
The Structures Expected in a Simple Ternary Eutectic 
System: Part I. Theory 

D. G. MCCARTNEY, J. D. HUNT, AND R. M. JORDAN 

The structures which are to be expected during the steady state directional growth of alloys 
in a simple ternary eutectic system are discussed and it is predicted that for a particular 
velocity and temperature gradient five different structural regions can be observed. The 
structural regions of a two component system may be explained using a stability analysis 
and a competitive growth criterion, and it is suggested that these ideas may be extended to a 
three component system. Additional models have been proposed for the growth of a planar 
front two phase eutectic and single phase dendrites in a three component system. 

THE purpose of this paper is to discuss the structures 
expected during the steady state directional growth of 
alloys in simple ternary eutectic systems such as that 
shown in Fig. 1. It is shown that theideas developed to 
predict the ranges of structures in two component 
systems may be extended to predict the ranges found in 
three component systems. 

Considering the simple ternary system of Fig. 1 and 
assuming that each of the three primary phases a, fl and 
y grow in a nonfaceted fashion, and nucleate easily, a 
number of different structural regions are then to be 
expected. The composition ranges of each of these for a 
fixed growth velocity and temperature gradient are 
shown schematically in Fig. 2, and referring to this 
figure: 

Region 1--Near the pure component corners single 
phase growth occurs with a planar growth interface (e.g. 
Flemingsl); 

Region 2--Near the two component eutectic com- 
positions two phase eutectic growth occurs, again with a 
macroscopically planar growth interface (e.g. Flem- 
ings2), and usually with a lamellar or rod-like structure2 
The growth interface is shown schematically in Fig. 
3(a); 

Region 3--For alloys near the eutectic valley two 
phase eutectic cells or dendrites are expected with the 
third component appearing near the ternary eutectic 
temperature either as a thin layer of this phase or as a 
three phase eutectic layer around each cell depending 
on the volume fraction of the ternary eutectic. The 
growth interface is shown schematically in Fig. 3(b). 

Region d Near the ternary eutectic composition a 
three phase eutectic structure is expected without any 
primary single phase or two phase eutectic (e.g. Kerr et 
a14). The three phase structure should grow with a 
(macroscopically) planar interface in a similar fashion 
to the pure single phase, and the pure two component 
eutectic. The growth interface is shown schematically in 
Fig. 3(c). Clearly the actual structure may be complex 
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and not necessarily a simple lamellar or rod-like one:  
Region 5--For alloys away from the eutectic valleys 

single phase cells or dendrites are to be expected, 
followed by the structures described in regions 2, 3 and 
4, and can be as follows: 

a) Single phase dendrites can be followed by two 

C 

A 

B 
Fig. 1--Ternary eutectic phase diagram. 

EUTECTIC 
VALLEYS 

1 1 

2 
Fig. 2--Schematic representation of the composition boundaries of 
the various structural regions (dotted and solid lines) for a fixed 
velocity and temperature gradient. The numbers and letters refer to 
the regions described in the text. 
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Fig. 3--Schematic growth interfaces in a ternary system: (a) two 
phase eutectic, (b) two phase cells plus ternary eutectic, (c) three phase 
eutectic, (d) single phase cells plus binary eutectic, (e) single phase 
cells, two phase cells, and ternary eutectic, and (f) single phase cells 
plus ternary eutectic. 

phase eutectic growing with a planar interface in region 
5(a). The growth interface is shown schematically in 
Fig. 3(d). 

b) Single phase dendrites can be followed firstly by 
two phase cells and finally by three phase eutectic in 
region 5b. The growth interface is shown schematically 
in Fig. 3(e). 

c) Single phase dendrites can be followed by three 
phase eutectic in region 5c. The growth interface is 
shown schematically in Fig. 3(f) although in practice, 
near the pure component corners, the residual liquid 
may freeze as a single or two phase liquid layer around 
the single phase cells. 

TWO COMPONENTS 

In a two component system the limit of planar single 
phase growth has been shown by stability analysis 6 to 
be given to a good approximation assuming equal 
thermal conductivities in the solid and liquid by the 
constitutional undercooling condition. That is for 
planar interface growth 

( G > m  1 - ~ C ~  [1] 

where G is the temperature gradient, m the liquidus 
slope, k the distribution coefficient, V the growth 
velocity, D the liquid diffusion coefficient and C~ the 
alloy composition. 

