substi tut ion 
we have : 

k m ( T i  - T o ) g  = k s [7] 

which can be r e a r r a n g e d  to give art express ion  for  Ti :  

( T f -  T o ) M  [8a] 
T i  = T o  + M + erf(~) 

where 

M = ~ / ' k sdsc s / k rndrnc  m .  [8b] 

iv) Determina t ion  of 

A the rma l  balance  is applied at the l iquid/sol id  in- 
te r face ,  with the t he rma l  gradient  obtained by dif fer-  
ent iat ing Eq.  [3] evaluated at x '  = S ' .  The in ter face  
veloci ty  is s imply  obtained by dif ferent ia t ing Eq.  [2] 
and the condition then reduces  to: 

~b exp(~ 2) erf (~)  = c s ( T f -  T i )  [9a] 
H 

The interval  ( T f -  T i) may be re la ted  to the known 
constant  ( T f -  To)  by manipulation of Eq. [Sa], so that 
Eq.  [9a] may be wri t ten in the f o r m :  

d'~ ~ exp(~b2)[M + erf(~b)] = c s ( T f -  To)  [9b] 
H 

f r o m  which the eonstant q5 may be obtained by i terat ion 
fo r  any given metaL/mold combinat ion.  F igure  2 il-  
lus t ra tes  the dependence of ~b on M (the ra t io  of heat 
diffusivi t ies  of meta l  and mold) and l /H* (ratio of 
heat  content of sol id meta l  at f r eez ing  in ter face  to 
latent heat of fusion).  

v) Dete rmina t ion  of S O 

The heat t r a n s f e r  a c r o s s  the me ta l /mo ld  in ter face  
is handled by the introduct ion of two par t ia l  heat t r ans -  
f e r  coefficients ,  h i s  and h im  , r e f e r r i n g  to meta l  and 
mold components  respec t ive ly  (in accordance  with 
usual  p rac t i ce  in t rea t ing  this case) .  Applying a the r -  
mal  balance at the r e a l  metaL/mold in ter face  on the 
meta l  s ide:  
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h taTs~ [10a] 
his (T is  - Ti)  = ~s ~ X ,  ~x, : S o 

and applying this equation at t = 0 i t '  = to), the bound- 
a ry  condition T i s  = T f  when S '  = S o gives,  

"OTs" [10b] 
h i s ( T f -  T i )  = k s ( o - : ~ ) x ' : S o  =S" 

This  t he rma l  gradient  is found by di f ferent ia t ing Eq. 
[3] and evaluat ing at x '  = S '  = S o. Afte r  subst i tut ion 
and s implif icat ion (using Eq. [9b]) this leads to: 

2asdPeHds [M + erf (0)]  [11] 
S o = h i s ( T f _  To)erf(~b) 

so that S o is de te rmined  in t e r m s  of his (shor t ly  to be 
defined) and p roper t i e s  of meta l  and mold.  

vi) Dete rmina t ion  of E o 

A s imi l a r  balance is made to the above, this t ime 
on the mold side of the me ta l /mo ld  in te r face :  

h i m ( T  i - T i m )  = k m ( a T m )  [12a] 
" OX' "x' =-E o 

which, applied at t = 0 (t '  = to), when T i m  = T o and S '  
= S o gives:  

aT 
h i m ( T  i -  T O ) = k m ( ~ X ,  )x ,  _ E o .  [12b] 

SP'=So 

This t he rma l  gradient  is found by dif ferent ia t ing Eq. 
[6] and evaluat ing at x '  = - E  o and S '  = S o. Substitution 
and s implif icat ion gives:  

/ . ~ - r  , 
E ~  =N~- V l n ( ~ o ' "  [13] 

vii) Dete rmina t ion  of his and him 

Identi ty of heat  flux a c r o s s  both components  and 
a c r o s s  the combined composi te  r equ i re s  that :  

his = ( ~ )  [14a] 
him 

hi = (~) [14b] 
him 

and by subst i tut ion f r o m  Eq. [8], it follows that:  

his = 1 + ~  h i . [15b] 

vii) Dimens ion less  F o r m  of Model 

The kinet ics  of the sol idif icat ion p r o c e s s  have now 
been complete ly  descr ibed .  The dependence of in ter -  
face posit ion (and velocity)  on t ime is defined by Eq. 
[2] in t e r m s  of ~b and S o. Equation [9] fixes ~b and Eq. 
[11] defines S O in t e r m s  of his ,  which is re la ted  to h i 
by Eq. [15b]. Similar ly ,  the t h e r m a l  prof i les  in meta l  

