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Recent years have seen increasing use of solidification process modeling as a tool to aid in the 
analysis and elimination of manufacturing defects in castings. Grain size and other micro- 
structural features such as second-phase morphology and distribution are the primary factors in 
determining the mechanical properties in cast metals. In this work, a representation of nucleation 
and growth kinetics for gray cast irons, based on a statistical description of the microstructure, 
has been coupled with a commercial finite-element method code for transient heat-flow cal- 
culation to determine microstructure. Features predicted include eutectic cell size, fractions of 
gray and white iron, graphite morphology, percent pearlite, percent ferrite, and pearlite spacing. 
The predicted microstructure can then be used to determine the strength and fatigue properties 
using published correlations, The theoretical development and results of the finite-element- 
based model will be discussed and compared with experimental results. 

I. INTRODUCTION 

SOLIDIFICATION modeling has been used to aid in 
the location of feeding sprues, gates, runners, and risers, 
along with the orientation of the casting, and the selec- 
tion of process variables such as pouring temperature 
and mold materials to eliminate porosity and cold shuts 
and to predict residual stresses. ~ While lack of in- 
tegrity of the casting accounts for a significant percent- 
age of scrap, failure to meet microstructural and 
mechanical specifications is also an expensive problem. 
As an aid to solving these types of problems, micro- 
structure models that track the nucleation and growth of 
the microstructure in a solidification simulation have 
been developed. 

One of the casting alloys which will benefit greatly 
from microstructure modeling is gray iron. The phases 
which will form during solidification are determined by 
the composition of the iron, the relative abundance of 
various nucleation sites, and how rapidly the metal is 
solidified. Cast irons may solidify in either the recta- 
stable Fe-Fe3C system or the stable Fe-C system, or in 
both. The austenite matrix can transform to pearlite, fer- 
rite, or both. This competition between phases compli- 
cates the modeling of microstructure development in 
these alloys. In Sections B-1 through B-4, the kinetics 
of formation of each of the different microstructures will 
be discussed in detail. However, we wish to discuss 
them in the context of inclusion in a macroscopic heat- 
transfer code, so this will be discussed first. 

Macroscopic heat-flow modeling has become a well- 
studied subject, and we therefore confine our discussion 
to that necessary for understanding microstructural mod- 
eling. The transient heat-conduction equation is solved 
in the solidifying iron and in the mold, viz. 

dh 
- -  = V.(kVT) [1] 

P dt 
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where p is the density, h is the specific enthalpy, t is 
time, k is thermal conductivity, and T is the temperature. 
The enthalpy change may be written in terms of the sen- 
sible heat and the heat of transformation as 

dh dr  
- -  = - -  + L [ 2 ]  
dt cp dt dt 

where cp is the specific heat, L is the latent heat of the 
transformation, andfis  the volume fraction transformed. 
In conventional macroscopic modeling, the specific en- 
thalpy is assumed to be a known function of tempera- 
ture, determined from a phase diagram or a solidification 
model. Thus, Eq. [2] may be rewritten as 

% + L  --;7 = 4 ff [3] 

Once appropriate boundary conditions are specified, 
Eq. [ 1] may be solved for the transient temperature field, 
typically using either a finite-difference or finite-element 
method. 

When modeling microstructural development, how- 
ever, the evolution of the transformation is dependent 
upon the transformation path, i.e., f is not representable 
as a function of temperature alone. Instead, evolution 
equations are introduced to represent f(t), based on ki- 
netic models for nucleation and growth of the transfor- 
mation product. 

Coupling of the kinetics expressions with the equa- 
tions describing macroscopic heat flow has been de- 
scribed by Oldfield, t4} Hellawell, tS] and in a series of 
recent articles by Rappaz, tr] Rappaz and Stefanescu, t7l 
and Stefanescu and Bandyopadhyay. tsl A distribution 
containing N spherical particles having a distribution of 
radii, each denoted by R, is introduced. The kinetic laws 
take the form of expressions for the nucleation rate, 
dN/dt, and the growth rate of (assumed) spherical par- 
ticles, dR/dt. The latent heat of solidification can be in- 
corporated into the macroscopic heat flow in various 
ways, using enhanced specific heat, heat sources, or 
combinations of these methods. One difficulty common 
to all of the implementations is tracking the evolution of 
the distribution of particle sizes during solidification. 

In all of the numerical algorithms published to date, 
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the finite-difference method has been used for temporal 
discretization. This gives rise in a natural way to suc- 
cessive applications of the nucleation and growth laws 
at succeeding time-steps, first to introduce nuclei at early 
time-steps and then to follow their subsequent growth. 
The timescale for heat flow is typically much greater 
than for solidification kinetics, however, so that most 
researchers employ a two-level time-stepping scheme in 
which the macroscopic time-steps are used to determine 
overall heat flow from a control volume, Qoxt, after 
which the time-step is subdivided and reanalyzed to re- 
solve the microstructure evolution. Although it has been 
successfully implemented, following individual particles 
(or small groups all having the same size) in the evo- 
lution of microstructure can lead to very inconvenient 
data structures and difficulties in error control. 

Several investigators have attempted to skirt this prob- 
lem by using a single cell radius in the microstructure 
model. Knowing the undercooling at time t, the grain 
density is updated by integrating the nucleation rate over 
the time interval, At. The average radius is then in- 
creased by integrating the growth-rate equation to obtain 
AR. The change in fraction solid for the spherical cells 
is then calculated using 

Afs = fs(t + At) - fs(t) = 47rNR --~" AR. ~ [4] 

Here ~b is a correction factor used to account for im- 
pingement of grains. (This factor will be discussed in 
more detail in Section III.) Finally, the variation of tem- 
perature between t and (t + At) is recomputed so as to 
satisfy the heat balance: 

AT = - -  Qcxt- At + LAf, [51 
pCp V 

where S is the surface area and V is the volume of 
the control volume. After updating the temperature, 
T(t + At), the macroscopic calculation proceeds to the 
next time-step. 

The method of tracking the cell density and the av- 
erage cell radius is a simple and direct way to track the 
microstructure evolution. The problem with using this 
approach to describe the particle distribution is that it 
requires that 

= - - E R  = R E 
i~ Nto, i:, i=1 

1/2 1 ~ \1/3 
= ~tot i=1 R3) 

= R  

[6] 

Unfortunately, there is no distribution for which Eq. [6] 
is valid, other than the trivial one in which all particles 
are the same size. Thus, there is no way of determining 
within the model the actual cell distribution or the error 
associated with using the average radius for the second 
and third moments of the distribution. 

Further, most microstructure models do not report an 
algorithm for monitoring error or any convergence cri- 
teria for determining the size of the microscopic time- 
steps. The time-step size needed to resolve the nonlinear 
kinetic equations will depend on the state of solidifica- 
tion and the value of the empirical constants. The use of 
fine time-steps can expend considerable computing time 

unnecessarily, while using too large time-steps can in- 
troduce considerable error. What is needed is a better 
way to represent the microstructure characteristics and a 
robust method for solving the kinetic equations. 

A. Microstructure Model Using Statistical Description 
of  Particle Distribution 

In this work, the distribution of particles which com- 
prise the microstructure will be described by assuming 
that the radii fit into a generic distribution given by a 
polynomial, as shown in Figure 1. The kinetic equations 
are used to determine the parameters of the distribution 
which apply for each control volume. This  allows us to 
model the physics of the nucleation and growth of a con- 
tinuous cell distribution, yet reduces the variables 
needed to describe the microstructure to a manageable 
number. In addition, the statistical representation of the 
microstructure simplifies error control and data storage 
and provides a straightforward means for comparing the 
computed results with experimentally observed micro- 
structures. It will be shown in Section III that the par- 
ticular form of the distribution is not important for 
describing many microstructural features. 

