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Physical and mathematical models are developed to describe the forced convection condensation heat 
transfer of saturated vapor flowing axially outside a horizontal tube. The numerical solution of the 
models indicates the effects of vapor velocity on the liquid film thickness. The result verifies the en- 
hancement of condensation heat transfer caused by such flow. 
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I N T R O D U C T I O N  

Laminar film condensation of saturated vapor on 
a vertical surface has been studied widely. In 1916, 
Nusselt [1] first developed a very simple and effective 
correlation to describe natural  convection condensa- 
tion of pure saturated vapor on a vertical wall. Then 
he derived a theoretical solution for natural convec- 
tion condensation of saturated vapor on a horizontal 
tube surface. In 1959, Sparrow [2] applied boundary 
layer theory to the problem. Since then, advances 
in the t reatment  of the boundary layer have allowed 
the solution of the condensation problem with increas- 
ing accuracy[3-t°l. However, most work is concerned 
with natural  or forced convection condensation of va- 
por across horizontal tubes. Little reasearch has been 
done on condensation due to forced convection axial 
flow outside of a horizontal tube. Recently, the en- 
hancement of condensation heat transfer due to coiled 
wires on a tube was studied by Wang et a1.111,12]. In 
these papers, the surface tension of the condensate 
caused by the coiled wire was considered to be an 
axial force. The surface tension exists only between 
the wires. No study has been reported concerning 
forced convection condensation heat transfer with ax- 
ial shearing stress on the condensation film. This kind 

of condensation phenomenon exist in heat exchang- 
ers, especially in rod-baffle condensers. This paper 
gives a theoretical study and numerical computation 
of the condensation phenomemon. The results show 
that  this pat tern of vapor flow with shearing stress 
enhances the heat transfer of condensation. 

P H Y S I C A L  A N D  M A T H E M A T I C A L  M O D -  
E L S  

1. Assumptions 
(1) Thermophysical properties of  Liquid film and va- 

por film are constant; 
(2) There are no noncondensable gases; 
(3) The flows in the hqnid and vapor films are lam- 

inax and the liquid film is very thin; 
(4) The axial speed of the vapor flow is far greater 

than that  of the liquid film; the circumferential speed 
of the vapor flow is neglected; 

(5) The inertia terms in the motion equations and 
the convection terms in the condensate film energy 
equation are neglected; 

From these assumptions, the liquid flow is taken as 
two-dimensional in the (~0, z) plane and the vapor flow 
is taken as two-dimensional in the (y,z) plane. As a 
result, the original three-dimensional problem is sim- 
phfied to a combination of two-dimensional problems. 
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N o m e n c l a t u r e  
specific heat [J/kg. K] 
diameter of tube [In] 
Froude number [-] 
gravitational acceleration [m/s 2] 
Jakob number [-] 
Nusselt number [-] 
Prandtl number [-] 
heat flux [W/m 2] 
temperature [K] 
latent heat of vaporization [J/kg] 
liquid velocity in ~o- and z -  directions 
respectively Ira/s] 
vapor velocity in z -  and y -  directions 
respectively [m/s] 
rectangular coordinates [m] 

Greek Symbols 
6 thickness of condensate film [In] 
A thickness of vapor boundary layer [In] 
A thermal conductivity [W/m- K] 
p dynamic viscosity [kg/m • s] 
v kinematic viscosity [m2/s] 
p density [kg/m 3] 
~o angle in cylindrical coordinate [-] 

Subscripts 
f infinite 
i interface of liquid and vapor 
l liquid phase 
s saturated 
v vapor phase 
w wall 

dimensionless 

2. G o v e r n i n g  E q u a t i o n s  
The physical model and coordinate system used 

Z 

Fig.1  Physical model and coordinates 

for the forced convection condensation heat transfer 
of saturated vapor flowing axially outside a horizon- 
tal tube is shown in Fig.1. The following mathemat- 
ical model can be derived according to the above- 
mentioned physical model. 

The motion equations of the model are: 
for the liquid film, 

9 2 ?t 
#t-~y 2 + Pig sin(~) = 0 (1) 

02w 
. , y ~ v  ~ = o  (2) 

~2t 
= o (3) Oy 2 

for the vapor boundary layer, 

W o W  V o W  0 2 W  
Oz + -~y = vv Oy 2 (4) 

OW OV 
0-7 + -~y = 0 (5) 

The energy conservation equation at the liquid va- 
por interface is: 

D O~ udy + Oz wdy  = (ptr~) 

(6) 
with the boundary conditions: 

y = o  u = w = O  t=t , , ,  (7) 

while for y = 6 or ~ = 0 (liquid-vapor interface) 

~ = w ~  t = t s  (8) 

Ow OW (s) 