The eutectic range, defined as the composition range 
over which eutectic growth occurs without a primary 
phase being present, depends on growth velocity and 
temperature gradient. It has been shown 7,8 that the 
complex dependence of this two phase eutectic range on 
growth velocity and temperature gradient can be ex- 
plained in terms of a competitive growth condition. 
That is single phase cells or dendrites will only be 
present with the eutectic when the dendrites grow at a 
higher temperature than the eutectic. The critical con- 
dition is thus when the dendrite tip temperature TIp 
equals the eutectic growth temperature T~E. Defining 
the eutectic undercooling AT E = T e - TIe  (where T E 
is the equilibrium eutectic temperature) and the dend- 

rite undercooling AT D = T o - T Ip  (where T o is the 
alloy liquidus temperature) gives AT D - AT e 
= T o - T E at the critical condition. Noting from the 
phase diagram that T O - T e = m ( C ~  - Ce)  where C E 
is the eutectic composition and defining the eutectic 
range on one side of the phase diagram as 
AC = (C~ - CE) gives 

A C  = ( A T o  - A T E ) / m .  [2] 

The eutectic undercooling is given by A T  e = A V 1/2 
where A is a constant which may be obtained from Ref. 
9. The dendrite undercooling was given by Burden and 
Hunt ~~ as 

o o  
ATo ---- ~ - +  2 - - - -  m(1 -- K ) C ~  

Thus the eutectic range may be calculated. 

[31 

THREE COMPONENTS 

It is suggested that lines defining the limits of the 
regions in three component systems can be predicted by 
using similar reasoning. 

i) The limit of region 1, viz. that of planar single 
phase growth, will be given by the constitutional 
undercooling condition modified for three components. 
That is 

d C s  d C c  
G > mjB ~ + mjc d x  [4] 

wherej = a,/3 or 7 phases, mjn = ( ~ T / ~ C n ) c c  and rnjc 
= ( O T / a C c ) c ,  are the slopes of the liquidus surfaces, 
and subscript B and C refers to components B and C. 
Continuity of matter at the interface requires 

DB d x  

and 

D c  d~-  V - 1 C ~ c  

so that the condition for stability is 

[51 

ii) In the past it has usually been assumed without 
justification that the limit of the planar two phase 
eutectic (the line between regions 2 and 3, Fig. 2) was 
given by the constitutional undercooling condition with 
respect to the third component. This can be justified as 
follows: in Appendix A it is shown that the under- 
cooling below the two component (A and B) eutectic 
temperature in a three component (A, B and C) system 
for planar two phase (aft) eutectic growth for small C ~ c  
is given by 

A T  e = A ' V  1/2 + McCooc /k  c [6] 

where M c = d T / d  C~ is the slope of the eutectic valley 
(assumed constant) and Cc e = C ~ c / k  c is the average 
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liquid composition at the interface, k c -- (k~cs~)/(s ~ 
+ sa) + (kacsp)/(s a + sty)is the weighted eutectic 
distribution coefficient for component C. 

The first term on the right hand side of Eq. [6] is 
similar to that for a two component eutectic. A'  is 
almost a constant and marginally dependent on the 
value of C~c through M of Eq. [A8a] and [A8b]. The 
second term on the right hand side of Eq. [6] is similar 
to that for planar interface growth of a single phase in a 
two component system where component C is the 
impurity. A perturbation analysis can thus be carried 
out in an identical fashion to Mullins and Sekerka 6 for 
component C ahead of the eutectic assuming A' 
constant and using an averaged surface energy term. An 
identical result is obtained except that the denominator 
will have an additional term due to the first term on the 
RHS of Eq. [6]. This additional term merely decreases 
the rate of change in amplitude of the perturbation. The 
wavelength of the instability will similarly be of the 
same size as that for the single phase since here A' is 
effectively a constant, in contrast to Ref. 13. The 
condition for stability is thus given approximately by 
the constitutional undercooling condition. 

That is, for a planar two phase eutectic interface the 
line between regions 2 and 3 is given by 

v 
G > M  c 1 - CoocD~ [71 

iii) In Appendix B it is shown, following the order of 
magnitude model proposed by Burden and Hunt H for 
two component cells or dendrites, that the undercooling 
AT D for cells or dendrites in a three component system 
is given by 

DG ( a V [  
ATn ~ + 2 V ~  - m~B - = ~ -  (1 kaB)CooB 

+ ~ + m~c(1 - k . c )C~c  + 

[81 

This is identical to Burden and Hunt's expression 
except that an additional m~c (1 - k~c ) C~c 
+ k,,cGcD/V appears as the effect of the third com- 
ponent. 