The volumetric density of eutectic cells whose size 
falls between particle radius Pc and Pc + doe is denoted 
by n(pc)" dpc. The distribution function, n(pc), is as- 
sumed to be quadratic in the particle radius, i.e., 

n(pc) = ao + alpc + azP 2 [7] 

with the properties 

n(R) = 0 

d n  lac =R = 0  

f f  n(pc)dpc = N 

the cell density at the maxi- 
mum radius is zero. 
the slope of the distribution at 
the maximum radius is zero. 

the total number of particles in 
the distribution is N. 

With these assumptions, the constants a0 - a2 can be 

n(p) 

= N  

IP 

r R p 

Fig. 1 -  Assumed cell distribution used in microstructure model. 
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evaluated in terms of the three parameters: total cell den- 
sity, N, the minimum cell size, r, and the maximum size 
in the distribution, R: 

3N 
n(pc) - - -  (R - pc) 2 [8] 

( g  - r )  3 

The volume fraction of the solidified spherical cells is 
readily computed from the distribution as 

f~ R4 f ,  = -~ "n'p 3" n(pc) . dp~ 

NTr (R 3 + 3R2r + 6RrZ + 10r3 ) [9] 
15 

while the solidification rate is the time derivative of this 
expression: 

df  , dN dR dr 
- -  = f . - -  + 0 . - -  + ~ P - - -  [ 1 0 ]  
dt dt dt dt 

where 

q./- 

I" = 15 (R3 + 3R2r + 6Rr2 + 10r3) 

7rN (3RZ r + 6Rr + 6r z) 
O =  15 

7rN 
= - -  (3R 2 + 1 2Rr + 30r 2) [ 1 1 ] 

15 

Equation [10] assumes that the eutectic cells have a 
spherical shape throughout the entire growth process. 
This assumption is not valid at large solid fractions when 
cells impinge on one another. 

A common method to account for impingement during 
growth is to multiply the solidification rate by an im- 
pingement factor, ~b. Johnson and Mehl t91 and Avrami t~~ 
developed models for distributions of spheres where they 
allowed the spheres to grow without impediment, then 
corrected the volume fraction by a factor ~b to account 
for overlapping volumes. The volume of the spheres, 
which is no longer the true volume fraction, was called 
the extended volume, f~xt. The rate of volume change 
then took the form 

df  ~ df~xt 
- -  = ( 1  - f ~ ) . - -  [ 1 2 ]  
dt dt 

Price t~~ and Rappaz t61 have calculated alternative im- 
pingement factors for uniformly sized spheres whose 
centers are placed at either the nodal points of a face- 
centered cubic (fcc) lattice, or a simple cubic lattice. The 
fcc and cubic impingement models begin to deviate from 
unimpeded growth at 74 and 52 pct solid fraction, re- 
spectively, whereas Eq. [ 12] applies from the beginning. 

For our purposes, using Eq. [12] is inconvenient be- 
cause the connection between the distribution and the 
true microstructure is lost when considering the extended 
volume�9 We can maintain the connection between the 
distribution and the volume if we instead assume that the 
growth rate of cells is slowed by the same factor ~b as a 
result of impingement. The physical interpretation of 

this form is that once impingement occurs, there is less 
surface area for growth, and that the "radius" of the par- 
ticles (which are no longer spherical) may be represented 
as a sphere having the same volume. The two forms are 
not equivalent, however, and we will return to this point 
in Section III. 

The evolution of the microstructure and the associated 
cell distribution over the different stages of solidification 
are shown schematically in Figure 2. When the volume 
is either entirely liquid, or only austenite has formed, no 
cells exist, and the cell density, N, is zero. Nucleation 
and growth take place once the temperature falls below 
the eutectic temperature, Teu,. During nucleation, all par- 
ticles are introduced at the (specified) minimum size in 
the distribution, r. The existing cells grow, so that both 
the maximum radius, R, and the total cell density, N, 
increase, while the minimum radius, r, remains con- 
stant. At the point of recalescence, the nucleation of new 
particles ceases while the existing cells continue to 
grow. Thus, the cell density remains constant while all 
of the particles in the distribution are assumed to grow 
at the same rate, shifting the distribution to larger radii 
while maintaining its shape. When the fraction solid 
reaches unity, the evolution of the cell distribution is 
complete. 

Each node in the finite-element mesh (which will be 
introduced in Section C) will have its own control vol- 
ume and thus will have its own unique set of parameters 
for the distribution, fraction transformed, and tempera- 
ture. The kinetic models introduced in Section B-1 
through B-4 will yield expressions for dN/dt ,  dr/dt ,  
and dR/dt .  Determination of the temperature and mi- 
crostructure distribution in a transient problem requires 
the solution of these kinetics equations, the transfor- 
mation rate (Eq. [10]), and the following equation for 
the rate of temperature change: 

dTaextLfdfs 
- - -  [ 1 3 ]  

dt pCp cp dt 

where aext is the rate of heat loss in the control volume 
computed during the macroscopic time-step�9 These re- 
lations form a system of five nonlinear ordinary differ- 
ential equations for the microstructural parameters and 
temperature, with known values at the beginning of a 
time-step. We may readily solve this system of equations 
using standard algorithms, described in Section C. Note 
that we have effectively decoupled the transformation 
equations from the macroscopic heat-flow solution, and 
this can lead to errors if large time-steps are used in the 
macroscopic calculations. 

B. Phase Transformation Kinetics 

1. Primary austenite dendrites 
Most commercial gray irons are hypoeutectic and 

therefore begin solidification by precipitation of primary 
austenite from the melt. Clyne and Kurz t~21 studied the 
kinetics of austenite solidification and determined that 
because C diffuses very rapidly in Fe, and because nu- 
cleation of austenite is not difficult, the fraction of pri- 
mary austenite solidified can be related to the 
temperature through the inverse lever rule, written as 

1 T - T L  
f a . s  - - -  [141 

1 - k ' T - T v o  
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Fig. 2 - -Mic ros t ruc tu re  development in a gray iron of  eutectic composition, along with the associated evolution of the eutectic cell size 
distribution. 

where k' is the ratio of  the slope of the liquidus curve 
to the slope of  the solidus curve, Tv0 is the temperature 
at which the extrapolations of  those curves intersect, and 
TL is the liquidus temperature. Heine t~31 provided the fol- 
lowing detailed data for the solidus and liquidus curves 
for cast irons, treating them as pseudobinary sections 
through the Fe-C-Si ternary phase diagram: 

TL(~ = 1569.0 - 97.3 (pct C + 0.25 pct Si) 

Ts(~ = 1528.4 - 177.9 (pct C + 0.18 pct Si) 

T~o(~ = 1618.0 - 15.0332 pct Si 

pct Ceut~c,c = 4.26 - 0.3167 pct Si [ 15] 

The austenite distribution coefficient may be calculated 
from the liquidus and solidus curves (Eq. [15]) as 
follows: 

Cs 2.10 - 0.2165 pct Si 
k = - -  = [16] 

Cc 4 . 2 6 -  0 .3167pct  Si 

The evolution equations for primary austenite growth are 
then written as 

df~  df~.s dT 

dt dT dt 

dt dL.~ 
p c p -  p L ~ -  

dT 

[17] 

2. Austenite-graphite eutectic cells 
The equation for the eutectic temperature determined 

by Glover et al. I~41 correlated best with experimental re- 
suits for the inoculated iron used in this study: 

Teut(~ = 1135.06 + 13.89 pct Si - 2.05 pct Si 2 [18] 

Once this temperature is reached, nucleation of 
austenite-graphite eutectic cells can take place on or near 
the primary dendrites. Further nucleation may occur on 
distributed sites within the melt, and growth of existing 
nuclei ensues as more heat is extracted and the under- 
cooling increases. Eventually, the latent heat released by 
solidification causes the temperature to rise (recales- 
cence), after which nucleation ceases, and further solid- 
ification comes solely from growth of existing particles. 

