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The energy equation for solidifying dendritic alloys that includes the effects of heat of mixing 
in both the dendritic solid and the interdendritic liquid is derived. Calculations for Pb-Sn alloys 
show that this form of the energy equation should be used when the solidification rate is rel- 
atively high and/or  the thermal gradients in the solidifying alloy are relatively low. Accurate 
predictions of transport phenomena in solidifying dendritic alloys also depend on the form of 
the solute conservation equation. Therefore, this conservation equation is derived with particular 
consideration to an accounting of the diffusion of  solute in the dendritic solid. Calculations for 
Pb-Sn alloy show that the distribution of the volume fraction of interdendritic liquid (gL) in the 
mushy zone is sensitive to the extent of the diffusion in the solid. Good predictions of gL are 
necessary, especially when convection in the mushy zone is calculated. 

I. I N T R O D U C T I O N  

THE modeling of dendritic solidification has become 
more sophisticated than the modeling done I0 to 20 years 
ago in that today the continuity equation, the momentum 
equation, the energy equation, and the solute conser- 
vation equation are simultaneously applied. The most 
comprehensive exposition of the conservation equa- 
tions that can be used to model dendritic solidification 
was given by Hills et al.  [~] Numerical works include 
Bennon and Incropera, t2'3'41 Beckermann and Viskanta, tsl 
Voller and Prakash, [61 Nandapurkar et  al.,  [7] Heinrich 
et al.,[8] and the earliest work of this type done by Szekely 
and Jassal. t9] In all of  the numerical works, the overall 
concept of solving for temperature, velocity, and solutal 
concentration has been shared, but there have also been 
assumptions peculiar to each. In addition, the origins of 
transport properties, assigned in the two-phase region, 
have not been consistendy exposed. 

Several different forms of  the momentum equation, as 
applied to dendritic solidification or closely related sce- 
narios, have been used by various investigators. Re- 
cently, Ganesan and Poirier [1~ revealed that nonlinear 
terms in the volume fraction of the liquid phase should 
be included in the momentum equation. Calculations by 
Nandapurkar et  al. tm showed that the added terms sig- 
nificantly affect thermosolutal convection in both the all- 
liquid zone and the underlying mushy zone in vertical 
directional solidification. 

The major intent of  this article is to present derivations 
of the energy and solute conservation equations that re- 
veal the origins of  appropriate thermodynamic and trans- 
port properties for treating mushy zones in dendritic 
solidification processes, although our derivations and re- 
sulting mathematical formulations are not nearly as com- 
plete as those of Hills et al. I~1 A recent contribution 
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pertaining to the conservation equations is that of Rappaz 
and Voller. t12J However, all of  the terms in their mo- 
mentum equation do not agree with the momentum equa- 
tion of Ganesan and Poirier, ~1~ with the exception of the 
body force term and the pressure gradient term. Simi- 
larly, their energy equation and solute conservation 
equation differ in some respects from the equations that 
follow in this article. Where it is appropriate, we com- 
pare our conservation equations to those of Hills et al. ~ 
for their "metallurgical model." 

II .  T I l E  E N E R G Y  E Q U A T I O N  

Consider a unit element of constant volume within the 
mushy zone. With respect to a stationary origin, the unit 
element is located at (x, y, z). Only the interdendritic liq- 
uid convects with velocity V(x, y, z, t), where t is time 
and V is the local average velocity of  the interdendritic 
liquid. The temperatures, T(x,  y ,  z, t), in both solid and 
liquid, are assumed to be equal. Energy flows into 
and out of the unit element by conduction, with flux q, 
and by the advection of the interdendritic liquid, that has 
a volumetric enthalpy of QL. Then the energy balance 
can be written 

O 
- -  ~ _  . - -  Ot (gsQ, + gLQL) - V q t7. (grQL V ) [1] 

where g, and gc are the volume fractions of solid and 
liquid, respectively, and Q, is the volumetric enthalpy of 
the solid. 

Usually, the superficial velocity U is used, with 

U = gLV [2] 

and the enthalpies are expressed in terms of energy per 
mass. Therefore, 

Qs = p, I t ,  [3] 

and 

QL = PLHL [41 

where Ps and PL are the mass densities of the solid and 
liquid, respectively. The composition of the inter- 
dendritic liquid, at a given temperature, is assumed to 
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be uniform. Consequently, within the unit element, the 
intensive enthalpy of the interdendritic liquid, HL, is also 
uniform. Notice, however, that Hs is written with an 
overbar to emphasize that there is microsegregation of 
solute in the local dendritic solid, so that its intensive 
enthalpy is an average. 

The enthalpies should be expressed with the same 
thermodynamic reference state, so that at a given 
temperature, 

L =-- HL - A~ [5] 

where L is an effective latent heat. 
For the conduction flux, we assume that Fourier's law 

applies and write 

q = - K V T  [6] 

where K is the effective thermal conductivity of the solid 
plus liquid mixture. This conductivity can be evaluated 
according to whatever model for two-phase mixtures is 
thought to be appropriate, t~3`~aj Notice that the Dufour 
effect is neglected in Eq. [6], and that the conduction 
energy flux associated with the overall enthalpy flux can 
be neglected when it is compared to the advective en- 
thalpy fluxes. 