and mold at any t ime a re  given by Eqs .  [3] and [6], 
which a r e  now complete ly  defined fo r  a given m e t a l /  
mold combinat ion and r ema in  only to be specif ied in 
t e r m s  of h i,  The value of h i for  any pa r t i cu l a r  case 
will depend on the de ta i l s  of su r face  f inish and so for th  
and can be ex t rac ted  f r o m  the l i t e ra tu re  for  specif ied 
conditions or  may be obtained exper imenta l ly .  In this 
study, h i was found by exper imenta l  m e a s u r e m e n t s  of 
the dependence of th ickness  solidif ied on t ime,  the de-  
tai ls  of which a r e  d e s c r i b e d  below. 

The re la t ionship  between t ime and thickness  sol idi-  
fied, r ep r e sen t ed  by Eq. [2], may  be p resen ted  in 
t e r m s  of d imens ion le s s  p a r a m e t e r s :  

t* (S*)2 H* S* [16 ] 
= ,20 ,  + 

Also ,  the t h e r m a l  prof i les  r e p r e s e n t e d  by Eqs .  [3] and 
[6] may be more  conveniently given in the d imens ion-  
less  f o r m s  shown below: 

~  S* + x * ,  
T s _  To  M + e r l t ( p ~ )  

Ts*  = T f -  T O = M + erf(~b) [17a] 

T *  = T f -  T o = M + e r f ( ( ~ )  1 , + e r f  . ~ , j  

[lVb] 

where  al l  the d imens ion less  p a r a m e t e r s  a r e  defined 
in Appendix I.  

EXPERIMENTAL AND DISCUSSION 

The exper imenta l  examinat ion of this case  under 
the speci f ied  conditions is r a the r  m o r e  difficult  than 
that of the cooled mold due to the p rob lem of br inging 
meta l  and mold into init ial  contact ,  It was not possible  
to br ing  the liquid into t he rma l  equi l ibr ium within the 
ingot before  init iat ing cooling, as  was done for  the 
cooled molds,* and in this case it was n e c e s s a r y  to 
pour  liquid (with a v e r y  low superhea t  of ~3~ di- 
r ec t ly  into the mold,  the la te ra l  walls of which were  
c lose to the  f r eez ing  t e m p e r a t u r e  and hea t - ex t r ac t ing  
block close to ambient  t e m p e r a t u r e .  T h e r m a l  data 
dur ing sol i f icat ion were  obtained through a number  
of fine the rmocoup les  accura t e ly  posi t ioned with r e -  
spec t  to the heat ex t rac t ing  sur face ,  locat ions of the 
f r eez ing  in ter face  being de te rmined  via  the output of 
those in the sol idifying metal .  This  was ca r r i e d  out 
for  the f r eez ing  of lead (purity ~99.9 pct) with two dif- 
fe rent  in ter rac ia l  heat t r a n s f e r  conditions co r re spond-  
ing to the hea t -ex t rac t ing  sur face  being a) pol ished 
and b) painted with a thin (~100 ~m) a lumina  coating 
by means  of a sp ray  gun. The molds  used were  of low 
al loy s tee l  (En 27) and wall t h i cknesses  of 100 mm 
(semi- inf ini te*)  , 40, 30, 15 and 5 m m  were  used,  the 

*That this thickness closely correspondend to the semi-infinite case was con- 
firmed by various thermal data from metal and mold; see below. 

th ickness  of meta l  to be solidif ied a lways  being 50 to 
60 ram. In al l  c a s e s ,  unidi rect ional i ty  of heat flow 
was conf i rmed  by m a c r o s t r u c t u r a l  examinat ion,  a 
typical  g ra in  s t r u c t u r e  being that shown in Fig.  3. 
(Only with the thiimest wall th ickness  was noticeable 
loss  of d i rec t iona l i ty  observed. )  F o r  the semi- inf in i te  
mold case ,  the exper imen ta l  r e su l t s  fo r  var ia t ion  of 
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Fig. 2--Graphical solution of Eq. [9b] through which the soli- 
dification constant q~ for the semi-infinite mold case is de- 
termined from thermal properties of metal and mold. 

