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An approximate theory is presented for solidification in a finite, initially overheated slab in which one wall i s  

insulated and the other is subject to an instantaneous temperature drop below the freezing point. The simple 
expressions for the position of the phase change front as a function of time are derived. The results are com- 
pared with experimental data, numerical and approximate solutions as well as exact solution presented in other 
literature, and good agreement is attained. It is shown that the approximate method proposed herein i s  a l s o  

valid for phase change problems with large Stefan numbers and different boundary conditions. 

K e y w o r d s :  so l id i f ica t ion ,  p h a s e  c h a n g e ,  h e a t  t r a n s f e r .  

I N T R O D U C T I O N  

Phase-change heat transfer problems often occur in 
many natural phenomena, such as melting, freezing, 
sublimation, gas dissolution and evaporation. Ana- 
lytical research on these problems has generated an 
extensive body of literature. These analyses were 
mainly concerned with the situation in which the 
phase change medium was assumed at its melting tem- 
perature. This limitation simplifies the mathematical 
model, but fails to suit some problems of practical in- 
terest. 

Exact solutions are available only for a few cases. 
The most notable example is that  of Neumann [11 who 
treated a semi-infinite one-dimensional slab initially 
at uniform temperature. Systems with more compli- 
cated geometry, boundary and initial conditions are 
usually handled by numerical and/or  approximate an- 
alytic methods. 

Goodman and Shea [2] applied the heat-balance 
method to the problem of a finite slab by a compli- 
cated analysis. Gao and Sunderland [31 studied this 
problem using the same method. However, [3] has the 
restriction that the interface position is proportianal 
to the square-root of time. For the case of small 
Stefan numbers, Weinbaum and Jiji [4] applied the 

• 5 perturbation theory; Charach and Zoghn[ ] com- 
bined the heat balancce integral method with a 
t ime-dependent perturbation theory. In numerical 
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methods, Sparrow et al [6l employed a finite difference 
technique in conjunction with a formulation in which 
both the liquid-solid interface and the forward edge 
of the temperature wave were immobilized. Yuen and 
Kleinman [71 applied a variable time step finite differ- 
ence method to the one dimensional melting problem 
that takes into account the effect of subcooling. 

While these approachs have been proved successful, 
they are mathematically difficult and have limited use 
for practical problems. 

In this paper, an approximate analysis of solidifica- 
tion in a finite, initially overheated slab is developed. 
Our method has the same feature as the heat-balance 
intergral, but by this method it is not required to solve 
the heat-balance intergral equation and differential 
equation. The simple expressions for the position of 
the phase change front as a function of time are de- 
rived. The results are compared with the experimental 
data, numerical and approximate solutions published 
in other literature and good agreement is attained. It 
is seen that the approximate theory is also valid for 
phase change problems with large Stefan number and 
any boundary conditions, so it is a simple and direct 
method for practical calculation of most engineering 
problems involving solidification process• 

F O R M U L A T I O N  OF T H E P R O B L E M  

Consider a uniform liquid layer initially at the tem- 
uerature Tt which is above the freezing point T/. Tile 
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N o m e n c l a t u r e  
c specific heat 
d length of slab 
E function defined by equation (20) 
F functmn defined by equatmn (29) 
K thermal conductivity 
L latent heat of fusmn 
St/. Stefan number of liqmd 
S t ,  Stefan number of solid 
T temperature 
7"/ fusmn temperature 
T, initial temperature 
T~, the front wall temperature 
St positlon of phase change front 
$2 position of thermal front in liquid 
t tLme 

z dlstance 

c~ thermal dlffuslvlty 

61 dlmensionless position of phase change front 

~2 dimensionless position of 

thermal front in liquid 

8 L dimensionless liquid temperature 

O, dimensionless solid temperature 
Al constant defined by equation (25) 
Aa constant defined by equation {2{;) 
p density 

v ratio of thermal diffuaivities of solid and liquid 
r dimensionless time, = ~ a L / d  a 

rb dimensionless time of the end of process 1 
5b dimensionless position of phase change 

fron at end of process 1 
r/ dimensionless distance 

Subscripts 
L liquid 

S sohd 

thickness of the slab is d and its back wall is insu- 
lated. At time t = 0 the temperature of the front wall 
drops to Tw(< T f ) .  To analyze the problem, some 
assumptions are made as follows: 

(1) Tw is constant during the entire freezing pro- 
cess. 

(2) Thermophysical parameters of each phase are 
constant. 

(3) Convection effect is neglected, and the heat 
transfer is one-dimensional. 