Now by substituting Eqs. [2] through [6] into Eq. [1], 
the energy equation is written as 

O 
~t (fiAs + pLgLL) = V. (KgrT) -- pLU" [V(Hs + L)] 

- (As + L)V" [pLU] [7] 

where fi is the average density of the solid plus liquid 
mixture, defined as 

fi = Psgs + PLgL [8] 

Equation [7] can be simplified somewhat; specifically, 
if no pores form during solidification, then dg~ = -dgL. 
Recalling that the solid is assumed not to convect, con- 
tinuity requires 

Off 
- -  = - V "  (pLU) [9] 
Ot 

and then by combining Eqs. [7] through [9], the final 
result is 

3A~ OL 3 
+ gLPL - -  - L - -  (g~p~)  

r i o t  Ot Ot 

= V" (KVT) - pLU(VA~ + VL) [10] 

It is preferable to keep the terms with enthalpy as they 
appear in Eq. [10], because the substitutions 

oAs OT 
= c . - -  i l l ]  

at 

and 

VA s = CpVT [ 12] 

are not generally valid if the specific heat of the solid, 
Cp, is not carefully considered. Because temperature and 
composition both change during solidification and the 
enthalpy of the solid depends on temperature and com- 

position, then Cp, as used in Eqs. [11] and [12], is not 
the thermodynamic heat capacity. By accounting for Hs 
during solidification, it is possible to define Cp so that 
Eqs. [11] and [12] are applicable, but in so doing, it 
should be recognized that Cp is not the thermodynamic 
one. Detailed calculations of the enthalpy of a binary 
alloy, as it solidifies, were given by Poirier and 
Nandapurkar. tl51 

The latent heat in Eq. [10] is not treated as a constant, 
and it is carefully defined in Eq. [5] to avoid any am- 
biguity. It is known that the latent heat varies during 
solidification of alloys, tlSj As an example, during the 
dendritic solidification of Pb-15 wt pct Sn, the effective 
latent heat of fusion varies from approximately 51 to 
28 J.  g-i from the beginning to the end of solidifica- 
tion, 05,t61 whereas the latent heat of lead is 23 J- g-~ at 
its freezing point. 

Equation [10] is similar to the Boussinesq form of the 
energy equation derived by Hills et al. m (their 
Eq. [6.24]) in which they eliminated the Soret effect from 
their more general result, assumed PL = Ps = r = p, and 
took the mixture conductivity, K, as uniform. Addition- 
ally, if the heat capacity is consistent with Eqs. [11] and 
[12], then Eq. [10] agrees with Eq. [6.24] in Hills 
et al. ~u Their result includes the possibility of a con- 
vecting solid, whereas it is assumed herein that the solid 
does not convect. For equiaxial dendritic solidification, 
in which the solid convects, the additional terms intro- 
duced by Hills et al. and later by Bennon and Incropera t2,41 
should be considered. Equation [10] is more explicit, 
however, in exposing terms with the latent heat of fusion. 

The energy equation for the all-liquid zone of a solid- 
ifying alloy can be derived from Eq. [10]. This can be 
seen by reinserting 

H L = I 4 s +  L 

from Eq. [5] and simplifying with gL = 1, gs = 0, and 
K = KL. The result is 

OHL 1 
- V. (KLVT) - U- VHL [13] 

Ot PL 

Again, substitutions for the terms containing the en- 
thalpy should be carefully made, taking into account that 
both the composition and the temperature of the liquid 
in the all-liquid zone can vary. 

For the all-solid zone, it is more convenient to start 
with Eq. [1] and substitute gL = 0 and g~ = 1 and 
Eqs. [3] and [6]. The result is 

0 
- -  (p ,H, )  = V .  ( r , V T )  [14] 
Ot 

The solid can comprise more than one constituent (e.g., 
a primary phase with microsegregation plus an eutectic). 
Again, before a substitution for Hs is made, Cp should 
be carefully defined. 

III. T H E  S O L U T E  
CO N S ERV A TIO N  E Q U A T I O N  

Solute enters and leaves the unit element (fixed vol- 
ume) by Fickian diffusion through the liquid and by ad- 
vection of the interdendritic liquid. Within the unit 
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element, there can be diffusion in the local solid, but 
there is no diffusion into or out of the unit element via 
the solid.* For these assumptions, the basic solute bal- 

*Within the unit element itself, the length scale for diffusion in the 
solid is on the order of  tens or hundreds of microns, depending on 
the local dendrite ann spacings. On the other hand, the length scale 
for diffusion into or out of  the unit element is on the order of  ones 
or tens of centimeters, depending on the average thermal gradient across 
the mushy zone. 

ance is 

V . j  + V. (pLCLU) + 7 (pC) = 0 [15] 
Ot 

where j = Fickian flux of solute, in the interdendritic 
liquid, g(solute) �9 cm -2. s-~; 

CL = mass fraction of the solute in the interden- 
dritic liquid; and 

pC = mass of the solute per unit volume of the solid 
plus liquid mixture. 

The flux is related to the gradient of the solute mass 
fraction in the liquid by 

j = --pLDeVCL [16] 

D e is an effective diffusivity that is defined as 

D, = gLD/T  [17] 

where D is the diffusivity of  the solute in the inter- 
dendritic liquid and r is a tortuosity factor to account for 
the fact that the boundary of the interdendritic liquid is 
highly irregular within the dendritic mushy zone. By as- 
suming Fickian diffusion and writing the mass flux as 
Eq. [16], other contributions to mass flux tl,17j (especially 
the Soret effect) are neglected. 

By combining Eqs. [15] and [16], we get the solute 
conservation equation in terms of C: 

O __  
Ot (pC) + ~" (pLCLU) ~ (pLDe~CL) [18]  

To make use of Eq. [18], the extent of  diffusion in 
the local solid must be estimated in order to account for 
the partitioning of the solute between the local dendritic 
solid and the interdendritic liquid. In turn, this parti- 
tioning controls the local value of gL, which directly af- 
fe__._cts U and De and, consequently, the time derivative of  
pC in Eq. [ 18]. 

The effect of the extent of diffusion in the solid is 
examined by considering three cases: (1) complete dif- 
fusion, (2) no diffusion, and then (3) some diffusion in 
the local dendritic solid. 

A.  Complete  Diffusion in the Solid 

For this case, the concentration of the solute in the 
local dendritic solid is uniform, and the transient term 
in Eq. [18] can be written as 

0 - -  0 0 
Ot ( p C )  = ~ (p~g~C~) + Ot (PLgLCL) [19] 

where Ca is the mass fraction of solute in the solid. For 
a reason to be explained later, both terms on the right- 

hand side (RHS) of Eq. [19] can be expanded, and 
Eq. [19] becomes 

O _ _  ~CL 0 Op~ 
-- = - -  + CL (PLgL) + k C L g ~ -  Ot (pC)  PLgL Ot Ot Ot 

~3g~ OCL 
+ kpsCL-~t + kp~g5 0--7 [201 

For the third, fourth, and fifth terms on the RHS of 
Eq. [20], CL = C f f k  has been used; k is the equilibrium 
partition ratio. 