S(mm) 
Fig. 4--Experimental results for variation of position of 
freezing interface with time during solidification of lead 
against a semi-infinite mold. 

th ickness  with t ime  a r e  shown in F ig .  4 fo r  the two 
t h e r m a l  contact  condi t ions .  

The  heat  t r a n s f e r  coef f ic ien t  h i is  obtained fo r  any 
individual  case  by e x p e r i m e n t a l  m e a s u r e m e n t s  of thick- 
nes s  so l id i f i ed .  It is c l e a r  that Eq.  [2] can be wr i t t en  
in the f o r m :  

t 
-- a s  +/3 [18] 

w h e r e  a and/3 a r e  constants  def ined in t e r m s  of q5 and 

Fig. 3--Longitudinal macrostructure of lead unidirectionally 
solidified from a mold of thickness 40 ram. 

S o. However ,  by equat ing h i ( T f -  T o) to the heat  flux 
leaving the me ta l  when x '  = S '  = S o and subs t i tu t ing  
f r o m  Eq.  [9], it is e a s i l y  shown that h i is g iven  by: 

les2q)2H [19] 
h i = c sSo (T  f _  To) 

f r o m  which, r e f e r r i n g  to Eq.  [2], it is c l ea r  that, 

g d s  [20] 
hi - ( T f -  To)~3" 

It fol lows that h i may be s imp ly  obtained f r o m  expe r i -  
menta l  m e a s u r e m e n t s  of S with t ime  p r e s e n t e d  in the 
f o r m  of a graph  of t//S aga ins t  S, the i n t e r c e p t  of which 
wil l  be /3. It may be noted that Eq.  [20] is iden t ica l  to 
the one used in the p rev ious  paper  I dea l ing  with 
cooled m o l d s - / 3  for  the two ca se s  being equa l  (for 
the s a m e  meta l~mold  combinat ion  and s u r f a c e  condi- 
tion) al though the va lues  of both ~b and S O wil l  be dif-  
f e ren t .  Th is  is as  expec ted  because  the value  of the 
heat t r a n s f e r  coeff ic ient  depends only on the nature  of 
the i n t e r f ace .  A graph of t /S  aga ins t  S is shown in 
F ig .  5 fo r  the pol ished and coated  su r face  cases ,  with 
the two e x t r a c t e d  va lues  of/3 indicated.  It may be 
noted that the co r re spond ing  graph for the case  of lead 
so l id i f ied  in chi l led  molds with s i m i l a r  s u r f a c e s  1 gave 
v e r y  s i m i l a r  va lues  of/3* (although the g rad ien t s  of  the 

*In fact the value obtained for the polished surface is slightly greater in the 
present case, probably because the production of a high degree of polish was 
impeded by a rim on the mold block. The state of polish can have a significant 
effect on values of hi. 14'1s 

l ines ,  r e p r e s e n t i n g  a ,  were  d i f fe ren t  in this  case) .  The 
value  of h i d e r i v e d  f r o m  these  m e a s u r e d  value  of/3 for  
the two ca se s  a r e  shown in Tab le  I. It may be pointed 
out that these  f i gu re s  a g r e e  qui te  well  with va lues  
commonly  quoted in the l i t e r a t u r e ,  4'15 for  these  ma- 
t e r i a l s  with s i m i l a r l y  t r e a t ed  mold s u r f a c e s .  

F o r  the pu rposes  of com pa r i son  of theory  with ex-  
p e r i m e n t ,  the constants  of Eq.  [16] were  evalua ted  
fo r  the m a t e r i a l s  being used (from the data  in Appen- 
dix l'i) and this gave the equat ion:  
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Table I. Values of Interfacial Heat Transfer Coefficients Obtained Through 
Eq. [32] from Values of/3 Extracted Graphically from Experimental 

Data for Cases Examined. 

Mold s/cm h i, 
Metal Mold Surface -+ 0.2 kJ/m 2 Ks 

Lead Low Alloy Steel Polished 2.2 4.2 

Lead Low Alloy Steel Coated 12.0 0.75 
(1 O0 pm) 

t* = 0.72 S .2 + 0.60 S* [21] 

which is  shown as  the so l id  curve in Fig .  6, together 
with the exper imenta l  points der ived  f r o m  both 
pol ished and coated mold c a s e s .  It can be s een  that 
the agreement  between theory and exper iment  is  good 
over  the complete  range.  

