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Abstract. Clay minerals are of non uniform composition and particle size. Also their identi-
fication and nomenclature have given much confusion. Examples are given.

Quantitative analysis of clay minerals from deposits and soils, by X-ray, thermo- and infrared
analysis is treated. Examples are given of the large variability in the results; even for X-ray
and electron microscope pure- and 85 to 90% chemical pure samples of kaolinite a well
defined clay mineral. They are caused mainly by varying conditions of crystal growth from
which result differences in isomorphous replacements, structure, ordering and strain.

An amorphous weathering substance coating the mineral particles (Beilby layer) upsets in
particular quantitative analyses of the finer kinds of clay minerals.

Clay minerals from soils have, as compared to those from pure deposits, in particular formed
by hydrothermal action, only poor characteristics of small intensity. Examples are given.
Quantitative analyses are further hindered by specific characteristics for a certain mineral
being masked by those of other minerals which usually occur in the same sample. Examples
are given.

Introduction

About 150 well defined types of clay minerals and their admixtures are known
to occur in the clay separate of soils. Because there exists non uniformity in
the methods of their identification and the interpretation of the results, various
names for one and the same mineral are synonyms.

Quantitative analysis of even the well defined types is largely disturbed because
they do not have constant composition, shape, X-ray, infrared and thermal
characteristics. Other difficulties arise from the way the sample is prepared
before it is investigated by the instrument.

In the following is an outline of the many Jdificulties in quantitative analysis
which may be encountered when samples are investigated with various mineral
composition from various origin.

A. Nature of Clay Minerals in Sediments
1. Identification and Nomenclature

The minerals of the chlorite group have on a total of 88 names, 52 synonyms
(59%) — for details vAN DER MAREL (1964). For the minerals of the illite group
is found 84 synonyms on a total of 120 names (70%) — to be published. The
names and their identification characteristics of both groups are spread over
180 and 240 papers respectively.

In the 1951 —1960 period 419 “new” minerals in all branches of mineralogy
mentioned in literature, 44% of them were synonyms (53% over 1941-—1950
period) — FrEIscHER (1961).

11. Chemical Composition

Thc? chemical composition of 85 to 95% X-ray pure minerals is even for well
defined clay minerals variable — see literature. Quantitative analysis of clay
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minerals based on their chemical composition, f.i. the K,0% of illite thus are
not allowed.

The differences are caused by isomorphous substitutions, replacement of K+ by
(H;0)*, of O by OH and of vacant holes with non compensated charges at crystal
dislocations. For the chlorite-related minerals, the intermediates and the badly
defined minerals formed by interlayering of Fe and Al hydroxides in expanded
illite, swelling illite or soil montmorillonite, the differences are much larger.

The variation in chemical composition cause differences in particle shape and
size, heat of conductivity, heat of reaction, intensity of X-ray diffraction and
infra-red extinction.

See for E. M.: Bates (1959) for d.t.a.: OrcEL (1935), Bup~N1kov and BoBROVNIK
(1938), Grim and Rowranp (1942), KeLLey and Pace (1943), Pace (1943),
Carnrire and HENIN (1948, 1949), Kurr et al. (1951), GraF (1952), EARLEY ot al.
(1953), FOLDVARI-VOGL and KoprLExcz (1955), MumproN and Roy (1956),
WEBER and GREER (1965). For X-ray: Grim et al. (1951), BRown (1955), BRIND-
LEY and GILLERY (1956), PETRUCK (1959), MiTcHELL (1960), WIEGMANN and
Krawz (1961), ScroEN (1962), pE MumsruM (1963), Laraam and Jaron (1964).
For I.R.: TuppENHAM and Lvox (1959), SakseNa (1960), Lyoy and TUDDENHAM
(1960), StuBIgaN and Roy (1961), VEDDER (1964), Havasur (1965).

111. Particle Size and Shape

Electronmicrographs of clay minerals show wide variations in particle size and
shape. After BaTEs (1959) the relation between ion composition and morphological
structure for minerals of 1:1 type layer lattices can be indicated by a Si0,-R”
(MgO, ¥eO, MnO)-H,0 diagram. The morphological index M = sin 45°. (x — y—
0.285). 1000 (x and y are the average radii of the octahedral and tetrahedral
cations respectively), measures the amount of misfit of the two sheets within
the layer.