The overall phenomenon is divided into two pro- 
cesses as shown in Fig.1. They are described by dif- 
ferent equations and boundary conditions, and the pri- 
mary process determines the initial conditions for the 
subsequent process. During the process 1, liquid-solid 

f l f : ' ~  

/ / / /  

T - T ,  

T =  TS 

T =  :r. 

1 1  / / /~ '"  

S Z 

T = Z  

T= T 1 

(b) 

F i g . l  Solidification processes 

interface St and temperature penetration depth $2 in- 
crease from zero, and the temperature  of liquid drops 
in the distance 5'2. This process terminates when 
$2 = d. During the process 2, llquid-solid interface 
$1 continues to increase and the temperature  of insu- 
lated wall (x = d) begins to drop from Ti. When the 
temperature of the insulated wall equals T !  (i.e. the 

position of the liquid-solid interface $1 = d) this pro- 
cess ends. 

The govening equations for each phase in the entire 
process are: 

aT. a=To aT, a2T  
a t  - a ,  a x  2 , a - t -  - aL  a x  ~ (1) 

K aT, aT~ de1 
" ~ I==s, - KL ~ : = s ,  = pL d---~ (2) 

T , ( z , t )  ==s, = T ~ ( x , t )  , = s ,  = T !  (3) 

7". (x, t) :=0 = Tw (4) 

The boundary conditions for different process are: 
Process 1: 

T L(z, = T / ,  ~ = 0  (5) 

T~ (z, 0) = T., St (0) = 0, $2 (0) = 0 (6) 

Process 2: 
aT~ ~=a 
ax  = 0 (7) 

For convenience of analysis and solution of the prob- 
lem, the following dimensionless variables and param- 
eters are introduced: 

e .  = c . ( T .  - Ts) IL .  e .  = C : ( T ,  - T s ) l L  

61 = S t ~ d ,  62 = S21d,  r} = x l d ,  r = t a L I d  2 

v = a . / a : ,  S t .  = c . ( T I - T , ~ ) / L  , S t  L = % ( T ~ - T I ) / L  

Equations (1)-(7) can be written as: 

aoo a29. ao L a28L 
a - V  - " - -  - - -  ( 8 )  at/2 ' a r  at/2 
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aO, n=+$1 aO L rl='St d61 ~ - ~  o7 = d--7- (9) 

0o(7, r )  ,=~, = 0 r (7, r )  ,=~, = 0 (10) 

8°(7, r) .=0 = - S t °  (11) 

Process 1: 

Or (7, = Str,  ~ = 0, (12) 

O~(7,0)=StL, 61(0)=0,  62 (0 )=0  (13) 

Process 2: 
OOL] = 0 (14) 
Or] n=i 

Equations (8)-(14) can not be solved exectly except 
for the case St, -- O. 

S O L U T I O N  OF T H E  P R O B L E M  

Since the two processes have different boundary and 
initial conditions, the solution is divided into two pro- 
cesses. 
1. Process 1. 

During this process, the liquid-solid interface 61 and 
temperature penetration depth 62 increase from zero, 
and the temperature of the liquid phase drops in the 
interval 61 _~ 7 -~ 62 and there is no heat flux in 7 > 62. 
This process terminates when 62 = 1. 

To illustrate Goodman's heat banlance integral 
method, the form of the temperature profile for each 
phase can be written as: 

{ A:(7-6,)+B,(7-6,): 
6i <_ 7 <- 62 

o~(7, r) = st ,  

62<_7<_1 
(lS) 

O.(7, r ) = A , ( 7 - 6 1 ) + B , ( 7 - 6 , )  2,  0<_7 <-61 (16) 

where At,  BL, A., B,,  6i and 62 axe functiofis of r to 
be determined by relevant boundary conditions and 
the boundary condition at the liquid-solid interface 
(10) is automatically satisfied. 

Using the boundary condition (9), (10) and (12) we 
obtain 

2St L , St .  
A~ - -  67- - -7 i  BL --  (62 - 6,)'* (17) 

1[d6, 2st= l 
A, = -i L-~T + 6 ~ -  6q J 

1 [d61 2St~ ]d61 (18) 
B ,  - 2v 2 t-~-r + ~_----2-~j dr 

Thus the temperature profiles for the two phases 
are: 