The extent of the planar two phase eutectic range (the 
line between regions 2 and 5) can be predicted from a 
competitive growth condition as for a two component 
using Eqs. [6], [8] and [2]. 

iv) When the planar interface two phase eutectic 
breaks down to a cellular two phase eutectic the 
undercooling will not be given by Eq. [6]. Instead as 
ceils first form the temperature of the cell tip will rise 
(due to radial rejection of solute C) then decrease again 
with increasing velocity. By direct analogy with single 
phase cells or dendrites n an expression for the two 
phase cells or dendrites can be proposed. 

In a two component system the dendrite temperature 
is given by Eq. [3], where the undercooling is measured 
from the bulk liquidus temperature, l~ Modifying this 
equation by referring the undercooling to the pure 
metal melting temperature assuming a straight liquidus 
line gives 

GD 
AT 1 = - m C ~  + 

[9] 

The analogous expression for the eutectic cells might be 
expected to be of the form 

GD 
ATE = -M~Cooc + --V- 

+ 2 [ _ ~ f f _ ( M c ( l _ K ) C o o c  [10] 

+ ~-G)]I /2  +Alvl/2" 

Equation [10] reduces to Eq. [6] at the critical 
condition for planar cell breakdown when inequality 7 
becomes an equality. A plot of Eq. [ 10] at constant 
gradient is shown schematically in Fig. 4. 

In principal Eq. [10] could be compared with Eq. [8] 
using the competitive growth condition to give the line 
between region 3 and 5b. 

v) Assuming a simple interpenetrating three phase 
lamellar structure such as that shown schematically in 
Fig. 3(c) a theoretical model for three phase growth 
could be derived in a similar fashion to that derived by 
Jackson and Hunt 9 for two phase growth. It seems 
probable that the undercooling AT r would be related to 
the velocity in a similar fashion to that for the two 
phase structure 

~xr~ = A " v r r  [111 

where A" is a constant depending on the same param- 
eters as A (given previously) but also on the assumed 
geometry of the phases. 

It is proposed that a competitive growth model could 
then be used with Eqs. [10] and [11] to give the line 
between regions 3 and 4 and with Eqs. [8] and [11] to 
give the line between 4 and 5c. 

It is suggested that stability analyses together with the 
competitive growth condition provide a basis for at least 
a qualitative understanding of the different regions in a 
three component eutectic system. The discussion as- 
sumed that each phase grew in a nonfaceted fashion 3 
and implicitly that each phase was present in the two 
phase and three phase structures as an appreciable 
volume fraction. 

TEMPERATURE 

VELOCITY 

Fig. 4--Schematic variation of the growth temperature with velocity 
at a constant gradient for a two phase structure. (Eqs. [6] and [10]). 
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The effect of one phase being faceted in a two 
component eutectic tends to blur the dividing line 
between primary faceted phase and the eutectic? 4 The 
volume fraction and the size of the faceted phase often 
seems to gradually increase from the eutectic compo- 
sition. The most probable reason for this is that there is 
no equivalent well defined primary freezing tempera- 
ture for the faceted plate or needle. The needles or 
plates do not usually grow as regular arrays of similar 
size plates; the primary freezing temperature thus 
depends on the position and size of the particular 
growing primary phase. It seems probable tha the 
regions on Fig. 2 will become less well defined when 
faceted phases are present in a three component system. 

Similar difficulties arise when one phase is present 
only as a very small volume fraction even though both 
are nonfaceted. There appears as before to be no 
sudden transition between well defined eutectic and the 
presence of primary. Again the reason is probably 
associated with the difficulty in forming a dendrite 
array of a very small volume fraction phase. 

SUMMARY 

l) Five main structural regions are expected during the 
directional growth of a three component eutectic system 
(Fig. 2). 
2) The limits of the various regions may be predicted or 
at least qualitatively understood in terms of stability 
analysis and the competitive growth condition. 
3) Models have been proposed for the growth of a two 
phase eutectic and for single phase dendrites or cells in 
three component systems. 