As  a further check on the va l id i ty  of the model ,  
changes of t emperature  with t ime  were  examined  at 
var ious  points in the meta l  and mold and compared 
with the predict ions  of Eq. [17]. This  n e c e s s i t a t e d  
evaluat ion of the complete  set  of constants  involved 
in the model  and the calculated va lues  of these  p arame-  
ters  are shown in Table  II for the two mold surface  
condit ions.  Substituting these  va lues  into Eq. [17], a 
curve can be drawn of Ts* o r  Tin* against  S* for any 
given x* .  Two such curves  are  shown in Fig .  7 cor -  
responding to x* = 0.26 (in meta l  10 m m  from inter-  
face) for the coated mold and x* = - 3 . 8 1  (in mold 30 
m m  from interface)  for t h e  pol i shed case ,  together  
with the exper imenta l  output of thermocouples  located 
at these  pos i t ions  (combined with the appropriate  
curve in Fig .  4 to re late  t ime  to th ickness  so l id i f i ed) .  
It can be s e e n  that the a g reement  between theory  and 
exper iment  is  good, part i cu lar ly  bear ing  in mind the 

t/S 

($/cm) 

Ill COATED MOULD 

0 POLISHED MOULD 

/ 
/ 

,o / /  

).. 

o I 
0 lO 2 0  

/ 

/ 
/ 

/ 
/ 

/ 

50 40 50 S(mm } 

Fig .  5 - - E x p e r i m e n t a l  m e a s u r e m e n t s  for p o l i s h e d  and coated  
m o l d s  of  t h i c k n e s s  so l id i f i ed ,  S ,  aga ins t  t i m e ,  t ,  p r e s e n t e d  in 
the form of a t / S  aga ins t  S graph ,  f rom w h i c h  the p a r a m e t e r  
/3 (used to c a l c u l a t e  hi) i s  e x t r a c t e d  as  an i n t e r c e p t .  

f � 9  

20  

0 
O 

, - -  THEORETICAL PREDICTIOI 
(EQUATION [21] 

EXPERIMENTAL POINTS 
�9 COATED MOULD 
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/ 
/ 

/ 

/ 

O 

/ 

I 2 5 4 5 6 7 8 
S ! 

F i g .  6 - - C o m p a r i s o n  b e t w e e n  e x p e r i m e n t a l  and t h e o r e t i c a l  d e -  
p e n d e n c e  of the d i m e n s i o n l e s s  t h i c k n e s s  so l i d i f i ed  on d i m e n -  
s i o n l e s s  t i me ,  wi th  data p r e s e n t e d  f rom both p o l i s h e d  and 
coa ted  mold  e x p e r i m e n t s  for  lead f r e e z i n g  aga i ns t  a s e m i -  
inf ini te  mold .  

t.O 

O.S 

0 

O~ 2 

(%=.., 

EXPERIMs 
THEORETICAL 

0.5 i.O S ~, 1.5 

1 I / /  
EXPERIMENTAL 
THEORETICAL ~ / 

5 6 St 

/ /  

S / 
/ "  

2 4 

(b) 
F i g .  7 - - C o m p a r i s o n  b e t w e e n  t h e o r y  and e x p e r i m e n t  for the 
t h e r m a l  h i s t o r y  of po ints  in meta l  and mold  var ia t ion  of 
t e m p e r a t u r e  wi th  t h i c k n e s s  s o l i d i f i e d  (a)  in meta l  10 m m  
f r o m  m e t a l / m o l d  i n t e r f a c e  (x*  = 0.26)  for coa ted  c a s e  and 
(b) in mold  30 m m  from i n t e r f a c e  (x*  = - 3 . 8 1  for p o l i s h e d  
c a s e .  E x p e r i m e n t a l  c u r v e s  f rom t h e r m o c o u p l e  outputs  ( c o m -  
b ined  with  appropr i a t e  t /S  curve ) :  t h e o r e t i c a l  c u r v e s  f r o m  
Eq. [171. 
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Table II. Values of Parameters Involved in Model Calculated from Data of Table I and Appendix I I 

h i, Ti, his, him, So, Eo, 
Mold Surface kJ/m 2 "K's N M q~ K kJ/m 2 "K's kJ/m 2 "K's mm mm 

Polished 4.2 1.57 0.58 0.59 447 8.26 8.54 3.1 1.7 
Coated 0.75 1.57 0.58 0.59 447 1.47 1.53 17.1 9.7 
( 100 pro) 

p r a c t i c a l  d i f f i cu l t i e s  a s s o c i a t e d  with the m a s s i v e  mold 
case .  