The second term on the left-hand side (LHS) of 
Eq. [18] is expanded and then combined with Eqs. [8] 
and [9]. The result of these operations is 

Op~ 
V . (pLCLU) = pLU " VCL - CLg~ - -  

Ot 

Og~ 0 
-- CLp~ -~t -- CL Ott (gLPL) [211 

Finally, Eqs. [18], [20], and [21] are combined to yield 
the solute conservation equation for the case of complete 
diffusion in the local solid; it is 

[l+k(P'g~)] oCL k)CL( g~ t op~ 
\PLgLI J ~ - ( 1  - \PLgL/  -~t 

og, 
- \PLgL/  (1 -- k ) O t  

+ - -  U.  V G  = �9 (pLDeVG) [221 
gL 

For many alloys, OpffOt can be neglected so Eq. [221 is 
simplified somewhat, leaving OCL/Ot as the only tran- 
sient term to be estimated in a numerical solution. 

By defining the average density of  the solid plus liquid 
mixture by Eq. [8], the average mass fraction of the sol- 
ute in the mixture, C, is 

P~g, kCL + PL gLCL 
C = [231 

P~g~ + PL gL 

Bennon and Incropera ~:,3,43 cleverly avoided the formu- 
lation in terms of CL and numerically solved for the new 
value of C. Then the local volume fraction of liquid is 
obtained from Eq. [23]. Because CL is known by the 
temperature, Eq. [23] can be used to obtain gc (with g~ = 
1 - g L ) .  

B. No  Diffusion in the Solid 

For this case, the local solid does not have a uniform 
concentration of solute. The concentration at the inter- 
face is denoted as C* and Ca r C*, where (~s is the 
average mass fraction of solute in the solid. Because there 
is no diffusion in the solid, then 

Ca 1 fo e, = -- Ca(r/, t) drl [24] 
g~ 

where r / i s  the coordinate for the local fraction of solid 
(i .e. ,  0 <-- 77 ~ gs) and values of Ca in the integral are 
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the previous interfacial concentrations that formed when 
solidification started (r/ = 0) to the present fraction of 
solid (r/ = g,). 

By applying Leibnitz's rule to Eq. [24], noting that 
OC,/Ot = 0 (no diffusion) and C* = Cs(gs), it can be 
shown that 

0 - ~ t  Og, 
Ot (P~g'ff') g,C, + p, kCL Ot [251 

Then the time derivative in Eq. [18] can be expanded as 
follows: 

o _  o Q  o 
. . . . . .  + C L -  (PLgL) Ot (pC) PLgL Ot at 

Op, Og, 
+ g,C, - -  + p, kCL - -  

Ot Ot 
[26] 

Finally, by combining Eqs. [18], [21], and [26], we 
get the solute conservation equation for no diffusion in 
the solid. The result is 

. . . . .  OCL g~ Op~ psCL (1 k) 
Ot (CL -- Cs) ~ \PLg& Ot 

1 (~)V 
+ - -  U "  V C L  = " ( p L D e V C L )  

gL 

[27] 

The first term in Eq. [27] differs from the first term 
in Eq. [22]; all other terms in both equations are exactly 
the same. The second terms compare by recognizing that 
C, = Cs when there is complete diffusion in the solid. 

In applying Eq. [27], it should be realized that C~ is 
not uniquely related to CL so that it must be continually 
evaluated (Eq. [24]). Fortunately, OpffOt can be ne- 
glected for many alloys; in such cases, the second term 
is not needed. 

Equation [271 reduces to the "local solute redistribu- 
tion equation," first presented by Flemings and Nereo. vSj 
Specifically, they assumed that p, is constant, and they 
did not include diffusion in the liquid (in the direction 
of the temperature gradient). With these added assump- 
tions, Eq. [27] reduces to 

--+OCLot [ (1-~k)CL] (P  2 ) "  gL _1 --+OgLot ( 1 )  U'VCL = 0  

[281 

Normally, in dendritic solidification processes, the ef- 
fect of the diffusion term on solute redistribution is not 
important. However, thermosolutal convection can play 
a strong role in the exchange of solute at the transitional 
region between the mushy zone and the all-liquid zone. 
Consequently, the very small amount of solute in the 
vicinity of dendrite tips, in excess of the concentration 
of the bulk liquid, is critically important in determining 
the convective stability of the solidifying systemY ] Hence, 
the inclusion of this term, as in Eq. [27], is recom- 
mended for modeling dendritic solidification. 

To further check Eq. [27], consider the simplification 
of PL = P, = constant so that the volume fractions of the 

phases are the same as the mass fractions (g~ = f~ and 
gL = fL)" Also, if we ignore both convection and diffu- 
sion, then Eq. [27] correctly reduces to the differential 
form of the well-known Scheil equation, rl91 which is often 
applied as a first approximation to describe micro- 
segregation in dendritic alloys. 

On the other hand, solute conservation given by Hills 
et al. m (Eq. [6.22] in their article) does not reduce to 
the Scheil equation but, instead, reduces to the differ- 
ential form of the "lever rule." Hence, in their solute 
conservation equation, it is assumed that the concentra- 
tion of solute in the local solid is uniform and should be 
comparable to Eq. [22]. Indeed, our Eq. [22] and their 
Eq. [6.22] are the same when the densities of the two 
phases are equal and constant, except for the diffusion 
term. 

By substituting Eq. [17] for D,, we get the following 
term for diffusion: 

whereas the diffusion term (in our notation) from Hills 
et al. m results in 

D' 
- -  V" (gtVCL) 
gL 

where D' is called the "material diffusion coefficient." 
By the flux definition given in their Eq. [5.25], it ap- 
pears that D'  = D/~. However, the two diffusive terms 
are only equivalent provided D / r  is spatially uniform 
and D / r  = D'/gL. The lack of agreement on this detail 
between the two models is not apparent. Perhaps, our 
deduction that D' and D/T are equivalent in the two models 
is in error, or the difference could be explainable with 
a better descriptive definition of D' by Hills et al. 