APPENDIX A 
PLANAR TWO PHASE EUTECTIC GROWTH 

IN A THREE COMPONENT SYSTEM 

During steady state planar interface growth of a two 
phase eutectic in a three component system, the alloy 
C~B, C~c will grow with solid compositions very near 

E E C~B, C.c and C~B, C~c from a liquid composition 
near C~, Cg where the compositions are the corners of 
the relevant tie triangle (see Fig. 5). As the steady state 
growth rate approaches zero the interface temperature, 
Tt, will approach the liquidus groove temperature T 0, 
for composition Cg, Cg. Measuring the undercooling 
from this temperature gives 

AT.  = m~n (C~ - Cn) + m~c (C~ - Cc) + aa/r 

[Ala] 

AT e = man (Cg - CB) + moc(Cg - Cc) + as/. 

[Alb] 

where the subscripts a, fl refer to phases and B, C to 
components, m~n = (OT/OCB) c c similarly m0n, mac 
and moc, r is the radius of curvature and a the Gibbs 
Thomson coefficient for that phase. 

Following Jackson and Hunt 9 the compositions in the 
liquid are given by 
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CB = C~s + BoB e x p ( - v z / D )  

+ ~ B.B cos ( n r x / S .  + SO) exp (-n~rz/S~ + So) 
n = l  

[A2a] 

Cc = Cooc + Boc exp ( - v z / D )  

+ ~ B.c cos (mrx/S~ + So) exp ( - m r z / S .  + So) 
n = l  

[A2b] 

(Note that Jackson and Hunt defined Co~B in the two 
component system as C E + C~). The B o and B, terms 
must now be evaluated. As for the two component 
system 9 

2 V 
B.B = n~r2--(S o + So) ~ CoB sin (n~rS~/S~ + So) 

[A3a] 

2 V 
B.c - nor2 (S~ + SO) ~ Coc sin (mrSJS~ + So) 

[A3bl 

- -  ~_  1 C a  c . where Cos C~ B C ~  and Coc C~c E 
The evaluation of the B o terms is however much more 
complex. In principal BoB and Boc could be evaluated 
using the method proposed by Series et al ~5 for a two 
component system. From the lever rule 

- CoB) - ( C . c  s S ~ =  - ( C . B  s = - C~c) 

S~ (C~B - C~B) (Cooc-  C~c) [A4] 

where CSn is the average solid c~ composition of 
component B similarly C~B and so forth. The average 
solid compositions may be obtained from the four 

~ R B  I 

c-O 
! f lc,, co) 

A 
,c'.:) 

Fig. 5--Three phase tie triangle at a temperature T 0. 
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expressions of the type 

C~Ss = C,en + m'~[-CL - C~) + m ~ L  -- C~)  
na B ~ aB n~,#--' i \~, ,c  

[A5a] 

where superscript L refers to liquid, n~n = 
[(OT)/OCS)]ee and n'~B = [(OT)/(OCS)]e~. The last 
terms on the right-hand-side arises because the B 
content of the solid depends both on the change in the 
C content of the liquid as well as the change in B. The 
average liquid compositions may be obtained from Eqs. 
[A2a] and [A2b] giving four equations 

C ~  = Coos + BoB + q~CoB/S,~DB 

C.% = Cooc + 

= C ooB + 

Boc + ~Coc/S~D c 

BoB -- epCos/S,p n 

[A6a] 

[A6b] 

[A6c] 

[A6d] 
n 

C~c = Coo c + Boc - eOCoc/SBP c 

where q, -- 2 (S~ + SB) 2 V P  and P = Y~=l 
sin2(ncrS./S~ + SB)/(ncr)3. 

The four Eqs. [A6] should now be substituted in Eqs. 
[A5] and then into [A4] finally giving two equations 
containing BoB and Boc. These could in principal be 
solved in terms of BoB and Boc as functions of the ratio 

= SB/S  a. The values of BoB and Boc should then be 
substituted into the average undercooling equations. 

AT~ = m ~ B ( - A C  n - q~CoB/S~DB) 
L~ + m ~ c ( - A C c  - q~Coc/S~Dc) + a. S~ [A7a] 

m 

AT B -- mpB (-ACB + eOCoB/SBDB) 

+ m p c ( _ A C c  + eOCoc/SBDc ) + a~/SB. [A7b] 

This procedure is necessary to ensure that theparticular 
value of SB/S  ~ is used which allows AT. = AT B thus 
also satisfying heat flow. 15 AC B = BoB + Coo B - C~ 
and AC e = Boc + Cooe - C~ are the differences 
between the average liquid compositions and the rele- 
vant groove composition. 