The e f fec t  of a f ini te  mold th ickness  was a l so  in-  
ves t iga ted  in a shor t  s e r i e s  of e x p e r i m e n t s  with 
pol i shed  mold  s u r f a c e s .  F o r  the 100 mm mold it was 
v e r i f i e d  that  the t e m p e r a t u r e  i n c r e a s e  of the e x t r e m i t y  
r e m o t e  f r o m  the me ta l  was negl ig ib ly  s m a l l  dur ing  the 
so l id i f i ca t ion  per iod ,  but for  the o ther  th ickness  
ut i l ized,  th is  i n c r e a s e  was s igni f icant ,  indica t ing  some 
reduc t ion  in the h e a t - e x t r a c t i n g  e f f i c i ency  of the mold 
and consequent  dev ia t ion  f r o m  the condit ions of the 
s e m i - i n f i n i t e  model .  The  va r i a t i ons  in o b s e r v e d  t / S  
r e l a t i onsh ips  for  the d i f fe ren t  mold th ickness  used 
a r e  i l l u s t r a t e d  in F ig .  8. It may be noted that  i n t e r -  
polat ion of these  c u r v e s  indeed indica tes  that the 100 
mm case  c lo se ly  r e p r e s e n t s  a l imi t ing  s e m i - i n f i n i t e  
case .  E x p e r i m e n t a l l y  o b s e r v e d  changes of T i s  with 
t ime  for  t he se  molds ,  shown in F ig .  9, i l l u s t r a t e  this 
point and a l so  show that with thin molds  a t e m p e r a -  
ture  r e v e r s i o n  may occur  at the in t e r f ace  if the heat  
flux into the mold  b e c o m e s  sens ib ly  lower  than that 
a r r i v i n g  f r o m  the body of the m e t a l  ( i . e .  if the mold 
e f f ec t ive ly  b e c o m e s  s a tu ra t ed  with heat) .  In p r a c t i c e  
this  wi l l  depend on exac t ly  what is happening at the 
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Fig. 8--Experimental measurements of thickness solidified 
against time for solidification of lead against polished molds 
of varying thickness. 

e x t e r n a l  su r face ,  as  wel l  as on th ickness  and m a t e r i a l  
of mold.  

CONCLUSION 

The proposed  mode l  is seen  to p r ed i c t  quite  ef f i -  
c ient ly  the k ine t ics  and t h e r m a l  c h a r a c t e r i s t i c s  of the 
so l id i f ica t ion  p r o c e s s  under  the condit ions examined .  
Expe r imen ta l l y ,  the m a s s i v e  mold case  is not s imple  
to s imula te  under  the imposed  l imi ta t ions ,  and a g r e e -  
ment  between theory  and e x p e r i m e n t  may be cons ide red  
v e r y  good under  these  c i r c u m s t a n c e s .  

Taken  in conjunction with the s u c c e s s  of the s i m i -  
l a r ly  de r i ved  mode l  for  the case  of cooled molds ,  this  
c l e a r l y  indica tes  the va l id i ty  of the approach  of r ep lac ing  
i n t e r f a c i a l  r e s i s t a n c e  with a " p r e - e x i s t i n g "  th ickness  
of m a t e r i a l ,  through which heat  flow obeys the laws of 
conduction.  Th is  r a t iona le  would appea r  to p rov ide  a 
ma thema t i ca l l y  exac t  way of t r e a t i ng  the g e n e r a l i z e d  
so l id i f ica t ion  p r o b l e m  subjec t  to the r e s t r i c t i o n  that 
the heat  t r a n s f e r  coeff ic ient  is an invar ian t  (and leav-  
ing as ide  t e m p o r a r i l y  the ef fec t  of superhea t ) .  The 
ana lys i s  combines  the advantages  of gene ra l i ty  and 
r e l a t i v e  s im p l i c i t y  and r e q u i r e s  l i t t le  n u m e r i c a l  com-  
putat ion.  