The basic theory of  heterogeneous nucleation has been 
outlined by Turnbull and FisherJ ~51 The theory predicts 
that the nucleation rate grows exponentially with under- 
cooling, so that when a critical undercooling is reached, 
the time to saturation of all sites is less than 1 second. 
This short time suggests the further simplification of as- 
suming that nucleation occurs instantaneously. How- 
ever, it is usually observed that nucleation occurs over 
a longer time and a larger temperature range. This is 
commonly attributed to the existence of more than one 
type of nucleation site in the melt. 

Gray iron eutectic nucleates on a variety of com- 
pounds, including graphite, ferrosilicon, calcium sili- 
cide, aluminum, oxides, and nitrides, I~6] and each 
substrate should have its own characteristic nucleation 
temperature. Because of the complexity and uncertainty 
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of describing the exact amounts of the various nucleants 
in the melt, an empirical method was developed by 
Oldfield. t*l Using experimental data relating cell density 
to undercooling, Oldfield correlated the final eutectic 
cell density, Nr with the undercooling during freezing, 
AT, in the form 

Neut = A~(AT) ~" [19] 

where Ae = 7.12 x 10 -3 (nuclei/mm3-K "~) and ne = 2 
were determined experimentally. Differentiation yields 
an expression for the nucleation rate as follows: 

dN~_____t _ na4e(AT)'- ~ d___T [20] 
dt dt 

Thorgrimsson et al. t~TJ studied the effect of the metal 
composition and inoculation practices on the nucleation 
of gray iron. He reported the following relation for the 
coefficients in Eq. [20]: 

Ae = 10(-25+4.6.CE+4.06 pet inoculam) 

n~ = 12.56 - 2.15- CE 

1 
CE =pc t  C + 7 (pct Si +pc t  P) [21] 

3 

where CE is the carbon equivalent. These values have 
been adopted for the results reported in Section II. 
Oldfield t4j and Magnin and Kurz t~Sj studied the growth 
kinetics in Fe-C eutectics. The growth rate was corre- 
lated with interfacial undercooling using an expression 
similar to Oldfield's nucleation rate equation. In terms 
of spherical particles of radius P~,,, the growth rate 
becomes 

d•cut 
= B , ( A T ) "  [22] 

dt 

Oldfield reported values for Be ranging from 2.5 x 10 -5 
to 34.5 • 10 -s (mm/s- Kin'), and Magnin and Kurz gave 
a value of 38.7 x 10 -6 (mm/s-K'~'). Both groups re- 
ported me = 2. The latter work was also supported by 
theoretical analysis of solute redistribution near the inter- 
face. In this work, we perform experiments and mod- 
eling to determine Be. 

3. Austenite-iron carbide eutectic 
Cast irons containing sufficient amounts of Si may so- 

lidify as either austenite-graphite eutectic during slow 
cooling, or as austenite-carbide eutectic by rapid cool- 
ing. The formation of carbide eutectic (often called 
white iron) is usually considered to be detrimental to a 
gray iron casting because of its high hardness and low 
toughness. The metallurgical mechanisms for formation 
of white iron were studied by Hillert and Subba Rao. 1191 

Whether one obtains the gray or white form of cast 
iron is dependent on the nucleation potential and growth 
rates of the graphite and Fe3C phases. Between the equi- 
librium graphite temperature and the Fe-Fe3C eutectic 
temperature, only the graphite eutectic may nucleate and 
grow. Below the metastable eutectic temperature, how- 
ever, the Fe-Fe3C eutectic may also nucleate and grow. 

The Fe-Fe3C formation temperature was given by Glover 
et al. t~4] as 

Tr176 = 1138.2 - 6.93(2.5 pet C + Si) 

- 1.717 (pet Si + 2.5 pet p)2 [23] 

We assumed that the same nucleation law (Eq. [20]) ap- 
plies to Fe-Fe3C as applies to Fe-C eutectic. Hillert and 
Subba Rao t~91 determined the growth kinetics for the Fe- 
Fe3C eutectic to be 

= Be" (AT) =c [24] 
dt 

where Bc = 30 x 10 -3 (mm/sK 2) and m~ = 2 for co- 
operative growth of grey and white structures in cast 
iron. Note that B~ is about 10 times larger than Be. For 
a separation between the eutectic temperatures of 10 K, 
then, the growth rates for the two phases become equal 
at less than 1 K below the metastable eutectic temper- 
ature. Thus, if this lower temperature is reached before 
solidification is complete, the remaining liquid will 
freeze as almost entirely white iron. When the temper- 
ature falls below the Fe-Fe3C eutectic temperature, the 
Fe-C eutectic is assumed to stop growing, and the ap- 
propriate parameters in their kinetics equations are set to 
zero. In this formulation, we allow the Fe-Fe3C eutectic 
to nucleate over the entire solidification range, so that 
white iron may also form after recalescence. 

4. Pearlite and ferrite grains 
After solidification is complete, further cooling 

reaches the eutectoid temperature, whereupon the aus- 
tenite decomposes into pearlite or ferrite grains. Glover 
et al )  ~41 determined the equilibrium eutectoid tempera- 
ture to be 

Teud(~ = 723.0 + 22.7 pct Si [25] 

The relative amounts of pearlite and ferrite are deter- 
mined primarily by the chemical composition of the 
iron, the cooling rate during the decomposition of the 
austenite, and the nature of the graphite structure. 12~ Ex- 
perimental data for a 0.78 pct C, 0.63 pet Mg steel were 
presented by Mehl and Dube 12u and fitted to the follow- 
ing correlations for the nucleation and growth rate for 
pearlite cells: 

dN~r~ _ 5 . 0 7 x  10 3 (nuclei  ~ ( - 3 7 0  K~ 
dt \m-----~.sJ exp \ ~ .] 

(___~) ( - 9 4 . 8 K ~  [26] 
dppj__}dt = 0.168 exp \ AT~ud / 

where ATeud is the undercooling below the eutectoid tem- 
perature, T~d. 

In modeling the development of ferrite grains, 
Stefanescu and Kanetkar ~22~ used a diffusion-controlled 
growth-rate equation: 

1 [27] 

where Dg is the diffusivity of C in ferrite, reported to be 
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9 x 10 -7 cm2/s, R~ is the radius of the ferrite grain, 
Rg is the radius of the ferrite nucleus, C2 is the C content 
in the middle of the ferrite grain, C3 is the C content at 
the ferrite-austenite interface, and C4 is the C content in 
the austenite. Nucleation was assumed to be instanta- 
neous, with the number of ferrite grains prespecified be- 
tween 1.7 • l0 g and 2.5 x l0 6 (grains/mm2). We 
adopted this model in our work. Because the volumetric 
cell density is specified (from the austenite cell density), 
the minimum cell radius, rf~r~ of the cell density distri- 
bution was allowed to grow from the onset of 
undercooling. 

When modeling two competing transformations, such 
as pearlite vs ferrite or graphite eutectic vs Fe-Fe3C, the 
addition of the second structure increases the number of 
ordinary differential equations for microstructural pa- 
rameters from five to nine. 

5. Summary 
In view of the power law form for the kinetic relations 

of each transformation, we may write the evolution 
equations in a generic form. Table I summarizes the evo- 
lution equations for the microstructural distribution pa- 
rameters and temperature during the various stages of the 
transformation process. 

6. Computational implementation 
The microstructure kinetics equations that have been 

discussed yield a series of simultaneous, nonlinear, or- 
dinary differential equations with known initial values at 
the beginning of each macroscopic time-step. These 
equations are solved for each node in a finite-element 
mesh at which they apply by integration over the mac- 
roscopic time-step using the Bulirsch-Stoer method with 
adaptive step-size control, t231 The main algorithm is 
known as "Richardson's deferred approach to the limit." 
Adaptive step-size control allows the integration time- 
step size to be as large as possible, while still maintain- 
ing a specified truncation error. The error control param- 
eter is defined as 

- -  - <  e [ 2 8 ]  
Y~cal 

where yi is the ith dependent variable, e is the local error 
tolerance, usually taken to be 1 x 10 -3, and the scaling 
factor is calculated from the relation 

= Ir'l  + h. td  dr '  [291 

where h is the microscopic time-step size. The reader is 

referred to Reference 23 for further details of the 
algorithm. 