Even in a two component system this procedure is 
not tractable, Jackson and Hunt 9 proceded by noting 
that only AT and B o were sensitive functions of S y S .  
so that B o could be eliminated from the two undercool- 
ing equations and SB/S  ~ then assumed to have its 
equilibrium value. 

A similar procedure may be carried out in a three 
component system. Writing 

M~ = maB + m . c A C e / A C  B [A8a] 

M~ = mBn + mBcACc/AC s [A8b] 

as the effective three component liquidus slopes on the 
liquidus surface. Provided A C c / A C  s is small, (it will be 
shown later that A C e / A C  n ~ Coe/Con ) M~, and M B 
will be relatively insensitive to the precise value of the 
ratio AC e / A C  n. 

Substituting into Eqs. [A7a] and [A7b] gives 

AT~ = - M ~AC n - (rn~BCon/D B 
+ m.cCoc/Dc)eO/S ~ + a L / S .  [A9a] 

A T  B = - M r  

+ (mBnCon/Dn + mBcCoc/Dc)cP/S B + a ~ / S ,  

[A9b] 

Eliminating AC B gives (1 
A T  = 

a 

-(rn~BCon/D n + m . c C o c / D  c ) O / S . M  . 

- (m~BCoB/DB + mBcCoc/Dc)q~/SBMs 

+ a ~ / S . M .  - a~ /SBM n. 

[A10I 

The value of the ratio A C c / A C  B may be estimated 
using Eqs. [A4] and [A5] writing 

- c o B )  = S CoB, (c B - c B) = - S o C o B  ( C  ~B 

(Cooe  - = S Coc, (c e - c e) = -S Coe 

[All] 

and using Eq. [A4] for the small solid composition 
changes corresponding to liquid composition changes 
ACB and ACc 

SBCoBAC~c - S .CocACS,  

= SBCocAC~B - SaCoBACSc [A121 

where ACSB = C~5 - C.• and similarly AC s 
assuming that the liquid compositions averaged over 
each phase separately is approximately the same as that 
averaged over the whole interface Eqs. [A5] give 

A C aS~ = K ,~BA C B + K 'aBA C c 

AC~B = KBBAC B + K~BACc 
! 

ACSc = K . c A C  c + K~cAC B 

AC~e = KBeAC c + K'~cAC B [A13] 

where K o = mo/nij  and K o = rno/ni' j. This gives 

ACc 

A C s  

= (SBCocKBB + S~CocKae - S .ConK 'c  - SeCoBK'~c 2 

(SBCoBKBc + S .CoBK.c  -- S~CocK' - SBCocK'BB )" 

[A14] 

Extensive experimental data must be available to eval- 
uate this expression accurately. In general however K o 
>> Ki' j --> 0 for most solidus and liquidus surfaces so 
that 

ACc ~ (SBK~B + SaK~,n)Coc = Ka~C_os 

ACB (SBKBc + S~K~c)CoB Kc C~ [A15] 

where K B is the weighted eutectic K value for the B 
component and K c that for the C component. Since 
KBB, K,B, Kr and K~c will usually be of similar size as 
a first approximation 

ACc ~ Coc [A16] 
AC B CoB " 

Thus for alloys where K n ..~ K c and Coo c is small and 
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thus Coc/Co~ is small Eq. [A10] becomes assuming 
A C c / A C  s = Coc/Cos  

A T / M  = ( ~ - ) ( S ,  + S O ) O / S . S ,  [A17] 

- a ~ / S , M ~  + a } / S B M  o 

where 1 / M  = 1 / M  n - 1 / M , .  Substituting ( = S o / S  ~ 
assuming D s = D c and minimizing with respect to 
lamellar spacing )t = 2 (S~ + So) gives a similar ex- 
pression to that obtained by Jackson and Hunt. 9 

VX 2 = aL/Qz. [A18] 

A T  = 2 M  (aLQ L V) 1/2 = A "P 112 

where a L = 2(1 + 0 (a} /~Mn - a ~ / M : )  

QL = e(1  + 02Cos /~D [A191 

The changed sign in a L arises because Jackson and 
Hunt 9 defined Mo positive. The approximation, Eq. 
[A 15], produces a more complex expression of similar 
form. 