It appea r s  probable  that a n u m b e r  of p r a c t i c a l  so l i -  
d i f ica t ion  s i tua t ions  would be amenab le  to solut ion by 
appl ica t ion  of the ba s i c  idea,  subjec t  to some  s imple  
phys ica l  app rox ima t ions .  F o r  example ,  in a one-  or  
tw o-d im ens iona l  f o r m  the t r e a t m e n t  might  be appl ied 
at a s e r i e s  of pos i t ions  to continuous cas t ing of na r row 
f r e e z i n g  range  a l loys ,  for  which the va r i a t i on  of h i 
along the so l id i fy ing  s t rand  is spec i f i ed  o r  may be 
found. Suitable manipula t ion  of the model  could enable 
deduct ions to be made about the i n t e r f ac i a l  p rof i le  in 
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Fig. 9--Experimentally observed cooling curves of metal at 
the metal/mold interface for solidification of lead against 
polished molds of varying thickness. 
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the s t e ady  s t a t e  se t  up under  given condi t ions .  The  T o 
g e n e r a l i t y  of the d e s c r i p t i o n  is of va lue  for  such ap -  
p l i c a t i ons  b e c a u s e  t h e r m a l  m e a s u r e m e n t s  made  at  T s 
va r ious  loca t ions  can be c o m p a r e d  with the m o d e l  p r e -  
d i c t i ons .  V 

It  may  a l so  be noted that  the a n a l y s i s  out l ined in th i s  
p a p e r  inc ludes  a r a p i d  and convenient  method for  ex -  x 
p e r i m e n t a l  m e a s u r e m e n t  of hea t  t r a n s f e r  coe f f i c i en t s .  
The a g r e e m e n t  o b s e r v e d  be tween  va lue s  obta ined  in x '  
th is  way for  the s a m e  m a t e r i a l s  and s u r f a c e  condi t ions  
in both m a s s i v e  and cooled molds  p r o v i d e s  c o n f i r m a -  a 
t ion of the r e l i a b i l i t y  of th is  technique .  /3 

APPENDIX I.  LIST OF SYMBOLS 

a) D i m e n s i o n a l  V a r i a b l e s  and P a r a m e t e r s  

a m t h e r m a l  d i f fus iv i ty  of mold  m a t e r i a l  
(= k m / C  m dm),  m2/s ,  

a s t h e r m a l  d i f fus iv i ty  of so l id  m e t a l  (= k s / c s d s )  , 
m2/s ,  

A m f i r s t  i n t eg ra t ion  cons tant  of t h e r m a l  p ro f i l e  
in mold,  K, 

A s f i r s t  i n t e g r a t i o n  cons tant  of t h e r m a l  p r o f i l e  
in me ta l ,  K, 

B m second  in t eg ra t ion  constant  of t h e r m a l  p r o -  
f i le  in mold,  K, 

B s second  i n t eg ra t i on  cons tant  of t h e r m a l  p r o -  
f i le  in me ta l ,  K, 

c m spec i f i c  hea t  of mold  m a t e r i a l ,  J / k g  .K,  
c s spec i f i c  hea t  of so l id  meta l ,  J / k g . K ,  

dens i ty  of mold  m a t e r i a l ,  k ~ / m  ~, dm 
d s dens i ty  of so l id  meta l ,  kff/m-S, 
E o t h i ckness  of " p r e - e x i s t i n g "  ad junc t  to mold  

in v i r t u a l  s y s t e m ,  m, 
h i Newtonian hea t  t r a n s f e r  coef f ic ien t  of me taL/  

mold  i n t e r f a c e ,  J / m  2 �9 K .  s, 
him hea t  t r a n s f e r  coeff ic ient  on mold  s ide  of 

m e t a l / m o l d  i n t e r f a c e ,  J / m  2 �9 K .  s ,  
his heat  t r a n s f e r  coef f ic ient  on m e t a l  s ide  of 

me taL /mold  i n t e r f ace ,  
H la tent  hea t  of fus ion  of meta l ,  J / k g ,  
le m t h e r m a l  conduc t iv i ty  of mold  m a t e r i a l ,  