C. Implementation of  Microstructure Model 

The microstructure rate equations are coupled to the 
macroscopic heat-flow equations using the temperature- 
recovery method. This method consists of two parts in 
the calculation of the temperature field for each time- 
step. The first part uses the finite-element method to cal- 
culate the temperature field from the energy equation 
without including the latent heat generation. The rate of 
heat loss, Q, at each node during the macroscopic time- 
step is computed as 

= pCp(COnstant) AT~acro [30] 
Arm .... 

with the assumption that the specific heat is constant 
over the time-step. In the second part, the computed 
temperature field is then corrected, or "recovered," to 
the true solution by taking into account the release of the 
latent heat using Eq. [13]. A detailed analysis of the 
temperature-recovery method may be found in the work 
of Tszeng et a1.[24] 

The flowchart for the entire microstructure modeling 
part of the code is shown in Figure 3. The input to the 
driving routine MICRO at each time-step includes the 
nodal temperatures, the temperatures at the last time- 
step, the time and the size of the last time-step. At the 
first time-step of the simulation, the material composi- 
tion, latent heat, and kinetic constants are read in from 
a data file. The equilibrium temperatures for all of the 
phase changes are calculated and stored, and nodes 
which are part of the melt (melt nodes) are determined. 

The next step in the program is the updating or ini- 
tialization of the microstructure variables for each melt 
node. After updating the variables, MICRO loops 
through all the melt nodes and calculates T, N, r, R, and 
f at time t from the initial conditions at time (t - dt). 
Once a solution is determined at time t, the micro- 
structure variables are stored, and the recovered tem- 
peratures replace the original temperature array. 

The microstructure computation has been imple- 
mented within a commercial finite-element code, 
FIDAP. [25j Other codes could be used, provided that the 
capability to call external routines at the end of each 
macroscopic time-step, and to alter internal variables, 
such as temperature, is provided. The only changes to 
the standard version of the code are the addition of one 

Table I. Kinetic Expressions Used under Various Conditions, Including Specification of When Condition Applies 

Criteria ~ Nucleating Growing 
Quantity Untransformed T < Tt .... and After dT/dt >- 0 Transformed 

T > Tt~.s dT/dt < 0 ftrans < 1 f t  . . . .  "~ 1 

dr~d[ 0 0 B(aT)".  ~, 0 
dR/dt  0 B(AT)m'dj B ( A T ) " ' ~  0 
dN/dt  0 - n  " A(AT) "-t dT/dt 0 0 
df/dt 0 F dN/dt + | dR/dt 6) dR/dt + d~ dr/dt 0 
dT/dt O/pcp O/pcp - L/cp "df/dt ()/pc e - L/cp. df/dt Q/pCp 
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MICRO I Miemma~em driving routine 
Inlmt T, Tht~ t &At 

UPDATE 

microstrucmre variables 

+ 
"1 ~1 Looponmehmxles ] 

Set intellradon initial cettditiom 
Q = pCp (T - Tl~t)/At 

tstart = t - At 
y(I ) = Tlal 

y(2) = N 
y(3) = r 
y(4)  = R 
y(5) = f$ 

H 

+ 
ODEINT 

Bulirtch-Stoer integration method - - ~ / ~  t - - ~  
with adaptive step*ize comrel W 

T,N, r, R & fs at lime t 

Outputs final micrmtmctum and 
tmdercoeling to ASCII 

INPUT 
Read in matedal compmi6on, latent heat 

~ t  and kinetic mmtmts from MDINP file 

MELTNODE 
Determine the mek node* 

Input connectivity & melt elements 

H FECDIA 
Calculate equilib*iem 

Fe-C-Si phase ttmaptmam~ 

LOGIC 
Determine the node # a t e  state 

1) Liquid 5) Solid 
2) Ausumite growth 6) Emectoid nucleation 
3) Euteaic nucleation 7) Eutectaid growth 
4) Emecdc grow~ 8) Fateoa/d f~ith 

DERWS 
Calculates derivatives of variables. 
C..alIs subr, GRAPHITE, CARBIDE, 

PEARLITE and FERRrI'E 

Fig. 3 - - F l o w c h a r t  of  microstructure model routines. Uppercase names refer to subroutine names. 

subroutine call and a minor modification of  the variable 
time-stepping algorithm, described in this section. The 
reader is referred to any of several finite-element method 
texts and Reference 25 for a detailed description of the 
finite-element method solution of  transient heat-flow 
problems. The finite-element equations are solved using 
successive substitution to resolve the nonlinear algebraic 
equations for the nodal temperatures at each time-step. 
Convergence was typically declared when the root- 
mean-square error for both nodal temperatures and re- 
sidual forces fell below 0.001. 

Macroscopic time integration is performed using a 
backward Euler method in conjunction with a variable 
time-stepping algorithm. The size for the next time-step 
is chosen based on an estimate of the local truncation 
error derived from a predictor-corrector formulation of 
the transient problem. In the standard formulation in 
FIDAP, this error is estimated from the nodal tempera- 
tures as 

1 1 T ~ + l  T~+l 
tld"+'llZ= ~ .= 4 IT--~+~[~+ t31l 
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where IK+,II is the norm of the error at time-step n + 1, 
i represents the node number, and the superscripts p and 
c refer to predictor and corrector, respectively. 

Averaging of the errors over all of  the nodes in the 
norm calculation in Eq. [31] can admit large local errors, 
particularly when the mesh is large. This is an endemic 
problem for solidification simulations, where the nodes 
undergoing solidification at any one time represent a 
small fraction of the entire mesh, but the largest source 
of errors. To control the local errors, a maximum nodal 
error is calculated using the form 

I c - " ] 2 
2 1 T~+ 1 T~+I 

(d~+z)m~ = m a x -  [32] 
all n 4 LIT,+I], + TmaxJ 

The size of the next time-step is computed as 

E 
dt .+ l = dr .  [331 

where 

flld.+,ll when (dn+l)ma x ~ g .  IId,+dl D 
[ (dn+l)ma x w h e n  (dn+l)ma x > g .  Ildn+lll [34] 

where e is a tolerance, usually taken to be 1 • 10 -4,  dtn 
is the time increment, and M is a specified value, typ- 
ically 10. Stated in words, when the maximum nodal 
error exceeds the error norm by a factor M, the maxi- 
mum nodal error is used in place of  the error norm to 
determine the size of  the next time-step. 

II .  E X P E R I M E N T A L  
M E T H O D S  AND RESULTS 

The test castings shown in Figure 4 were made to 
evaluate the microstructure models. Six cylinders of dif- 
ferent diameters (12.7, 15.2, 19.1, 25.4, 33.0, and 
63.5 mm) were included to provide a range of cooling 
rates. The casting design was used by Oldfield t4,z6,271 and 
Horsfall t2s,29j in a series of articles investigating gray iron 
solidification. The cylinders are arrayed in a hexagonal 
pattern about a central sprue which feeds all of  the cast- 
ings from below. Air-bonded silica sand was used for 
the molds. A Type K thermocouple in a 4 x 5-mm oval 
alumina sleeve was embedded in the center of each cyl- 
inder, and temperatures were recorded at approximately 
half-second intervals. 