If the undercooling is measured from the pure binary 
eutectic temperature assuming that the slope of the 
liquidus groove is constant 

A T  e = A ' V  ~/2 + M c C  ~. [A20] 

where M c = d T / d C  c is the slope of the eutectic 
groove and C~ = C ~ c / k  c is the relevant liquid groove 
composition, k c = k~cS~/S  . + S o + k o c S , / S  o + S o is 
the weighted eutectic distribution coefficient (note Kq is 
of similar form but not equal to k0). 

APPENDIX B 
SINGLE PHASE DENDRITE GROWTH 
IN A THREE COMPONENT SYSTEM 

Measuring the dendrite undercooling from the 
liquidus temperature for the bulk alloy C o s ,  C~c ,  the 
tip undercooling is given by 

2a 
ATo  = m , o ( C ~ s  - Crn)  + m~c(C=c - C r c )  + ~ -  

[B1] 

where Cr~ is the tip concentration of either B or C, a is 
the Gibbs-Thomson coefficient. 

Following the oMer of magnitude model proposed by 
Burden and Hunt n for a two component system, the 
composition in the liquid is divided into two parts 

Cs = Cs + 6Cs  [B2a] 

Cc = Cc  + 6Cc [B2b] 

where C, is the average composition across the interface 
and 8C~ is the additional part (i = B or C). Eq. [B1] 
becomes 

AT~ = m,o(C~B -- C r s  ) + rn~c(C~c - Crc  ) 

- (m,oSC ~ + m , c S C c )  + 2 a / R .  [B3] 

The average compositions C, can be obtained by 
solving 

d2Ci + V d C i  0 
d x 2 D d  Sc 

giving 

( d f i l  V 
- ~  ]x.o = Oi (Cooi -- -CTi)" [B4] 

Between the dendrites away from the tip there is 
sufficient time for the liquid to become almost homo- 
geneous. Thus the composition gradients along the 
interface 

d C i  d C i  
d x d :c [B5] 

In this region the composition gradients will be almost 
constant and related to the temperature gradient by 

d T d C o d C c [B6] 
G = d-7  = + mac d--7- 

Making a similar assumption to that made by Burden 
and Hunt for the two component system, that the 
average composition gradients behind the interface are 
similar to the average at the dendrite tips gives assum- 
ing D B = D c substituting Eq. [B4] into Eq. [B3] using 
Eqs. [B5] and [B6] 

D G  
AT~  - V ( m ~ 6 C s  + rn~cSCc) + 2 a / R  [BT] 

the 8C, terms may now be estimated by considering 
mass balance at the tip. From Eqs. [B2a] and [B2b] 

ax--:..0 =  -a-TL.0 + : , . o  
and from mass balance 

( ~ C ~  i )  = V ( I  _ koti)(CTi ~- ~CTi ) 
~x ].-o D 

In the original work it was assumed that 

[B81 

[B9] 

( ~(8C)] - 8C r 

Ox L .  o - 

which is the classical Zener approximation. It is slightly 
better to assume that 

~ I x . o  "~ SCr,  ( l  + ~ ) .  [Bl0] 

This expression is valid for a wide range of Pecklet 
numbers. 

Substituting Eqs. [B9] and [B 10] into Eq. [B8] using 
Eq. [B4] gives 

8Cr,  + = - ~ (1 - k~,) Co,  

- -  Vkai --  
+ ~ - ( C r i  -- Cool) 

Provided 

1 ki W 
R D 

(dCi  I = v (1 - + k~ 

Substituting Eq. [B11] into Eq. [B7] gives 

[Bll] 
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AT~ - 

where 

+ ( m ~ c (  1 k,c)Cooc + k ~ c G c D ) ]  ~a - - - + 2  

[B12] 

m 

dCB d C c  
GB = m~8 d x  Gc = mac d x  

It is now necessary to apply a minimum undercooling 
condition 

DG 
ATD= V 

+ 2V~ ( aV -- ~- [ (m~B(1 k~B)CooB . ~ 

[B13] 

As in the two component dendrite the k G D / V  term is 
only important compared with m (1 - k)Coo when the 
planar interface has just broken down to cells, In this 
region GB and Gc will be given to a very good 
approximation by the values G~ and G~ present at the 
critical breakdown condition. The critical breakdown 
velocity Vcn t ( V of alloy (Coos, Cooc) in a gradient G is 
given from Eq. [5] of the main text by 

which may be used to give 

, -re.B(1 - k~B)C~B 
G B "~ G B = D k~B V~a t 

, - m ~ c ( l  - k~c)C~c 
G c ' ~  G c = D k~c Vcrit" 
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