J / m  �9 K �9 s ,  
k s t h e r m a l  conduct iv i ty  of so l id  me ta l ,  

J / m  �9 K �9 s ,  
S t h i c k n e s s  of so l id i f i ed  m e t a l  in r e a l  s y s t e m ,  

m, 
S '  t h i cknes s  of so l id i f i ed  m e t a l  in v i r t u a l  s y s -  

t e m s ,  m, 
S o t h i cknes s  of " p r e - e x i s t i n g "  adjunct  to m e t a l  

in v i r t u a l  s y s t e m ,  m, 
t t ime  f r o m  z e r o  point  in r e a l  s y s t e m ,  s,  
t '  t ime  f rom z e r o  point  in v i r t u a l  s y s t e m s ,  s ,  
t o t ime  to p roduce  " p r e - e x i s t i n g "  ad junc t s  in 

v i r t u a l  s y s t e m s ,  s ,  
T abso lu t e  t e m p e r a t u r e  in r e a l  and v i r t u a l  

s y s t e m s ,  K, 
T f  f r e e z i n g  t e m p e r a t u r e  of me ta l ,  K, 
T i i nva r i an t  t e m p e r a t u r e  of hypo the t i ca l  p lane  

at  me taL /mold  i n t e r f ace ,  K, 
T i m  t e m p e r a t u r e  of mold  at  me taL /mold  i n t e r -  

face ,  K, 
Tis  t e m p e r a t u r e  of m e t a l  at  me taL /mold  i n t e r -  

face ,  K, 
T m t e m p e r a t u r e  at  any point  in the  mold,  K, 

i n i t i a l  t e m p e r a t u r e  of m a s s i v e  mold  (ambi -  
ent  t e m p e r a t u r e ) ,  K, 
t e m p e r a t u r e  at  any point  in the so l i d i f i ed  
me ta l ,  K, 
v e l o c i t y  of l i q u i d / s o l i d  i n t e r f ace  in r e a l  
s y s t e m ,  m / s ,  
d i s t a n c e  f r o m  me taL /mold  i n t e r f a c e  in r e a l  
s y s t e m ,  m,  
d i s t a n c e  f r o m  me taL /mold  i n t e r f a c e  in v i r -  
tua l  s y s t e m s ,  m, 
f i r s t  cons tan t  of Eq.  [6] (= 1/4 as~2),  s / m  2, 
s econd  cons tan t  of Eq.  [6] (= S o / 2 a s $ 2 ) ,  s / m .  

H* 

M 

N 

S* 

s* 

t* 

T *  

T* s 

x*(x > O) 

x*(x < O) 

b) D i m e n s i o n l e s s  V a r i a b l e s  and P a r a m e t e r s  

d i m e n s i o n l e s s  t h i cknes s  of " p r e - e x i s t i n g "  
ad junc t  to mold ,  E o h i / k i n ,  
d i m e n s i o n l e s s  la ten t  hea t  of fus ion  of me ta l ,  
H / c s ( T  f -  To)  , 
r a t i o  of hea t  d i f fu s iv i t i e s  of so l id  m e t a l  and 
mold  m a t e r i a l ,  ( k s d s c s / k m d m c  m)l/2, 
s q u a r e  roo t  of r a t i o  of t h e r m a l  d i f fu s iv i t i e s  
of so l id  m e t a l  and mold  m a t e r i a l ,  ( a s / a m )  1/2, 
d i m e n s i o n l e s s  t h i c k n e s s  of so l i d i f i ed  m e t a l  
in r e a l  s y s t e m ,  Sh.r/les, 
d i m e n s i o n l e s s  t h i cknes s  of " p r e - e x i s t i n g "  
adjunct  to m e t a l ,  S o h i / k  s 
d i m e n s i o n l e s s  t ime  f rom z e r o  point  in r e a l  
s y s t e m ,  t h i 2 / k s d s c s ,  
d i m e n s i o n l e s s  t e m p e r a t u r e  at  any point  in 
the mold,  (Tm - T o ) / ( T  f -  To) , 
d i m e n s i o n l e s s  t e m p e r a t u r e  at  any point  in 
the me ta l ,  (T s - T o ) / ( T  f -  To) , 
d i m e n s i o n l e s s  d i s t a n c e  into m e t a l  f r o m  
me taL /mold  i n t e r f a c e ,  x h i / k s ,  
d i m e n s i o n l e s s  d i s t a n c e  into mold  f r o m  
me taL /mold  i n t e r f a c e ,  x h i / k m ,  
d i m e n s i o n l e s s  s o l i d i f i c a t i o n  cons tan t ,  Eq. 
[20]. 

Appendix II. Thermal Properties of Metal and Mold Used in Calculation 
of Model Parameters. 

H, k, d. c,  T f  , To, 
Material kJ/kg J/m'K's Mg/m a J/kg'K K K 

Lead 25 31 11.1 138 600 - 
Low alloy Steel - 33 7.9 486 - 300 
(En 27) 
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