Two castings were poured from separate heats, with 
the compositions shown in Table II. Both heats were in- 
oculated with 0.3 wt pct of  superseed (Sr-50 pct Si 
type), and the pouring temperatures were approximately 
1475 ~ and 1450 ~ for castings 3-28-I and 3-28-5, 
respectively. The twelve castings were sectioned and ex- 
amined metallographically to determine the eutectic cell 
density, maximum graphite flake size, and percentage of 
each type of graphite. The results of the temperature and 
metallurgical measurements are shown in Tables III and 
IV. No evidence for the formation of  white iron was 
found in these samples. 

The specimens were polished using a 0.3-/~m grit on 
a felt polishing wheel. Stead's reagent t3~ was swabbed 

1.5 an dia. 

0-~ era 

:Ill 

3.3 am dia. 

Fig. 4--Arrangement of test cylinders, t26j 

onto dry specimens using a cotton ball. No increase in 
definition was found after 1 minute of  etching time. The 
specimen was then rinsed with ethyl alcohol and hot-air 
dried. 

A 35-mm camera with a fiat-field lens was used to 
view and photograph the etched samples. The best res- 
olution was obtained when the camera was set at a 
20 deg angle to the specimen's face, illuminated by a 
diffuse light placed to the side. A series of circular sten- 
cils with known diameters were placed on the specimen 
face to provide a reference for cell counting. The di- 
ameter of the photograph was chosen so that there were 
at least 50 grains within the measurement area, except 
on the largest (63.5-mm diameter) casting, where the 
large cell sizes and limited depth of field limited us to 
using just 25 grains within the area. A count was made 
of the number of grains completely within the area, n~, 
and the number of  grains intersecting the perimeter of 
the test area, n2. The number of grains per unit area was 
then computed using the formula 

(n+ t 
NA = [35] 

measurement area 

The volumetric density was determined using the stereo- 
logical equivalence t3q 

Na = 1.169. N 0"67 [36] 

Dawson and Oldfield t32j conducted a study of the scatter 
in cell measurement using line count, area count, and 
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Table II. Composition of Iron Used in Casting Trials at Caterpillar Mapleton Foundry 

Casting C Si Mn P S Cr Cu Ni Mo Fe 

3-28-1 3.25 2.08 0.60 0.02 0.07 0.16 0.48 0.13 0.29 balance 
3-28-5 3.30 2.21 0.58 0.02 0.07 0.16 0.47 0.13 0.29 balance 

Table III. Experimental Data from Casting 3-28-1 (3.25 Pet C, 2.08 Pet Si, and 3.94 Pet CE) 

Casting Maximum Eutectic Eutectic Cell Maximum Graphite Maximum Eutectoid 
Diameter Undercooling Density Flake Length Percent Type D and E Undercooling 

(mm) (~ (cells/mm 3) (cells/cm 2) (ram) Graphite (~ 

12.7 NA 75 2080 0.110 50 NA 
15.2 34 46 1490 0.127 40 121 
19.1 21 24 980 0.163 18 98 
25.4 19 12 600 0.218 8 84 
33.0 15 4.9 340 0.364 3 NA 
63.5 15 0.47 80 0.505 2 NA 

NA = not available. 

Table IV. Experimental Data from Casting 3-28-5 (3.30 Pct C, 2.21 Pet Si, and 4.04 Pct CE) 

Casting Maximum Eutectic Eutectic Cell Maximum Graphite 
Diameter Undercooling Density Flake Length Percent Type D and E 

(mm) ( ~  (cells/mm 3) (cells/cm z) (ram) Graphite 

Maximum Eutectoid 
Undercooling 

(~ 

12.7 NA 50 1600 0.137 22 
15.2 34 44 1450 0.161 18 
19.1 33 38 1350 0.157 10 
25.4 20 14 690 0.277 10 
33.0 16 8.3 480 0.296 8 
63.5 13 0.87 110 0.440 5 

127 
121 
96 
85 

NA 
NA 

N A  = not avai lable.  

comparator methods for low- (0.034 pct), medium- 
(0.5 pct), and high-phosphorus (1.1 pct) irons. They 
found that higher phosphorus levels led to more diffuse 
grain boundaries. The iron used in this study had a low 
phosphorus content (approximately 0.02 pct). Of  the 
three measurement methods, the area count had the low- 
est "uncertainty" index (20 pct) for low-phosphorus 
irons. This value was used to define the error bars which 
appear in Figures 5 and 10. 

The same procedure outlined by Oldfield was used to 
determine the nucleation and growth coefficients for the 
test castings used in this study, as follows. Figure 5 
shows a plot of the cell density v s  the square of the max- 
imum eutectic undercooling for castings 3-28-1 and 
3-28-5. The small difference in composition and pouring 
temperature between the two castings did not make a 
significant difference in their measured cell densities. A 
nucleation coefficient of Ae = 36.63 • 1 0  -3  (cells/ 
mm 3. K 2) best describes the relationship between the 
density and undercooling for the two castings. This cal- 
culated nucleation constant was then used in a series of 
simulations with different growth constants to determine 
the value of B e. A 25.4-mm-diameter casting was used 
as the base case. Using the results shown in Figure 6, 
the growth-rate constant which corresponded to the ob- 
served maximum undercooling, 17 ~ was selected as 

the correct value, yielding B e = 3.84 • 10 -5 (mm/  
s. k:). Note that this value is very close to that reported 
by Magnin and Kurz. 118j A test of the validity of the 
model is how well these constants predict the micro- 
structural features in the remainder of the castings. 

The nucleation and growth coefficients thus deter- 
mined were then used in a simulation considering all six 
castings. A horizontal slice through the center of the 
mold was made, to allow a two-dimensional simulation 
in the plane of the thermocouples to be performed. The 
mesh, illustrated in Figure 7, has 3948 elements and 
3865 nodes. The thermal properties for the mold and 
gray iron are given in the Appendix. 

Computed temperature histories for the castings in two 
molds are shown in comparison to experimental mea- 
surements in Figures 8 and 9. The equilibrium liquidus 
eutectic, and eutectoid temperatures for the composition 
in Table IV are 1211 ~ 1155 ~ and 770 ~ respec- 
tively. The maximum recorded temperature for the larg- 
est casting was used as the initial condition for all of  the 
castings in the simulation. Time "zero" was chosen for 
each experimental temperature curve to be the time when 
the temperature first exceeded 100 ~ The predicted re- 
sults compare well with the experimental data. The lack 
of a defined recalescence in the experimental data shown 
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Fig. 5 - -The  relation between cell density 
undercooling. 
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Fig. 7--Two-dimensional finite-element mesh of experimental clus- 
ter of castings. 
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Fig. 6 - -The  relation between undercooling and growth constant for 
a 25.4-mm-diameter casting. 
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Fig. 8--Predicted temperature curves for cluster casting (solid lines) 
compared with experimental data from castings 3-28-1 and 3-28-5 
(broken lines). Two diameters have been selected for clarity of pre- 
sentation. The discrepancy for the smallest diameters is the result of 
time lag in the thermocouple response. 
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Fig. 9 - - P r e d i c t e d  temperature curves for cluster casting (solid lines) 
compared with experimental data from castings 3-28-1 and 3-28-5 
(broken lines). 
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Fig. 10- -Measured  and predicted eutectic cell density for cluster 
castings. 

in Figure 8 for the small diameter is typical of our ex- 
perimental results. We attribute this to time lag in the 
thermocouple data. For the data given in these figures, 
the impingement factor ~b = (1 - fs) 2 was used. The 
effects of the various impingement factors will be dis- 
cussed further in the Section III. Degradation of the 
bonded sand mold, or air gap formation, are possible 
explanations for the differences seen in the cooling rate 
after the eutectoid transformation. 

The predicted eutectic cell densities in Figure 10 show 
excellent agreement with the measured values. The cor- 
relation among the full range of diameters confirms the 
applicability of the growth-rate coefficient for the var- 
ious process conditions. The small error bars on the larg- 
est diameter casting are misleading, because the 
definition of the grain boundaries decreases with the size 
of the casting. The cell count for the 63.5-mm casting 
was very difficult and likely to have a much larger error 
than 20 pet. Figure 11 shows the measured and predicted 
maximum eutectic undercoolings. The model is also in 
good agreement with experimental observations across 
the full range of casting sizes. 