C. Some Diffusion in the Solid 

For complete diffusion in the local solid, the time de- 
rivative of the amount of solute in the solid is given by 
the last three terms on the RHS of Eq. [20]. With kCL 
replaced by C, (which is valid when there is complete 
diffusion in the solid), those terms are repeated: 

~t (p,g,C,) = = Op, Ogs OCL 
g,Cs -~t + pskCL ~ t  + p,g,k Ot [29] 

The first term on the RHS exists only if p, is not con- 
stant. The second term accounts for the rejection of the 
solute at the local interface as solidification proceeds by 
the increment Og,. The third term accounts for the dif- 
fusion in the solid. 

The third term of Eq. [29] does not appear in Eq. [25], 
which applies for no diffusion in the solid. Thus, by 
comparing Eqs. [25] and [29], we can write 

O(p~gf~,) _ Op~ Og, OCL 
gsC~-~t + pskCL z + 2a*p,g~k Ot 

[301 

where a* is the instantaneous diffusion parameter de- 
fined by Ganesan and Poirier. I2~ For a* = 0, there is 
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no diffusion, and Eq. [30] reduces to Eq. [25]. For a* = 
0.5, there is complete diffusion, and Eq. [30] is the same 
as Eq. [29]. More generally, 0 -< a* -< 0.5, and the third 
term of the RHS of Eq. [30] accounts for some diffusion 
in the solid. 

Ganesan and Poirier I2~ showed that 

a* = f (a, k,fs) 

where f~ is the weight fraction of solid and a is the Fourier 
diffusion number, defined as 

a = Dstf/A 2 

with Ds as the diffusivity in the solid, tf as the local so- 
lidification time, and A as one-half of the characteristic 
dendrite ann spacing. 

Equation [30] leads to a slight modification of  
Eq. [22] that is obtained after introducing the factor of 
2a* and replacing C~ by Cs. The result is the solute con- 
servation equation for some diffusion in the local solid: 

\oLgL/ --~t + -~L " VCL 

= ~ �9 (pLDeVG) [31] 

Conceptually, Eq. [31] is useful in that it reduces to 
Eq. [22] and to Eq. [27] with the values of a* that apply 
for complete diffusion (a* = 0.5) and no diffusion 
(a* = 0), respectively. Practically, however, the eval- 
uation of a* for the case of some diffusion in the solid 
poses some difficulty to the overall problem of satisfying 
the momentum and energy equations, as well as the sol- 
ute conservation equation. 

Rather than incorporating the term containing a* in 
Eq. [30], it is better to formulate the effect of diffusion 
in the solid by seeking the solution to Fick's second law 
for diffusion with appropriate conditions for dendritic 
solidification. Numerical techniques have been used to 
make such estimates; previous works include Brody and 
Flemings, [2q Flemings et al. ,[221 Nurminen and Brody, t23~ 
Basaran, lz41 Kirkwood, 1251 Ogilvy and K i r k w o o d ,  [26] Battle 
and Pehlke, t27~ and Yeum et al. t28j The third term on the 
RHS of Eq. [30] represents the increase of solute in 
the solid because of diffusion. This increase of solute in 
the solid can be obtained by Fick's second law for dif- 
fusion and Eq. [24]. First, when Leibnitz's rule is ap- 
plied, Eq. [30] is replaced with 

(p~g~C~) = g~Cs ap~ ags --I. g' OC~ drl 0 

05 -fit + o,kc -fit + o, 0--7 
[32] 

In order to estimate the integral in Eq. [32] during the 
period At from time t~ to time t2, Fick's second law can 
be used because temperature within the unit element is 
uniform. Accordingly, 

OC~ D~ O2C~ 
. . . .  [33] 
3t h 2 OTI 2 

where 7/extends from 77 = 0 (the center of  the dendrite) 
to 77 = g, (the solid/liquid interface), A is a characteristic 
dimension of the dendrites (e.g., dendrite arm spacing), 
and Cs is the concentration of solute within the local solid. 
Also during the period At, C~ must satisfy 

oc, 
- 0  a t e / = 0  [34] 

O7/ 

and 

C , = C * = k C L  a t T / = g s  [35] 

The conditions given by Eqs. [34] and [35] represent no 
flux at the center of the dendrite and equilibrium at the 
solid-liquid interface, respectively, and have been in- 
voked in all previous works t2~ on estimating the extent 
of diffusion in the solid during solidification of  alloys. 

In most of the previous estimates of  the extent of  dif- 
fusion in the local solid, one dimensional diffusion and 
a fixed dendrite ann spacing have been assumed, t21-23,281 
The characteristic dimension, A, has been adjusted by a 
factor less than one to compensate for the fact that the 
dendrites undergo coarsening during solidification, t2~-23,28j 
In the estimates presented by Basaran, t241 Ogilvy and 
Kirkwood, I25,261 and Battle and Pehlke, t271 the dendrite 
arm spacing varies during solidification, so in this way, 
these latter models are more sophisticated than the for- 
mer. None of the models attempts to treat the complex 
geometry of the dendrites; therefore, each gives only an 
estimate of the extent of diffusion in the solid. 

During the period At, the local interface advances by 
the distance AAgs, with Ags = g~2 - g,l.* However, g,2 

*With convection in the mushy  zone, there can be remelting even 
as the temperature is decreasing because of  advection of  the solute in 
the interdendritic liquid. Then Ag s < 0. 

is not known and can only be estimated, e.g., by extra- 
polation from a previous time step. In addition, at time 
t2, the solute mass balance must be satisfied; i.e., 

C,f~ + CL(1 --fs) = C [36] 

Unfortunately, the problem of solving for diffusion in 
the solid is a numerical procedure in itself and adds to 
the overall computational time for obtaining tempera- 
ture, velocity, and concentrations in a solidifying alloy. 
To this end, Yeum et al. t28] developed an algorithm for 
estimating diffusion in the solid so that the integral in 
Eq. [32] can be evaluated efficiently. It should be noted, 
however, that the algorithm was written for the usual 
case of solidification with no remelting. 