Thus small variations in mineral composition caused by small differences in
environmental conditions at their growth, may considerably effect shape and
particle size of a mineral. Crystal structure will also be the most ordered, e.g.
the “period bond chain vector” — HARTMAN and PERDOK (1955) — the highest
in pure dilute solutions with only a small number of non complicated ions.
Soil clay minerals are formed under various conditions. Consequently the same
mineral may be found in various particle size and shape e.g.:
Kaolinite in the clay separate of soils may have a diameter and thickness of
only 0.1 and 0.005 p. respectively, thus escaping quantitative estimation by
the X-ray method. Perfectly crystallized kaolinite, but very fine from Provence
has a disordered structure after X-ray and I.R. analysis. Also halloysite is found
in various particle sizes and shapes from tubular to fibrous and conchoidal. The
latter is an intermediate product between halloysite and uprolled kaolinite.
Meontmorillonite and soil montmorillonite have about the same morphological
habit; only the latter is coarser and thus appears less fluffy. Also illite may be
found in various sizes and shapes depending on the conditions during their
growth,
Thermal products are better crystallized than those formed by authigenic action.
Thus the sample from Sarospatok formed hydrothermally, is very well crystallized.
Contr. Mineral. and Petrol., Vol. 12 7
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Such in contrast to the ‘“Hudig biogene” illite resulting from plant debris in
marshes.

Many examples are given by BEUTELSPACHER and VAN DER MAREL (1966) in
their “Atlas of electronmicroscopy of clay minerals and their admixtures” which
contains 240 selected micrographs out of a total of about 4000 samples (published
by Elsevier Publ. Comp., Amsterdam, New York). The E.M. method is very
suited to identify certain clay minerals in mixtures; even in very small amounts.
Rather this method is not suited for quantitative analyses because the very
small amount which can be investigated = only some 106 g.

B. Thermo Analysis
1. Theoretical Approach

After Sprin (1944, 1945), KErr and Kurp (1948) the peak area (°C sec) enclosed
by base line and curve of differential temperature (4T — °C) versus duration
of thermal reaction (£,— ¢, sec), is related to the specific heat of reaction (4 H —
cal g1) released (exothermal) or absorbed (endothermal) when the sample is
heated in an oven in a nickel sample holder (block):

ts
Peak area = { A T dt = AH Mg 2.
t

M = mass of sample (g), g = geometrical (body) factor (cm) accounting for temperature
gradient distribution in sample, 4 = thermal conductivity of sample in sample holder
(cal sec™® °C™! cm™2 cm).

Thus the “calibration factor”

peak area

W) ="—g— ="M

Krox~i¢ and S~voopwyk (1951) and Eriksson (1952, 1953, 1954) found the follow-
ing equation for a sample in a cylindrical metallic (nickel) block:

Peak area = L pr?/4 2.

L = heat of reaction per unit volume of sample; r = radius of sample holder (cm); ¢ =
density of sample (g cm™3).

Its derivation was more complicated as given by SpEIL, KERr and Kure. The
physical character of the dissipation process of heat in the sample as outlined
by CarLsLAw and JAEGER (1947) was regarded. It is not proportional to the
temperature difference between centre of sample and nickelblock and also the
sample temperature during the thermal process is not uniform throughout as
was assumed by SpEL, KERR and Kurp. BoErsMa (1955) avoiding the use of
Bessel functions came to the same result. SEWELL (1952, 1955) arrived at a similar
equation:
Peak area = L g a? wy/A.

a = radius of cylindrical sample; w, = a factor determined by the shape of the sample.

The above equations are similar to the SpeiL, KERR and KuLp one, when for
g the body factor in their notation is read 4z % and 7 hjw, respectively but
they both contain the factor L = the heat of reaction per unit volume.
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Also the experiments prove that peak area depends on the sample’s dimensions
and the place of the thermocouple in the sample holder. If the sample height
surpasses a certain limit, the surplus material is even almost out of the influence
zone of the thermocouple — SmyTH (1951), BARsEAD (1952), TALIBUDEEN (1952),
Errxsson (1952, 1953, 1954), JosseLin DE Jowa (1957), CoLE and RowLAND
(1961).

From the above follows that, to obtain quantitative analysis of minerals, the
heat flow (A) through the samples and the reference material usually ALOs;,
must be a constant during the whole thermal traject investigated.

Heat conductivity of different clay minerals and reference material, at various
temperatures and packing densities are not constant either — see literature.
Moreover heat is also transferred along the thermocouples — SourLt (1952),
SEwErLL (1955), BoErsMa (1955), JossELIN DE JoNg (1957), CoLE and RowLAND
(1961). Variations of 20 to 30% are observed for different thermocouples and
the peak area registrated may even be reduced to 20 to 50% of its theoretical
value.

By introduction of the thermocouple influence the calibration factor can after
Boxrrsma (1955) be represented by the equation:

scomtt 42 {1 Bt ran 2l o+ Fmz)

7o = radius of thermocouple junction (cm), A = heat transfer through the thermocouple
wires (cal sec™! °C! em™2 em).

I1. Determination of Intensity of Thermal Reaction

1. Directly from peak area (°C sec), radius of sample holder, density and specific
conductivity of sample. The latter was determined separately from a sample
equally packed — Rzy and KosToMaROFF (1959).