7 -- 6i 7 -- bi 

O, (7, r) = 61 _< ,'; _< 62 
St L 

62<7<_1 

(19) 

d61 
o,,(7, r) = EV, ,  62) [24~ - 6, . ) -  ~(, , . ,  - 6,V] 

o _ 7 <__ ,~, (20) 

where 

E(6,, 6:) = ~v 2 I dr + ~ - 6 ~ J  

By the method of Goodman's heat balance integral, 
the relation between 61, and 62 can be obtained: 

d61 d62 _ 6 (21) 
2 - ~ -  + dr 62 - 6~ 

In the mean time, the simple relation between 61 
and 62 can be derived by differentiating Eq.(10) with 
respect to r, and using Eq.(19) there results 

d61 1 
- (22) 

dr 62 - 6 i  

Substituting Eq.(22) into Eq.(19), the temperature 
profile of the solid phase can be expressed as 

8o(7, r 1 -  (2StL +1) a6i d6,. 2,~ ar [2 , , ( ,~  - 6 , )  - - - g ; ( 7  - 6 , )  ~]  

0 _< 7 _< h (23) 

Now, the entire problem has been transformed into 
the solution in the solid phase. 

Substituting the temperature profile of the solid 
phase, Eq.(23), into the external boundary condition 
Eq.( l l ) ,  the differential equation for 61 can be derived: 

( d~_~lr)2 " ~ d6i 2v2StL 
6i + zvol -~r 2St~ + 1 -- 0 (24) 

The initial condition leads to the solution 

61 : ~1 r l / 2 ,  6 2 : ~2r 1/2 (25) 

where  

A2 = [ -  A1 + (9A'~ + 48)1/2]/2 

Define 1"5 as the end time of process 1 and 6 b 

61 (rb) as the corresponding position of the solid-liquid 
interface, thus 
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2. Process 2 
During the process 2, the liquid-solid interface 61 

continues to incerase and the tempera ture  of the in- 
sulated wall (~7 = 1) begins to drop from T~. Assume 
as the tempera ture  of the insulated wall equals 7"i (ie. 
the position of the liquid-solid interface 61 = 1) this 
process ends. 

Thus the t empera ture  of the insulated wall, 00, can 
be writ ten as[s]: 

e (1-~x)a - I (1 -- 61) 2 
6o----- e(l_,~b)~ __ 1 × ( I - -6~ , )  2 '  r i :  1 

The method of solution for this process is the same 

as that of process 1. The temperature profile of each 

phase is: 

~ (~/, r) = 2St: F(61) [(r] - 61) 

161 (r/- 61)2 ] 6 1 < r / <  1 (27) 

1 [2St F(61) +  611 

[ _~(~7d61. 61)2 ] Lev(w - 61) - - 

o _< ,7 _< 6~ (28) 
Introducing the boundary  condition into the tem- 

perature  distribution of the solid phase, we finally ob- 
tain the following differential equation: 

dr J + + 

-2[v~St, - 2vSt~61F(61)] = 0 (29) 
where 

e ( l - ~ t ) ~  - 1 1 - -  ~ l )  2 

F ( 6 1 ) -  e(t_~}~ - 1 × ( 1 -  6b) ~ 

The initial condition leads to the solution 

r(6) = rb + 6iv -x [1 + S tL61F(61) ] - I  
b 

R E S U L T S  A N D  D I S C U S S I O N  

In this section the main results of our analyses are 

summarized and compared with other results derived 

by previous researchers. 

I n t e r f a c e  M o t i o n  
The instantaneous position of the interface 61 is de- 

termined by equations (25) and {30). For r < rb, the 
finite size effects are negligible. The accuracy of our 
results for this stage can be es t imated by comparing 
Eq.(25) with the result of Neumann solution. For the 
case S t ,  = 0.3, S t  L = 0.1, the value of A1 by our 
method is 0.670 while the exact  result is 0.657. The 
error is about  2~0. Table 1 presents the values of A1 
over a large range of S t ,  number  together with the 
exact solution and the result obtained using Eq.(25}. 
It can be seen that  they are in very good agreement.  

T a b l e  1. Compar i son  of the  value  of 6x by the  
present  so lu t ion  wi th  exac t  resu l t  

Ste 0.3 0 4 0.5 0.6 0.7 0.8 

our  A 0.670 0.763 0 841 0.910 0.972 1.027 

Exac t  A 0.657 0 752 0.830 0.896 0.952 1.001 

error  % 2.0 1.5 1.3 1.6 2.1 2.6 

For r > rb, the motion of the interface can be given 
by Equation (30). Since no exact solution is available, 
the accuracy of our results can be examined by the 
solutions of other authors and experimental  results. 
In Fig.2a the instaneous location of the interface as a 

10 

,c_o O. 
0 
0.  