IV. SENSITIVITY OF 
RESULTS TO ASSUMPTIONS 

A. The Energy Equation 

The energy equation, as represented by Eq. [10], con- 
tains four factors that are often neglected or treated in- 
appropriately. They are OL/Ot, OI~s/Ot, V/~s, and OpffOt. 
Here, the intent is to study the sensitivity of some cal- 
culated results by isolating the manner in which latent 
heat and enthalpy are treated for an alloy with a constant 
Ps. We solve for the characteristics of the mushy zone 
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(volume fraction of liquid, height of the mushy zone, 
and the temperature distribution within the mushy zone) 
for one-dimensional solidification and examine the sen- 
sitivity of these characteristics to the assumptions in the 
energy equation. 

The solidification scenario is shown in Figure 1, which 
shows a binary alloy undergoing vertical solidification. 
The mushy zone moves upward with a constant velocity; 
the isotherms and the isoconcentrates are exactly hori- 
zontal. The only convection considered is that within the 
mushy zone to satisfy continuity (Ps ~ PD. In an earlier 
work, tTj a similar problem was solved to define the one- 
dimensional nonconvecting basic state for a linear sta- 
bility analysis. For details pertaining to the numerical 
techniques used herein, we refer the reader to that article.t7] 

For the concentration field, we use Eq. [27] with 
Ops/Ot = 0. Then 

--q-OCLot [(I--k)CL][P~L]OgtgL d Ot +----gt WOCLoz 

PrgL 3z pLDe 3z / 

where w is the z-component of U. As previously men- 
tioned, the interdendritic liquid convects only to satisfy 
continuity; then, from Eqs. [23] through [25] in Mehrabian 
et al./29] it can be shown that 

w [gL(Ps -- PL) + gE(Pse -- Ps)] 
- -  = [ 3 8 ]  

R Pc 

where R is the solidification speed, gE is the volume 
fraction of eutectic (which forms at the end of solidifi- 
cation), and PsE is the density of the eutectic solid. 

Z 

L 

LS, S 

• 

S 

Zt 

Fig. 1 -  Geometry and coordinate system for directional solidifica- 
tion of a dendritic alloy. 

Because the mushy zone advances with a constant speed 
R, it is convenient to rewrite the energy equation for a 
coordinate system that moves with the velocity R. Then 
the time derivatives in Eq. [10] are transformed to 

OHs OI4s 
- -  = - R  - -  [ 3 9 ]  
Ot Oz 

OL 3L 
- -  = - R  - -  [ 4 0 ]  
Ot Oz 

and 

0 0 
m at (g'P') - R  - -  (gsP,) [41] 

Oz 

Then, with these substitutions, along with a constant p,, 
Eq. [10] becomes 

OH, OL 
- - -  + (p w - pLg R) (pLw OR) az 

psLR OgL O ( O T )  
- - -  - K [ 4 2 ]  

Oz Oz 

Without regard for the thermodynamic implications of 
heats of mixing, Eq. [ 12] is combined with Eq. [42]; in 
addition, the latent heat is assumed to be constant so that 
the energy equation is 

OT Og L O ( O T )  
Cp(pLw - fiR) -~z psLR Oz - Oz r ~z [43] 

Solidification calculations were done using the 
thermophysical and transport properties taken from the 
sources listed in Table I. All of these properties are also 
summarized in Yeum and Poirier, [161 except the thermal 
conductivities of the Pb-Sn alloys, which are given in 
the Appendix. 

In the Appendix, the electrical resistivity and thermal 
conductivity of solid and liquid Pb-Sn alloys from sev- 
eral sources [33-361 are used, in order to obtain sensible 
extrapolations for estimating the variation of the thermal 
conductivity of the solid plus liquid mixture during so- 
lidification. The results are presented so that 

K = K(CL, Cs, T, gs) [44] 

can be estimated. 
Calculations were done to compare the results of ap- 

plying either Eq. [42] or Eq. [43] to the solidification of 

T a b l e  I .  S o u r c e s  f o r  

T h e r m o p h y s i c a l  a n d  T r a n s p o r t  P r o p e r t i e s  

Property Reference 

Densities 
Ps, DL(CL) 30 

Viscosity 
/x 31 

Enthalpies 
H,(Cs, T); Ht(CL) 15 

Phase diagram 
CL(T); k(T) 32 

Diffusivity in liquid 
D = 3 • 10 -Scm 2"s -~ 7 
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Pb-Sn alloys. Specifically, the results of the problem posed 
by Eqs. [37] and [42] were compared to that posed by 
Eqs. [37] and [43] under otherwise identical conditions. 
Solidification rates range from 2 • 10 -4 cm.  s -1 to 
0.1 cm.  s -1, compositions include 15, 30, and 50 wt pct 
Sn, and the temperature gradient in the liquid (GL) at the 
dendrite tips (where z = z,) is taken as either 30 or 
1 K . c m  -1. 

Table II lists computed mushy zone height (z,), vol- 
ume fraction liquid at the eutectic isotherm (ge), as well 
as the temperature gradient at the eutectic isotherm, Ge, 
for different solidification rates and concentrations of  Sn 
with GL = 30 K" cm -~. For the relatively high value of 
GL selected, each characteristic of  the mushy zone varies 
with solidification rate, but each hardly exhibits sensi- 
tivity to the choice of  the energy equation, except at the 
highest solidification rate. 

Two characteristics of  the 30 wt pct Sn alloy, zt and 
Ge, are plotted in Figure 2, where it can be seen that the 
computed results are practically insensitive to the choice 
of  the energy equation. At the most, there is a difference 
of only 6 pct between the predicted values of  z,, 
(Figure 2(a)). The gradient at the eutectic isotherm, Ge, 
is underestimated by a maximum of 12 pct with the sim- 
pler energy equation, and that is only for the most rapid 
solidification rate considered (0.1 c m .  s-l) .  Regardless 
of  which energy equation is selected, it is evident that 
the thermal gradient in the mushy zone is approximately 
uniform only if R < 10 -3 c m  -1.  

Computed results, in the form of  variation of  gL (vol- 
ume fraction of interdendritic liquid) and temperature, 
against the nondimensional position in the mushy zone 
are shown in Figure 3. Although the most rapid solidi- 
fication rate has been selected (R = 0.1 cm.  s-~), there 
is very little difference between the results obtained by 
either energy equation, because (as explained below) the 
thermal gradient is rather high. 