2. Calibration of sample against a reference sample of well known heat capacity
at various temperatures and both samples packed in the crucibles of same den-
sity — CoHN (1924), MacGEE (1926), ALLisoN (1954), etc.

3. Determination of electrical energy to maintain a temperature difference = 0,
between sample to be investigated and the reference by a recording wattmeter.
Both samples are mixed before with 25% graphite — LAKODEY et al. (1956).
4. Determination of peak area enclosed by base line and curve of the differential
temperature when heating sample in an oven at a constant heating rate. Peak
areas in cm? are converted to cal/g by:

a) Electrical calibration at different temperatures with a certain current of well
defined caloric heat flowing through a coil placed in sample holder — FiscHER
and Lorexnz (1956), LEaMawn and HaszLer (1958).

b) Calibration with substances of well known heats of reaction, heats of fusion
or heats of transfer and with thermal reactions at different temperatures —
BarsHaD (1952), SABATIER (1954), DE BRUIN and vAN DER MAREL (1954).

To avoid differences in heat conductivity between reference sample and sample
to be investigated, the sample is diluted with an excess of the inert reference
material — GRIM and Rowraxp (1944), Eriksson (1952), SouLk (1952), GRIM-
sHAW and RoBERTS (1953), SABATIER (1954).

7*



100 H. W. vAN DER MAREL:

It is further packed in the same way as the reference sample to such a degree
(volume) that their densities and porosities and therefore their heat conductivities
and heat capacities also at the higher temperatures (> 800°C with radiation
effects of 7'%) are determined principally by that of the inert material — dilution
technique. Thus heat transfer (the geometrical factor) will hardly change during
analysis; this regardless of shrinking, sintering, gasevolution or liquefaction of
sample which phenomena would otherwise completely change heat conductivity.

5. Exponential decay of differential temperature curve after thermal reaction
has ceased delivering the thermal conductivity of sample. An air oven is used
which, because of bad conductivity, delivers a relaxation time large enough to
be interpretable after reaction has ceased — VorD (1949). Because of the air
heating, this method is only suited for low temperature reactions e.g. melting
points of organics. Moreover heat capacity of the sample which is determined
separately is not constant but changes because of loss of reaction products.

6. Vapour pressures (p) at isothermal temperatures (7') by thermovolumetry,
which by a graphical plot delivers the heat of dissociation ¢/kcal mole after the

Van’t Hoff equation:
din Kp Q

arT RT?

or in its integrated form:

Q
Inppo=— 57 +C

n = number of H,O molecules lost on 1 molecule of reaction material: kaolinite = 2,
calcite = 1. Kp = equilibrium constant, B = gas constant, 7' = absolute temperature. pm,0,
Pco, = vapour pressure HyO and CO,.

— PieTERS (1928), BiscHorr (1950), Scuwos (1950), RowrLaNp and LEwis
(1951), ete.

7. Reaction rate constants (k) of unit order at isothermal sample temperatures
(T) by thermogravimetry which by a graphical plot of log k, against 1/T delivers
the activation energy E (k cal mole!) after Arrhenius: kp =A exp—E/RT (4 =
frequency factor of effective collisons).

— MurraYy and WHITE (1949a, b, 1955), VaveHAN (1955), KissingER (1956),
BrinpLEY and Nakauira (1957, 1958), etc.

8. Reaction rates at isothermal sample temperature by conductivity measure-
ments and which by a graphical plot delivers £ — Frip1aT and Toussaint (1963).
9. Reaction rates at isothermal sample temperatures calculated from specific
heat calibration curves of sample against calcined alumine the heat capacity of
which is known and sample temperatures which by a graphical plot delivers E —
ArrisoN (1954).

10. Reaction rates calculated from the exponential decay of the differential tem-
perature curve after the thermal reaction has ceased and sample temperatures
which by a graphical plot deliver £ — ALLisoN (1954).

11. Heating rates (d7'/d¢) and sample peak temperatures (7,) by differential
thermal analysis and by a graphical plot delivering E after the KissINGER (1956)
equation:

d dln (% T,;z)

£,
R

1
d T
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12. Reaction rates (dw/dt), total weight loss (w,) and sample temperatures (7')
by thermogravimetry delivering by a graphical plot # = the order of the reac-
tion and E after the FREEMAN and CarroLL (1958) equation:

-~y N
Alogdw/dt 2.3R ar
Alogw, x Alog w,

— see also Jacoss (1958, 1961) and own analyses.

From the above follows that the thermal effect of a heated mineral can be
estimated in several ways and based on several principles, although theoretically
not always justified e.g. the thermal reaction of kaolinite etc. is not reversible
(condition for @) and does not begin at any temperature (condition for H) but
only from a certain temperature. Moreover the methods used are not always
accurate enough for their particular purposes — see 1,2, 3,9, 10.