~0.6 
O 

O c0.4 
g 

ID 

F 
c5 

O0 
00 

___ Solomon 

l l l l l  r I l l  [ l l l l l l l  I I [ l l l l l  1 1 1 1  I ( I  I l l l , l l [ l l l l l l l l l  

1 0 20 30  4.0 5.0 
D, mens,on}ess t,rne 

{ - 1 + [ 1 +  2[S t ' -~  ~~2StL61F(61)/vl]t/2} - t j  d61 (30) 

The solidification time r* can be obtained by setting 
6 = 1 .  

Eq.(30) can be easily calculated by numerical inte- 
gration. 

F i g . 2 a  Position of phase change front as a function of time 
(v = 1,St .  = St L = 0.1) 

function of t ime is presented for the case of St~ = 
S t ,  = 0.1, v = 1 with the da ta  given by Cao[ a], 
Charach [5] and Soloman[Ul. The four approximate  so- 
lutions are in close agreement.  It is interesting to note 
that  the curve pridicted by our solution is bounded 
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from below and above by the curves corresponding to  

the Coo and Solomon solutions, respectively. 
Fig.2b shows the transient velocity of phase change 

front for freeT.ing of water in the case Ti = 4.4°C, 
T~ = -40 .3°C and d -- 0. 0.005 m. The calculated 
result is in good agreement with the experimental data 
given by Boger and Westwater [91 . For example, at 
time t = 70 min, the theoretical and experimental 
results is within 5 percent. 

3 0 . 0  l 

+ 

 ,o.o t . 

+:i:1 
O0 

' ' ' ' , , , , , r , , , • 1 , , , , 
20 0 40.0 60 0 80.0 

lime (rnlrl) 

Fig.2b Comparison of experimental and theoretical 
interfacial velocity 

The solutions given by Coo and Charach are re- 
stricted to small Stefan numbers. It is interesting to 
examine our solution for large Stefan numbers. For 
large Stefan numbers our solution and numerical so- 
lution given by Yuen{T] are shown in Table 2, and good 
agreement between the two is evident. 

Table 2. Comparison of the Position of the change-phase 
interface by the present method with numerical 
result for large Stefan number 
(u = I ,  S t ,  = St  c = I) 

T 

o 00746 

0.02862 
0.06374 

0.1120 

Presen t  model  exac t  resul t  

006591  0 0653 

0 1291 0,1278 

0.1922 0.1903 

0.2540 0 2528 

S o l i d i f i c a t i o n  T i m e  

The solidification time r* is defined by equation (30) 
with 6 = 1. The comparison of various solutions is 
presented in Fig.3 which gives the solidification time 
for the case v -- 1, St+ :- 0.3 and S t  L varying from 0 
to 0.3. For St~ = O, our solution is slightly larger than 
those predicted by other methods. For S t c  = 0.3, our 
result is larger than those given by [2] and /3] and 
smaller than those given by I5] and [6}. The deviation 
is about 10%. 
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Fig.3 Solidification time as a function of the liquid 
Stefan number (v --- 1, St, - 0.3) 

For the case St~ = 0 (without initial overheating}, 
the position of solid-liquid interface as a function of 
time by our solution is derived as 

6 = P T  112 

where 
P 

2 2 
The above equation is the same as the result given 

by Ooodman using heat balance integral method. 
Goodman compared his equation with exact solution 
and showed that the error is very small u)]. 

Effec t  o f  O v e r h e a t i n g  
As expected, the results show that initial overheat- 

ing has major effects on the solidification process. Ini- 
tial overheating slows down the rate of propagation of 
the solidification interface. 

The solidification time and position of phase change 
interface depend heavily on solid Stefan number St+. 
Solidification time for large S t ,  is shorter than for 
small St+ number. When solid Stefan number S t ,  is 
constant, solidification time is longer for large liquid 
Stefan number S t t  (large initial overheating) than for 
small S Q .  In the case of St ,  = 0.3, the solidification 
time for S t  L = 0.3 increases 12% compared with that 
without initial overheating (S t  L = 0). 
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C O N C L U S I O N  

In this paper  an approximate theory of solidifica- 
tion in a finite, initially overheated slab is presented 
for the case of small and large Stefan numbers.  The 
results of the present method are compared with those 
of exact and other approximate  solutions as well as ex- 
perimental  data,  and good agreement is obtained. It 
is found that  the solidification rate  of the system is 
faster than that  corresponding to the semi-finite slab 
with the same initial overheating, but slower than in 
a slab without overheating. 

One of the main purposes of the present work is to 
derive a simple expression for calculating the solidifi- 
cation time as given by Eq.(30). This expression can 
be used for predicting practical processes simply and 
effectively. 
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