It was rather surprising to learn that the predictions of 
the two energy equations are so quantitatively similar, 
especially because the latent heat of  solidification in- 
creases from about 23 J .  g - I  for pure lead (as used in 
Eq. [43]) to about 51 J .  g-~ at the end of  solidification 
for 15 wt pct Sn alloy, a difference of more than 100 pct. 
An order of  magnitude analysis reveals that within the 

mushy zone conduction dominates over the release of  
latent heat of  solidification, and hence, a 100 pct change 
in the latent heat hardly affects the characteristics of  the 
mushy zone, when R is changed by three orders of  
magnitude. 

For the purpose of the order of  magnitude analysis 
within the mushy zone, Eq. [43] is used. Assuming con- 
stant and uniform thermal conductivity and density and 
further recognizing that R -> w from Eq. [38], the energy 
equation simplifies to 

d2T dgL dT 
K -  + pLR + R p C p -  = 0 [45] 

dz 2 dz dz 

Order of magnitude estimates are as follows: 

dT AT 

d z  Z t 

d z  2 Z t Zt 

dgL 1 , 

dz z t 

*Across the eutectic isotherm, this gradient is discontinuous so that 
this estimate is not valid. However, on the mushy zone side of this 
isotherm, this estimate applies. 

where 

a T = T t - T E  

Substituting these estimates into Eq. [45] gives 

KGc + (pL + pCeAT)R = 0 [46] 

For the lead-tin system, typical values of  physical pa- 
rameters are K - 0.025, Cp = O. 1, L ~- 30, AT --~ 100, 
and p -~ 104, all in SI units. Then, 

0.025GL + 4 • 105R --~ 0 [47] 

The first term is the conduction term, and the second is 
a source term that accounts for the energy released dur- 
ing solidification. With GL = 3 • 103 K .  cm -1 (a rel- 
atively high gradient), the source term is only comparable 

Table II. Sensitivity of  Calculated Characteristics of the Mushy 
Zone to the Energy Equation for Pb-Sn Alloys with GL = 30 K .  cm -1 

Solidification 
Conditions 

Case R C~ 
Number (cm. s -~) (Wt Pct Sn) 

Computed Results 

Eqs. [37] and [43] Eqs. [37] and [42] 

Ge zt GE zt 
ge (K" cm -1) (cm) ge (K-cm -l) (cm) 

1 0.0002 50 
2 30 
3 15 
4 0.002 50 
5 30 
6 15 
7 0.02 50 
8 30 
9 15 

10 0.1 30 

0.777 30.075 0.922 0.777 30.10 0.92 
0.386 30.178 2.470 0.389 30.20 2.467 
0.105 30.281 3.62 0.108 30.32 3.622 
0.784 30.609 0.916 0.785 30.70 0.91 
0.406 31.760 2.388 0.409 32.10 2.378 
0. 133 32.70 3.433 0.137 33.02 3.423 
0.785 30.56 0.838 0.785 30.90 0.815 
0.406 47.56 1.861 0.410 50.94 1.80 
0.135 56.96 2.305 0.140 59.65 2.268 
0.403 117.43 1.014 0.408 133.90 0.95 

METALLURGICAL TRANSACTIONS B VOLUME 22B, DECEMBER 1991--895 



, , , 

. l 

E 
o V 4-- 
N 

I - 

0 
- 4  

G L = 5 0 K . c m  -I 

Eqs. (37 )  & ( 4 2 )  ~ "  \ ~  

I I 

- 3  - 2  

Ioglo R (cm.s -I) 
(a) 

I 

-I 

A 
w 

I 

E 
o 

v 

L~ 
L~ 

2.0 

l 

1 . 5 -  

_ /  

I I I 

I G,-3OK.cm-' 1 , 
"' / 

Eqs. (37)&(43)  z ~  

Eqs. ( 5 7 ) & ( 4 Z ) . , . . ~ y  

I I I 
- 3  - 2  - 
Ioglo R (cm.s -I) 

(b )  

Fig. 2 - - E f f e c t  of the energy equation on 30 wt pct Sn alloy: 
(a) height of the mushy zone, z,  and (b) thermal gradient at the eu- 
tectic isotherm. 

to the conduction term when R = 0.02 cm.  s -l .  There- 
fore, at low solidification rates (e .g . ,  10 -4 ---< R -< 10 -3 

cm. s-~), the conduction term dominates the source term, 
and the latent heat of solidification (hence, the choice of 
the energy equation) does not significantly alter the cal- 
culated results with regards to either the mushy zone height 
or the temperature distribution in the mushy zone. This 
is also reflected by the numerical computations. 

Further, Table II also shows that the value of ge is 
almost independent of the energy equation selected. To 

1.0 , , , , 305 , , ~  

08 ~ . j  zso 

~ < 
II: 

0.4 230 hi 

;t;E, Eqs.(3 t.d 
0.2 205 I - -  

o . o  L i I I 180 
0.0 0.2 0.4 0.6 0.8 ~o 

z/zt 

Fig. 3 - - T h e  volume fraction liquid and temperature calculated for 
Pb-30 wt pct Sn solidified with R = 0.1 cm. s- ~ and GL = 30 K- cm- ~. 

explain this, the solute conservation equation, Eq. [37], 
is put into the following form: 

w d Q  ~ (k 1__.~) CL - -  [481 
R -  dz gL dz 

In doing so, the diffusion term in Eq. [37] has been ne- 
glected, because dCL/dz = constant and D e is small. Thus, 
gL is almost uniquely related to CL, and the results are 
almost independent of the energy equation. The 1 pct 
difference in ge is because of the fact that dCL/dZ differs 
slightly between the two models. 

The differences between the two energy equations be- 
come more significant when thermal gradients are re- 
duced. To illustrate this, the calculations were repeated 
for Pb-30 wt pct Sn alloy with GL = 1 K.  cm -~, which 
is a realistic thermal gradient for a casting solidifying in 
a sand mold. The results are given in Table III. Differ- 
ences between predicted characteristics of the mushy zone 
for the two models are greater in Table III (GL = 
1 K ' c m  -~) than the differences in Table II (GL = 
30 K" cm-~). 