The results shown in Figure 9 used nucleation and 
growth equations for the eutectoid transformation similar 
in form to the graphite eutectic kinetic equations 
(Eqs. [20] and [22]). This model was introduced because 
the nucleation and growth coefficients of Ap = 2.0 X 
10 -3 (cells/mm 3"K2), np ~ 2.0, Bp = 5 . 0  X 10 -7 

(mm/s), and mp = 2.0 back calculated from the ob- 
served undercooling agree very well with the experi- 
mental data, as seen in Figure 12. The agreement 
between the predicted eutectoid undercooling using 

50.0 

- -  Computed 
A Measured: Cluster 3-28-5 

: r 3-28-1 

40.O 

0"-" 30.0 
1 

20.0 

i , I i 

1~176 20 2o 60 80 
Casting Diameter (mm) 

Fig. 11--Measured and predicted maximum cutectic undercooling 
for cluster castings. 
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Mehl and Dube pearlite nucleation and growth-rate 
equations (Eq. [26]) was poor, predicting 25 ~ to 75 
~ lower than the measured results. The slope of un- 
dercooling as a function of casting diameter was not 
close to the experimental observations. 

One of the primary reasons for computing the tem- 
perature field for the entire casting was to determine if 
there was any thermal interaction between the individual 
cylinders. The temperature field in Figure 13 shows that 
the neighboring cylinders do influence the individual 
castings. The overlapping temperature fields did not 
have a noticeable effect until after the eutectoid trans- 
formation and should not affect the predicted micro- 
structure of the castings. The full cluster casting 
simulation took 205 time-steps and 14 cpu hours on a 
Sun SPARCstation 1 to complete. An execution profile 
for a smaller problem revealed that approximately 10 pct 
of the total cpu time was spent in the microstructure evo- 
lution routines. 

Mechanical Property Predictions 

The main reason for modeling the microstructure de- 
velopment of gray iron is the link it provides to me- 
chanical properties. Gray irons are commonly classified 
by their minimum tensile strength. For example, a grade 
220 gray iron indicates that it has a nominal tensile 
strength of 220 MPa. Bates 133] investigated the effect of 
varying alloy additions on the tensile stress to cause fail- 
ure of gray iron. He determined that ultimate tensile 
strength in gray iron can be modeled using a Griffith 
fracture criterion of the form 

K 
o- s - - -  [37] 

V/Cmax 

where c~x is the maximum graphite flake length and 
K = 146.7 (MPa~/-m) for an iron containing approxi- 
mately 2 pet Si and 3.1 to 3.5 pet C. The addition of 
Si, Mn, Cr, Cu, Ni, Mo, and Sn to gray iron changed 
the matrix strength (K), but the fracture stress showed 
the same functional form. The data presented by Bates 
also showed that the yield strength was approximately 
0.8 times the ultimate strength. 

In order to use this ultimate tensile strength relation, 
the maximum graphite flake length must be determined. 
The graphite flakes in gray iron grow outward in a radial 
pattern from the eutectic cell center into the remaining 
eutectic liquid. Assuming the graphite flake does not 
cross the eutectic cell boundary, the maximum possible 
flake length would be the largest eutectic cell diameter. 
Figure 14 shows that the maximum flake length appears 
to be approximately 75 to 95 pet of the predicted max- 
imum cell diameter. This correlation was used to com- 
pute the fracture strength. The hardness was determined 
from the ultimate tensile strength using t33] 

BHN = 0.0284trlex p (0.8228 * CE) [38] 

These mechanical property correlations have all been 
written in terms of microstructural features. Thus, the 
mechanical property calculations are uncoupled from the 

150 

A~E] Computed (Power Law) 
. . . .  Mehl and Dube 

~ A  A Measured: Cluster 3-28-5 
ster 3-28-1 

100 

50 

G" 
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, I I 

010 20 30 40 
Casting Diameter (mm) 

Fig. 12--Measured and predicted maximum eutectoid undercooling 
for cluster castings. 
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Fig. 13--Temperature distribution in the metal and mold after 300 s. 
The 100 ~ isotherm is also shown to illustrate the overlap of the 
thermal fields from neighboring cylinders. 

heat-flow problem and may be extracted during 
postprocessing. 

To demonstrate the microstructure/mechanical prop- 
erty relationships, and the applicability of the model to 
more complex shapes, the step casting shown in 
Figure 15, with ribs of five different thicknesses (25, 18, 
12.5, 6, and 3 mm) will be used as an example. The 
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casting composition was taken to be the same as de- 
scribed in the experiments reported earlier. This casting 
design was used by Banerjee e t  a i . ,  t3~] to test a gray/ 
white iron microstructure model. The two-dimensional 
finite-element mesh in the iron casting and in the sand 
mold are illustrated in Figure 15. The mesh had a total 
of  5804 elements and 5633 nodes. The metal and sand 
nodes were given an initial temperature of 1300 ~ and 
35 ~ respectively. The composition, material proper- 
ties, and kinetic constants used in this example are the 
same used previously in the cluster casting simulation. 

The undercooling ranged from 11 ~ in the 25-mm 
section to 70 ~ in the 3-mm section. The maximum 
undercooling is defined as the point where the cooling 
rate is zero. If the nucleation-rate constant is very small, 
and the growth rate is high, no recalescence will occur, 
and the maximum undercooling will have a recorded 
value of zero. If this occurred, then maximum under- 
cooling was defined as the temperature wherefs = 0.52, 
the point at which spheres in an fcc arrangement 
impinge. 

The eutectic cell density distribution is shown in 
Figure 16. The areal density ranged from 330 (cells/  
cm 2) to 1720 (cells/cm2), and generally follows the 
shape of the undercooling contours. The contours are 
symmetric across the individual bars and clearly show 
their interaction with the runner base. The 3-mm section 
has an approximate strength of 280 MPa (40.6 ksi), 
while the 25-mm section has a strength of 200 MPa (29 
ksi). The predicted hardness throughout the casting is 
shown in Figure 17. The shape is similar to that of the 

eutectic cell density, as one would expect from the cor- 
relation used. 

III. DISCUSSION 

S e n s i t i v i t y  

One of the greatest benefits of computer simulation is 
the ability to measure the effect of  altering individual 
variables. In this section, we will investigate the sensi- 
tivity of the cooling curve and microstructure to several 
variables. A 25.4-ram-diameter sand casting will be 
used as the test case for all of these investigations. 

Figure 18 shows the effect of varying the nucleation 
and growth constants on the computed eutectic under- 
cooling. A series of simulations was performed using the 
nucleation constants determined by Oldfield [4] (0.91 x 
10 -3 and 7.12 • 10 -3 (cells/mm~-K2)) and from this 
study (36.6 • 10 -3 (cel ls /mm 3. K2)). The growth rela- 
tion in Eq. [22] with a power of 2(ne = 2.0) was used 
for the first three curves, and a constant of n e = 1.7 was 
used to obtain the last curve. The plot shows that as the 
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Fig. 14--Comparison of maximum graphite flake length and pre- 
dicted m a x i m u m  eutect ic  ce l l  radius for cy l indrica l  cast ings .  

i l l l l l l  I I I I l l i I i l l l l l l l  i l l l U l i  I I l I l i I  
I l l l l l l l l l l l I i l l i I l I l I l l l l l I I I I  t l l l l i I  
I n I I I I I  l i l l l l l l l l l l i I I I I  k l l l l l l l l  I I I l imn  
iiIIIII I I I i i I I i I i I i i I I I  nIIIiIIII lllIiiI 

l, �9 4n i. �9 IINIiWO0 lmmiullim~lliUlliilm �9 |rim io llmil 
J i l l l l l  I i l i l l i J i l i l l f l  ' l l l l l l l  I , i ~ I i l  

i i I i I I I I | I I I I I I I I i I i I I I  ~:;:::::::: IIIIiII 
i l l I l l l i I I I l l I I l I I I l i l l |  ; : : ~ :~ : : : :  llllliI 
IIIIIII I I I I I I I I I l I I I I I I  >~<,-;:: qlIIIII 
lilIlllll l l l m i l i m i l i l i l l l  ,,r llllmmiium 

l|m m i  i m i mm i inmummmlml ummmmml lammmmlm~i mmu mlmt ,:.'~;.;>,. 