-p,,V~ = q.A (1.0) 
7" 

where ~ = y -  6 

V = 6 + A o r ~ = A  W = W  1 
OW 

= 0 (Ii) 
oy 

Directly integrating Equation (1) twice and using 
the boundary conditions in Equations (7) and (8) 
g i v e s :  

u -- 6y - (12) 
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Directly integrating Equation (2) twice and using the 
boundary conditions in Equations (7) and (8) gives: 

~ =  ~ (13) 

Directly integrating Equation (3) twice and using the 
boundary conditions in Equations (7) and (8) gives: 

t = (ts  - t~,)~ + t~, (14) 

Considering heat conduction in the liquid film: 

0, )  = _At(ts - t~) 
q, = - A t  ~yy u=o ~ (15) 

Substituting Equations (12) and (13) into Equation 
(6) gives: 

. 0 6 3  
23 D#,Ptg' 6 s cos ~o + s m  ~o-0--~ ) 

1 0 ( w i e ) -  J, wl (16) 
+ 2-~z Prt6 

Equation (16) is put into dimensionless form using the 
following dimensionless numbers: 

F r ~ -  W]2 
D9 (16a) 

g~ _ C m ( t s  - t~) (16b) 
7" 
vt P r  = --  (16c) 
al 

d~ 
H = Pr---~t (16d) 

-5-- zg (16e) 

(16[) 

(16g) 

, g 
-~ = ~ W fur 

ws 

Then Equation (16) becomes: 

F r  ( ~  cos~o + 3 sin 0 ~  

+~ o(~) o~ - 1 .5H (aU 

Integrating Equation (4) for ~ from 0 to A gives: 

fo A OW t a OW A w  +Jo /o o,w = v ~ - - ~  d~ (18) 

since 
OW OV 
0-- /+~ =0 

and 

o(wv)  ov  vOW wOW v o w  

VO.__WW = O ( W V )  + w O W  (19) 
O~ O~ Oz 

Substituting Equation (19) into Equation (18) gives: 

O(WW) d~ + [ ~  o(wv)  
fo -~z Jo o~ 

fo ~ 02W . = v ~ - g ~ - d ~  (20) 

Integrating Equation (20) gives: 

°(: ) + wsvs - w~v, 

~=0 

Integrating Equation (5) for ~ from 0 to A gives: 

ow ~ + f~ ow 
fo Oz J0 -g(~=0 

therefore (using Equation (21)), 

~o ~ OW (22) v s = v , -  w;;d~ 

Substituting Equation (21), then gives 

o ( f ~ ( w w -  ww:)~.) 
o Jo 

/ 0 w ~  (23) +(w,  - w,)~ = -"°~-g-( ) ~=o 

From Equation (10) 

qi AL(t~ - t~) 
V i  - ql -- 

rpv 

so that:" 
Vi -- At(ts - t.~) (24) 

Substituting Equation (24) into Equation (23) gives: 

0(: ) 
o-7 ( w w  - w w , ) ~  

+ ( w  s - w~) J° p* = - ~  (25) 
Pv ~=0 
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Assuming a parabolic velocity profile in the vapor 
boundary layer: 

W = a + b~ + c~ ~ 

and using the conditions: 

(26) 

OW 
¢ = a  w = w ~  oy o 

the velocity distibution within the vapor boundary 
layer is given by:" 

Substituting Equations (13) and (27) into Equation 
(9) gives: 

a 2(w s _ ~ ) ~ .  
- -  = (28) 
6 wi #t 

Subtituting Eciuations (27) and (28) into Equation 
(25) then gives: 

o~ A 
- ~ z ( f  o { [ w i W ( W l - w i ) [ 2 - ~ - ( ~ ) 2 ] ]  2 

2 

+ ( W  I - w.~ Japlul P2 
=J Prip,~6 - -  wi p ,~6  

Integrating Equation (29) gives: 

(29) 

o_ [6(w, - + 2w,)] 
15R 2 r , J,,ul w P~] 

+ - ~ - L ( W / -  ~ o ~  - , ~ = o  (30) 

where 

R 2 = lltPl 

P,,P~,  

Substituting Equations (16a)-(16g) into Equation (30) 
gives the dimensionless equation 

( I  -- ~--~)2(3~ + 2) d~ 2 

2 ~  d~ 

.b$2 ~zz[(ld - ~-~i)2 (3~-~i= + 2)] 
w i  

+~R-~[H(1 - ~ )  - ~-~] - 0 (31) 
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N U M E R I C A L  S O L U T I O N  F O R  T W O  LIM- 
I T I N G  CASES 

1. No Surface Shear  on the  Liquid Fi lm 
For natural convection condensation of saturated 

vapor on a tube: 

W f  = O and wi = O 

so that Equation (16) becomes: 

. 063~ J~u, 
2pig 63cos~o+sm~0_~/  = (32) 
3Dpi Prl6 

Equation (32) describes natural convection condensa- 
tion of saturated vapor on a horizontal tube. This is 
Nusselt's equation[It, which must be solved numeri- 
cally. 