It is worthwhile to compare the predicted values of the 
height of the mushy zone vs the heat flux in the solid at 
the eutectic isotherm. This flux relates to the external 
cooling of the solidifying metal, because in casting op- 
erations, most of the heat is extracted through the solid. 

The energy balance at the eutectic isotherm is 

qs = xGE + RgE[psELe + (Pse - P~)Hre]  [49] 

where qs = heat flux in the solid; 
Le = latent heat of the solidifying eutectic; and 

HLe = enthalpy of the eutectic liquid. 

Values of qs were generated using the values of GE, R, 
and ge in Tables II and III for Pb-30 wt pct Sn. When 
Eq. [43] was the applicable energy equation, then LE and 
HLE were the respective values for pure lead at the eu- 
tectic temperature (456 K). 

The calculated height of the mushy zone vs the heat 
flux is plotted in Figure 4. With GL = 30 K" cm -~, the 
difference between the values of z, predicted by the two 
models is apparent only when R > 2 • 10 -3 cm.  s -1. 
For example, with a flux of 100 kW- m -2, the difference 
is only 6 pct. However, with GL = 1 K" cm -~, the dif- 
ferences are apparent when R > 2 • 10 -4 cm" s - ' ,  and 
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Table III. Sensitivity of  Calculated Characteristics of the Mushy 
Zone to the Energy Equation for Pb-Sn 30 Wt Pct Sn with GL = 1 K .  cm -t 

Solidification 
Conditions 

Computed Results 

Eqs. [37] and [43] Eqs. [37] and [42] 

Case R C= G e z, G e z, 
Number (cm. s -]) (Wt Pct Sn) gE (K. cm -1) (cm) ge (K" cm -~) (cm) 

11 0.0002 30 0.407 1.176 67.48 0.413 1.209 66.53 
12 0.002 30 0.405 2.747 38.76 0.408 3.087 36.70 
13 0.02 30 0.403 18.367 9.50 0.403 21.77 8.78 

with a flux of 50 k W .  m -2, the models differ by ap- 
proximately 30 pct. Clearly, the more comprehensive form 
of the energy equation (Eq. [42]) should be used, par- 
ticularly when the solidification rate is relatively high 
and/or the thermal gradients are low. The results pre- 
sented herein are restricted to situations when the cross- 
couplings of  the Dufour and Soret effects are not 
significant. In the calculations, the temperature gradient 
in the liquid at the liquidus isotherm has been restricted 
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to GL ---< 30 K" cm -~ and the solidification speed to 2 • 
1 0  - 4  --< R --< 0.1 c m .  s -1. These are conditions that typify 
most dendritic solidification processes. In rapid solidi- 
fication processes, much steeper thermal gradients and 
very much faster solidification speeds are encountered, 
so that cross-coupling effects should be examined. 

B. The Solute Conservation Equation 

Next, the effect of  diffusion in the dendritic solid on 
the characteristics of  the mushy zone is considered. Nu- 
merical computations, similar to those presented in the 
previous section, were done, except that complete dif- 
fusion in the solid was assumed. Thus, Eq. [22] was 
used as the solute conservation equation, while the same 
energy equation, Eq. [42], was kept. In this way, the 
two extreme situations of  no diffusion in the solid (pre- 
sented in the previous section) and complete diffusion in 
the solid were compared. 

The calculated results are presented in Table IV. For 
all cases given in Table IV, the effects of  diffusion in 
the solid on the height of  the mushy zone (z,) and on the 
thermal gradient (GE) at the eutectic isotherm are rela- 
tively minor or insignificant. The volume fraction of eu- 
tectic liquid (gE), however,  is substantially reduced by 
incorporating the effect of  diffusion in the solid during 
solidification of the Pb-30 wt pct Sn alloy. As the con- 
centration of the alloy itself approaches the eutectic con- 
centration (61.9 wt pct Sn), the difference between gE 
for no diffusion and ge for complete diffusion is reduced. 
This is evident for the calculated values of  gE for the 
Pb-50 wt pct Sn alloy. 

For the case of  R = 2 • 10 -3 cm S -1, GL = 
30 K" c m - ' ,  and an alloy composition of 30 wt pct Sn, 
calculated results for gL and temperature are shown in 

Table IV. Sensitivity of  Calculated Characteristics of the Mushy Zone to the Extent 
of Diffusion in the Solid during Solidification for Pb-Sn Alloys with GL = 30 K .  cm -I 

Solidification 
Conditions 

Computed Results 

Eqs. [37] and [42] Eqs. [28] and [42] 

Case R C= Ge zt Ge zt 
Number (cm" s -1) (Wt Pct Sn) ge (K. cm -1) (cm) ge (K. cm -j) (cm) 

1 0.0002 50 0.777 30.10 0.92 0.766 30.10 0.924 
2 30 0.389 30.20 2.467 0.286 30.23 2.467 
4 0.002 50 0.785 30.70 0.91 0.773 30.86 0.915 
5 30 0.409 32.10 2.378 0.317 32.27 2.378 
7 0.02 50 0.785 30.90 0.815 0.775 38.48 0.809 
8 30 0.410 50.94 1.80 0.316 52.6 1.78 

10 0. I 30 0.408 133.90 0.95 0.308 142.7 0.932 
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Figure 5. As mentioned above, the mushy zone height 
and GE hardly differ. By far the most important effect 
of the extent of diffusion in the solid is on the variation 
of gL within the mushy zone. With no diffusion in the 
solid, the mushy zone would also have a greater perme- 
ability; p71 thus, if convection within the mushy zone had 
been considered, it would have been enhanced. In ad- 
dition, with faster solidification rates and steeper thermal 
gradients (as in rapid solidification processing), the cross- 
coupling should be examined. 

V. CONCLUSIONS 

Numerical modeling of dendritic solidification is often 
done to elucidate macrosegregation associated with con- 
vection of interdendritic liquid. As mentioned earlier, 
different conservation equations have been proposed for 
this purpose in the literature, each with its peculiar set 
of  assumptions. Our aims were to derive the energy 
equation and the solute conservation equation and to in- 
vestigate the sensitivity of results to assumptions. 