. . . . . . . . . . . . . . . . . . . . . . . . .  T" i i ~ ' } i !  i!em~m~ m 

I l l  I I I I I I I l l  l l l l i l l i l l l  I , ,  ) , ~ ,  I I I l l l l  
I l l  l l l l ; l l l l  I I  I I  l l l l l l l l  . ~ ,; :.~.: �9 I I I I l l l  

imIllll llliIIllllliilll i~ ~ ii~;~ iiIIilI 
IIllIllllllIIilIlllllll ::~:S:i: IlllnlI 
IIIIIII l l I I I I I I I I I I I l l I  ," :',:,4:: IIIIIII 
. . . . . . . . . . . . . . . . . . . . .  :: "::::" ~;-._-_-_ ~ 

l l l l l l l l l l l l l l l l l l l l l l l l  , ~ 7 . , . . , : - :  I I I l l l l  

l l l l l l l ' l l l l l l l l l l l l l l l l  ) i~: :+!: : :  I l l l l l l  
I l l l l l )  I l l l l l l l l l l l l l l l  ; : : : : : : : : :  I l l l l l l  
l l l l l l l  l l l l l l l l l l l l l l l l  , , : - ; , . : : [  I I I l l l l  

~ , ~ , ~ , 7 , ; ; ;  . : . : : . :_~:: . : . : : . : . : . : . : . : . : : . : . : . : . . : . : . : . : . : . : . : . : : . : . : .  :.:.. :.~ .~ :. :. : ,  . :  . . .  ; ; ~ - - -  

==E.~ i i~ . :  ~ = = ~ - ~ - ~ = = ~ . - - :  = ~ ::: ii~. ==-~- 
um i inn~ miNi mmmllmm~mm mnm l m n mm in i �9 - : ,  . ; ,  , : : :  mlm l 
imimmll m l m m m l m m m m m l m m m i i l l l l  ,,,:,;,,::: ll|mmummm 

mmmmmmml~mmmmmmmmmmmmmmmmmi ,:::'::~:~:: immmmmm 

mmumntlmmnmmmmimmmmmmnm ~),mmmmm 
iimmmliluimmimmmminll ~!~;~ almmiI 
ImImIIIiIIIImmIImmmmIIIl i ) ; i iS : :  IIIImnI 
I I I I I I I I I I I I I I I I I I I I I I l l  :;;':~X:," IIIIIII 
illllll llimmlimmmmimiimllll~ : :) m: :': :" " " lllimmmmmmm 

~ . ' _ . ' . ' _ ' ~  ' : . ' : r : ~ !~ ' : ~ .~ : : : : : : : ~ r : . ~ : : : t ' : : ~ : : - : : :w :  : :  : t :  : : : :  ) : ' . ~_ -~  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~;i i i i i ,ii-~.==--. ~-- 
I I  l l I I  I I  I l l  I I N  I I l I N  l I I I !  , r  , I I I I l l  I 
l l l l l l l ) l l l l l l l l l l l l l l l l  >~ ,~ : :  I I I l l l l  
l l l l l l l l l l l l l l l l l l l l l l l l  :)~'))~ii I I I l l l l  
iummml)lliiimmmmmmiiim! ~;~,llliiIl 
iiiiiiiiiiinmmmmmmmiiil 1i!~)~ llllIIl 
Imimlllllmmmmmllmmmmiml !!~;:~:: lllImmI 
I I I I I I i I I l l m I m I l l I I l l I I f  :: ~:~:::: IIllIII 

i " , . ,  l l i l l l l  m m l m m l )  �9 

m Imml l l l > * r  ":.:-:-->;,:+ -:,t,:-: -; : :.,t,:-: ,t,: : . : : , : - : : : - : - :  :: ~llllmIl 

============================================ , !  : ~= - -~_~ -  

L L : ! :  :IL:~ - - = =  

mmlmmli im l l l ,  im l i i  lim n mm i ~ m lm mm m I I  Im i i  m l  . ,  ..~.~ i i  �9 i ~ m ~  
< , : ' . : . . . ,  mmmluilll lllumimmmmmmmmmllmmulllk ) x lllmmmuomm 

mmmmmlll immmmmmmmmmmmmmmummmmmmm~ ::~i., ,lllmmlummmm 
mmmmlmmll mmmmmmmmnmmmmmmmmmmam; <~;:• :. lllmmmmm 
illmmmi,lummmmmmmmm~mmmmmi <~x~.- I I l i m U l  
l l l l l l i [ l l l l l l l l l l l l l l l l  : ~< ;~ : :  i i i i l l lm  
l l l l l l l  I I I l l l l l l l l l l l l l  ; ~ )@~ i :  ; l l l l l l l  
l l l l l l I ~ l l l l l l l l l l l l l l l l  : ~ )~ : :  I I I l l l l  
mlliIIllIimIImmmmlmiUll i ~  llliimI 
N i l  . i l l  l l l i i l i l i i l l l O l ,  l l m i i l l ,  , I i l l l l l  

I I I I lI l i m i t  i I l l i l  i iilll'liil i i  m i l m i l l  I I 
i ilIllll l l l i m m m u i m m m i l m l i  llmlmll llillml 

mmmmmmmmllimmm l m m m m m m m m m m m m m m l m n  ~milmlll lllllmlm 
mmmmmmml,mmmmmmmmmmmmmmmmumm timmmmll .mmmmm 
mmmmmmml,mmmmmmmmmmmmmmmmm (ilmalmll immmmmm 
mmmmmmllummmmmmmmmmmmmmmm I I l I I I l l  llmmmmm 

Fig.  1 5 - - F i n i t e - e l e m e n t  m o d e l i n g  m e s h  o f  step cast ing.  The  iron is 
s h o w n  as shaded.  
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Fig. 16--Eutectic cell density distribution in the step casting. Fig. 17--Hardness distribution in the step casting. 

growth-rate constant increases, the importance of vary- 
ing the nucleation constant decreases. The undercooling 
varies by only 2 ~ when the growth constant is Ae = 
0.384 x 10- ' ,  but has a range of 30 ~ with a constant 
of Ae = 0.384 x 10 -5 (mm/s).  Oldfield mentioned in 
his work that the growth equation using ne = 2.0 over- 
estimated the undercooling for the small-diameter cast- 
ing and underestimated for the larger castings. A 
growth-rate power of ne = 1.7 was proposed to give bet- 
ter correlation. The use of the lower power does reduce 
the slope of the undercooling/growth-constant curve and 
is effective in reducing the slope of a cooling rate/ 
undercooling curve. However, the growth equation 
using ne = 2.0 was able to matching the eutectic under- 
cooling for the full range of casting diameters in our 
experiments. 

Figure 19 and Table V show the effect of varying the 
form of the impingement coefficient on the cooling 
curve and cell density distribution parameters. The form 
of the cell impingement factor has a significant effect on 
both the distributions and on the cooling curve, partic- 
ularly near the end of freezing. Note that even when 
~b = 1, the temperature falls slightly at the end of  solid- 
ification. This is due to the rapid heat extraction when 
the surrounding nodes freeze. Banerjee et  al.  t34] noted in 

their work that the form (1 - fs) 3 gave the best agreement 
with thermocouple results. This proved to be true in this 
study also. Unfortunately, the nonlinearity of this term 
reduces the growth rate at the end of solidification to a 
point where the volume fraction transformed never 
reaches 100 pct. This occurred to a lesser extent when 
using the (1 - f~)2 form. To deal with this, the solidi- 
fication was defined to be completed when fs = 0.995 
when these forms were used. 