2. No Gravi ta t iona l  Force in t he  Liquid Fi lm 
The phenomenon, similar to forced convection con- 

densation of vapor flowing on a horizontal plate, is 
defined by: 

g = 0  

Therefore, Equation (16) becomes: 

~ d ( ~ )  = 2H (33) 
d5 

while equation (30) becomes: 

d_ [(1 - ~,)~(3__~ + 2)~] 
d5 [ w~ 

15R 2 
+ - ~ - - [ g ( 1  - ~'~') - ~-~] = 0 (34) 

Assuming the following functions for w-7 and ~2 which 
satisfy Equations (33) and (34), 

w--7 = Ao (35) 

~2 _-- BI~ (36) 

and substituting Equations (35) and (36) into Equa- 
tion (33) gives: 

AoB1 = 4H or B1 = (37) 

Substituting Equations (35) and (36) into Equation 
(34) and using Equation (37) gives: 

4(1 - Ao)2(2 + 3Ao) 
R 2 

15A a 
- - - # - -  + 15A~(I - Ao) = 0 (38) 



From Equation (36): 

'2  -- ( 4 ~ o )  ~ (39) 

Substituting Equations (16e) and (16f) into Equation 
(39) gives: 

- -  - -  (40) 

In Equation (40), Nu= = a=z/)~l and Re~ = 
Wfz /uz .  Equation (40) is the relationship between the 
local Nnsselt number and local Reynolds number for 
forced convection condensation on a horizonal plate. 
In Equation (40), Ao is obtained from Equation (38). 

3. I n c l u d i n g  t h e  Ef f ec t  o f  B o t h  F o r c e s  o n  t h e  
L i q u i d  F i l m  

When both surface shear and gravitational forces 
act on the liquid film, no terms in Equations (17) and 
(31) can be neglected. When ~ = 0, Equation (17) 
becomes: 

d 
F r ~  + -~ ~zz (~-2) = 1.5H (41) 

0.20 

Equations (31) and (41) form a set of first order dif- 
ferential equations that  can be used to obtained the 
characteristic solution at ~ = 0. The variations of 
and ~-~ as functions of ~ at ~ = 0 was determined by 
numerically solving Equation (31) and Equation (41). 
Since it is assumed that  the speed of the liquid film 
flowing circumferentially does not force the vapor to 
move in the circumferential direction, then the axial 
flow of the vapor forces the liquid film to move only ax- 
ially. Therefore, the derived speed at the liquid-vapor 
interface is a function of only the axial coordinate. 
Therefore, the derived speed at the liquid-vapor inter- 
face is not only applicable to the location, ~ = 0, but 
also applies at  any angle ~. If the variations of 6 and 
w--7 as functions of ~ at ~ = 0, and the relationship 
between ~ and ~ are substituted into Equation (17), 
then the variation of 5 for all ~ and ~o can be found 
using the Runge-Kutta-Gill method. 

N U M E R I C A L  R E S U L T S  A N D  A N A L Y S I S  

1. R e l a t i o n s h i p  b e t w e e n  L iqu id  F i l m  Thick-  
ness,  ~, w i t h  ~o a n d  

Fig.2 and Fig.3 show the variation of the liquid film 
thickness ~, with ~ and ~. Fig.4 shows the liquid film 
thickness variation as a function of the Fr number. 

When the Fr number increases, the thickness decreases 
indicating that  a large vapor flow velocity pro- 
duces a strong 
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Fig.2 Axial liquid film thickness variation 
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Fig.4 Liquid film thickness variation with Fr number 
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shearing stress at the liquid-vapor interface which, as a 
result, makes the liquid film thin. The figures indicate 
clearly that the thickness of the liquid film increases 
with the increase of either ~ or z. To show the en- 
hancement of heat transfer with the flow pattern, a 
comparison between the thickness of the film on the 
top of a tube with free convection condensation and 
with forced convection condensation is shown in Fig.5. 
It is clear that when the Fr number is large, the liq- 
uid film is very thin near the entrance due to the high 
vapor velocity. Further down the tube (larger z), the 
vapor velocity.decreases rapidly due to condensation 
and the liquid f i im thichness increases until it reaches 
a value typical of free convection. Therefore, there is 

significant enhancement of the condensation heat 
transfer in the enchance region, especially at larger 
Fr numbers. 

2. T h e  V a r i a t i o n  o f  t h e  L o c a l  H e a t  Trnn.~fer 
Coef f i c ient  a .wi th  ~ a n d  z 

Taking R l l  as an example, the variation of the lo- 
cal heat transfer coefficient, a, as a function of ~,z is 
shown in Fig.6 and Fig.7. As Fig.6 and Fig.7 show, 
the local convective heat transfer coefficient decreases 
with increasing z and ~. The mean heat transfer coef- 
ficient in the circumferential direction decreases with 
increasing z and with decreasing Fr number, as shown 
in Fig.8. 
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Fig.5 A comparision of liquid film thickness for 
forced and natural convection condensation 
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