For the simplified problem (one-dimensional mushy 
zone), we observed the following: 

1. With low solidification rates, a rigorous accounting 
of enthalpy in the energy balance formulation does 
not significantly affect the height of the mushy zone, 
the volume fraction of interdendritic liquid, nor the 
temperature distribution. This insensitivity is caused 
by the dominant conduction term in the energy equa- 
tion compared to the heat of solidification term. 
However, as the solidification velocity increases and/ 
or the thermal gradient decreases, differences be- 
tween the predicted characteristics of the mushy zone 
become more pronounced. Although momentum 
transport was not considered in this work, it is rea- 
sonable to suggest that the effects of using the more 
comprehensive form of the energy equation would be 
even more apparent, because the advection of the liq- 
uid would account for substantially more transport of 
enthalpy relative to the conduction within the mushy 
zone. Therefore, it would be more important to prop- 
erly account for the intensive enthalpies of the liquid 
and the solid. 

2. The effect of diffusion in the dendritic solid is to re- 
duce the volume fraction of interdendritic liquid (gD. 
This is important when convection of interdendritic 
liquid is considered, because the permeability of the 
mushy zone is strongly dependent on gL. 

A P P E N D I X  

Thermal conductivity of Lead-Tin alloys 

1. Solid Alloys 

The thermal conductivity of the dendritic solid is a 
function of temperature and the average composition of 
the solid. As suggested by Turkdogan, p31 the electrical 
resistivity of a conducting phase comprises an intrinsic 
resistivity, which depends upon temperature, and a de- 
fect resistivity, which depends upon the concentration of  
defects. It is assumed that the thermal resistivity follows 
similar behavior; therefore, 

6 = K s  I = 6pb(T  ) + 60(Xsn ) [A1] 

where 6 is the thermal resistivity, K, is the thermal con- 
ductivity of the solid, 6Vb is the temperature-dependent 
thermal resistivity of pure lead (solid), 6o is the 
concentration-dependent part of the thermal resistivity, 
and Xs, is the atom fraction of  Sn. 

The thermal conductivity of lead (solid) is given in 
Touloukian et al. p4j from which the following relation- 
ship for the thermal resistivity was derived: 

~,b = exp [0.01708 In T + 0.06294] [A2] 

where T = temperature, K; and 
~b = thermal resistivity, cm.  K .  W-1. 

The thermal conductivities of both solid lead and solid 
tin can be represented with linear functions of In K vs In 
T, with T in kelvins. {341 It is assumed that both solid so- 
lutions, the lead-rich phase (a) and the tin-rich phase 
(/3), follow the same behavior. At 327 K, the thermal 
conductivities of Pb-Sn two-phase alloys {34,351 follow 

In K = f ,  In K, + ft3 In Kt3 [A3] 

where the subscripts refer to a and/3. Extrapolations of 
the data for two phases given at 327 K to higher tem- 
peratures were based upon the differentiation of  
Eq. [A3]. Specifically, 

0 1 n T )  = f t 3 ~ + f ~ - - O l n K #  01nK~, 
O In c O In T O In T 

Oftj Of~ 
+ In K ~ -  + In K~ - -  [A4] 

0 In T 0 In T 

where 

and 

O In K,, 8 In Kpb 

8 In T 0 In T 

0 1 n K ~ _ 0 1 n u s , _  

0 In T 0 In T 

0.1708 

0.2087 
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The partial derivatives in the third and fourth terms on 
the RHS of  Eq. [A4] were evaluated by an accounting 
of the relative amounts and the compositions of a and 
/3 on heating, as computed from the Pb-Sn phase 
diagram, t32~ 

The extrapolation procedure yielded a set of thermal 
conductivities, temperatures, and concentrations for the 
Pb-rich phase (c0, from which the concentration-dependent 
term in Eq. [A1] could be determined. The set of extra- 
polated values was estimated by a linear polynomial 
regression; the result is 

6o = 1.2581 x 10 -3+  0.18536X~/4 

+ 6.9496 X 10-2X~/2 [A5] 

The standard error of fit for 60 in Eq. [A4] is 
0 .0086 cm.  K.  W -~ (less than 8 pct error for all values 
of 60). Together, Eqs. [A1], [A2], and [A5] were used 
to calculate the thermal conductivity of the Pb-rich phase 
(a),  in W .  cm -1. K - l ,  as a function of T(K) and atom 
fraction of tin, Xsn. 

2. Liquid Alloys 

Data for the liquid alloys comprise the thermal con- 
ductivities of lead, tin, and Pb-62 wt pct Sn. I341 Based 
upon the behavior of the electrical conductivity of Pb-Sn 
melts, t361 it was assumed that 

K L = C O "[- CICSn [A6] 

where Co and Cl are temperature-dependent constants and 
Csn is in wt pct Sn. Furthermore, it was found that the 
values of Co and c~ agreed very closely with the terminal 
values. Thus, 

K L = Kpb -]- (KSn -- Kpb ) (Cs./100) [A7]  

From Touloukian et al. ,t34] the thermal conductivities of  
the melts are linear when plotted as In K vs In T; thus, 

In Kpb = - 6 . 6 7 7 7  + 0.7521 In T [A8] 

and 

In Ks, = - 3 . 7 5 1 8  + 0.4109 In T [A9] 

with Kpb and KSn in W" cm- t  �9 K-~ and T in kelvins. To- 
gether, Eqs. [A7] through [A9] are used to calculate the 
thermal conductivity of the liquid as a function of  com- 
position and temperature during solidification. 

3. Liquid Plus Solid Alloys 

The thermal conductivity of  the mixture of solid and 
liquid in the mushy zone was assumed to follow a model 
of  two resistors in series, so that 

1 gs gL 
- + [AIO] 

K K s K L 

where gs and gL are the volume fractions of solid and 
liquid, respectively. It is K in Eq. [A10] that was ulti- 
mately used as the effective thermal conductivity in the 
mushy zone. 
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