In the development of  the model for the cell density 
distribution, a concave-shaped quadratic distribution was 
assumed. As a test of the sensitivity of the results to the 
shape of the cell distribution, the convex distribution il- 
lustrated in Figure 20 was examined. The resulting form 
of the distribution is 

3N 
n(pc) - (R 2 - 2Rr  + 2rpc - p2) [39] 

2(R - r) 3 

Table VI shows that both distribution forms give nearly 
identical results for the maximum eutectic undercooling 
and cell densities, allowing us to conclude that micro- 
structure evolution is relatively insensitive to the detailed 
shape of  the cell distribution. 

The size of the critical nucleus is determined from the 
Gibbs free energy, solid/liquid interfacial energy, 
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undercooling, and the wetting angle. However, the size 
chosen for the initial particles is relatively unimportant 
in determining the final cell density. Using initial nu- 
cleus sizes ranging from 1.0 • 10 -5 to 0.01 mm pro- 
duced no significant changes in either computed 
undercooling, cell density, or solidification time. Larger 
initial nucleus sizes are physically unrealistic. 

The formulation used in the Fe-Fe3C development 
could be greatly improved by further study of the inter- 
action of gray and white iron transformations below the 
metastable eutectic temperature. The present method 
stops the growth of the graphite eutectic and starts Fe3C 
nucleation and growth when the temperature falls below 
the Fe-Fe3C equilibrium temperature. This method was 
a first attempt and needs further refinement. Competitive 
growth between the two structures would represent a 
more realistic approach. 

Another area that needs further investigation is the ki- 
netic expressions for the eutectoid transformation. The 
exponential nucleation and growth relations introduced 
by Mehl and Dube t21) predicted substantially lower 
undercoolings than we observed in our experiments. Al- 
though a power law relation was able to give good agree- 
ment for our experiments, the limited range of 
compositions examined cautions against assuming the 
results are generally applicable. It would be very helpful 
if the information from TTT or CCT diagrams could be 
implemented into the microstructure model, as Zou and 
Tseng I351 have presented. This would take advantage of 
a large data base of information, as well as extending 
the model to microstructure development in a heat- 
treatment cycle. 

The mechanical property relations used in this study 
are just a first step in providing a usable design tool. 
Implementing a data base including the effects of various 
alloy compositions on the mechanical properties is the 
next logical step. 

IV. CONCLUSIONS 

A microstructure model has been developed to predict 
the evolution of microstructure during solidification of 
cast irons in foundry casting. Expressions for nucleation 
and growth of gray iron have been incorporated within 
a commercial finite-element code for transient heat-flow 
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Table V. Predicted Results of Varying the Impingement 
Coefficient on the Cooling Curve of a 25.4-ram-Diameter Casting 

Impingement Coefficient 

Maximum Eutectic Eutectic Cell Minimum Maximum Final 
Undercooling Density Radius Radius Solidification 

( ~  (cells/mm 3) (cells/cm 2) (mm) (mm) Time (s) 

None 14.9 8.1 470 0.268 0.349 126 
(1 - f ~ )  16.9 10.4 560 0.248 0.316 132 
(1 - f s )  z 18.9 13.2 650 0.229 0.296 172 
(1 - f~)3 21.8 17.4 790 0.206 0.274 343 

Table VI. Predicted Results of Varying Cell Density Distribution on the Cooling Curve of a 25.4-ram-Diameter Casting 

Maximum Eutectic Eutectic Cell 
Undercooling Density Minimum Radius Maximum Radius Final Solidification 

Cell Distribution (~ (cells/ram 3) (cells/cm 2) (mm) (mm) Time (s) 

Concave 18.9 13.2 650 0.228 0.296 172 
Convex 18.6 12.6 640 0.222 0.281 171 

Table VII. Temperature-Dependent Material Properties for Resin-Bonded Sand and Iron 

Sand Specific Heat Iron Thermal Conductivity Sand Thermal Conductivity 
Temperature (~ (J/g- K) (W/ram �9 K) (W/mm �9 K) 

0 0.7113 6.087 X 10 -4  6.686 • 10 -2  

100 0.8577 6.401 x 10 -4 5.950 • 10 -2  

200 0.9665 6.629 x 10 -4 5.560 x l0 -2 
300 1.0334 6.925 • 10 -4 5.030 x l0 -2 
400 1.0962 7.186 )< 10 -4  4.520 X 10 -2  

500 1.1380 7.777 X 10 -4  4.000 X 10 -2  

600 1.1548 8.301 • 10 -4 3.510 • 10 -2 
700 1.1715 9.123 X 10 -4 3.301 )< 10 -2  

800 1.1757 1.010 • 10 -4 2.972 • 10 -2  

900 1.1799 1.122 • 10 -4 2.600 x 10 -2 
1000 1.1883 1.226 x 10 -3 2.227 x 10 -2 
1100 1.383 X 10 -3 

1120.6 1.413 x 10 -3 
1121.1 1.436 X 10 -3  

1137.8 1.451 X 10 -3 

1150 1.466 • 10 -3 

1200 1.563 )< 10 -3 8.908 x 10 -2 
1215.6 1.1883 1.585 X 10 -3 

1300 1.1924 1.660 X 10 -3 

1350 1.1966 1.810 • 10 -3 

1430 1.1966 1.973 x 10 -3 8.908 x 10 -2 

calculation. The kinetic equations are solved in terms of 
a cell density distribution function. This has the advan- 
tages of  reducing the number of  variables needed to de- 
scribe the microstructure, simplifying error control, and 
providing a straightforward means of  comparing the 
computed results with experimentally observed micro- 
structures. Features predicted include eutectic cell size, 
prevalence of  gray v s  white iron, graphite morphology, 
pearlite and ferrite grain size, and pearlite lamellar spac- 
ing. Predictions of  the model are in good agreement with 
the temperature and metallographic data derived from 
our experiments. Predicted strength and fatigue proper- 
ties are consistent with published data but have not been 
critically tested. The main results and conclusions from 
this work are summarized below. 

1. The temperature recovery method coupled with a sta- 
tistical representation of the microstructural features 
has been shown to be a numerically robust approach 
to implement solidification and microstructure mod- 
eling in a finite-element method code. 

2. The cell density and temperature history are insen- 
sitive to the assumption critical nucleus size, as well 
as to the details of  the assumed shape of the cell den- 
sity distribution. 

3. Calculation of microstructural features increases the 
computing time of the calculations, but not to an ex- 
cessive extent. 

4. Nucleation and growth coefficients Ae = 0.03663 
(cells/mm 3- K 2) and Be = 3.84 • 10 -5 (mm/s) were 
determined for the experimental casting in this study. 
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Table VIII. Latent Heat 
for Iron Phase Transformations 

Microstructure Latent  Heat  ( J / g .  K) 

Primary austenite 263 I371 
Austeni te-graphite  eutectic 233 I371 
Iron-carbide eutectic 213137] 
Pearlite 85.8 ml 
Ferrite 16.31391 

5. The predicted maximum eutectic cell radius has been 
seen to be proportional to the measured maximum 
graphite flake length over a range of section sizes. 

APPENDIX 

Thermophysical properties 

The density of the sand was taken to be a constant, 
1.442 • 10 -~ g/mm 3. The density of the iron was also 
taken to be constant, 7.23 x 10-3g/mm 3, and the spe- 
cific heat was taken as 0.91 J / g . K .  The remaining 
properties were temperature dependent and are listed in 
Tables VII and VIII. Piecewise linear interpolation was 
used between neighboring points in the tables. 
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