The results obtained are very variable — Table. Even for pure well crystallized
“standard” kaolinite when conditions are uniform and which mineral is the
simplest of stracture and the most homogeneous of composition.

III. Quantitative Analysis — General

For quantitative analyses the magnitude of the thermal reaction registered by
a dta or dtg (tg) apparatus when the mineral is heated in an oven, should be
strong, not overlapped by that of neighbouring reactions of the same mineral
or of other minerals. It should further be constant for each mineral, regardless
of its origin or particle size. Fig. 1 represents the dta results of the commonest
clay minerals and their admixtures. The samples were diluted before with ALO,
150:250 and moreover the same pair of thermocouples were used for the sample
or the calibration substance and the reference material. Many thermal reactions
overlap each other; even those of the same minerals but of various origin. Their
intensity is also variable — see also literature.

Particle size. A particle size effect has been observed by various investigators.
For coarse particles, the reaction rate when heated is decreased, the peak is
broadened and its area decreased f.i. coarse samples of calcite magnesite and
dolomite when finely ground, give an increase in the heat of reaction of 40%,
34% and 77% (first peak), 61% (second peak) respectively — WEBE (1958). In
particular chlorite has a large particle size effect — SABATIER (1950). In literature
likewise examples are found for biotite, vermiculite, muscovite, dickite, kaolinite,
antigorite, goethite, lepidocrocite, quartz, tale, diaspore, etec.

For very fine particles there is a decrease in thermal effect because of an amor-
phous (BeILBY) layer coating the minerals when ground or when they weather
under natural conditions (chemical processes, mechanical disruptions). Its thick-
ness is for coarse ground quartz 0.03 to 0.15u — see literature. For common
kaolinite was found 1 to 10 A — EncermarpT (1955). Fine kaolinites with a
specific surface of 75 m?/g thus will contain 1.5 and 15% amorphous matter
respectively assuming a density of 2.

A negative particle size effect is also caused by a decrease in the structural
ordening of the various components of the mineral.

Heat of reaction. The thermal reaction of a mineral when heated is not a constant
either. It will be largest when the mineral occurs in its most perfect state of
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373

ball clay

308—314

ALLISON, 1954

9. As 7 but by calibration

against AL,O, (E)
10. As 7 but from the exponen-

ball clay = 167

72

215—223

ArLIsoN, 1954

tial decay of the reaction (E)

148

141

137—152

KISSINGER, 1956

11. Heating rates and peak

temperature (£)

390

148

FREEMAN, 1958
Jacors, 1958—1961

metry and sample tempe-

12. Reaction vates by gravi-
rature (£)

150—200

170-—220

VAN DER MAREL this paper

fire clay, ball clay = 160—210

73.

2 H+ = 56, Catt = 66, Na*

1 Diaspore = 166, goethite = 90, brucite = 285.

ordering. Thus e.g. aragonite may be distinguished
from calcite by the small (3 to 6 cal/g) exothermal
reaction in the 350 to 550° C traject caused by
recrystallization to calcite — PRUNA et al. (1949),
GrUVER (1950). Disordered calcite (vaterite) and
disordered dolomite (protodolomite) have their
thermal reactions at a lower peak temperature as
the better ordered forms — PrRUNA et al. (1949) and
Grar and GorpsmiTH (1956) respectively.

The «/f transition reaction of quartz, commonly
= 4.2 cal/g, may largely be decreased and even
suppressed — BERKELHAMER (1944), TurTLE (1949),
MipeLEY (1951), SABATIER (1954), ete. in fine grained
X.-ray positive cryptocrystalline samples, called
chalcedonite — FreLpEs (1952). It is caused by
crystal defects from which results a strained lattice.
Thus when the mineral is powdered, the transition
effect may appear again — PrLro (1956). Pure calcite
of various origin, but ground to about the same
particle size (<< 149 (1) delivered a peak area varying
from 62.8 to 80.8 cm?> — WEBB (1958), etc.

Small differences in chemical composition may
largely change the heat of reaction — e.g. dolomite —
Bupnikov and BoBrovnik (1938), Berc (1943),
Cartnire and HENIN (1948), Kure et al. (1951),
GraF (1952), FOLDVARI-VOaL and KoBLENCEZ (1955),
WesB (1958). Small amounts of Fe increase the area
of the second endothermic peak of dolomite — KuLp
et al. (1951) and hematite that of goethite — Kure
and TriTEs (1951). Well-defined and well-crystallized
pure chlorites of igneous origin show considerable
variations in their thermal effects even in samples
of a certain type — ORrceL (1927).

Heat of reaction per gram mass and per gram H,0
evaporated of X-ray and electron microscope pure
kaolinites << 2y of 85 t0 95 % chemical purity varying
from 100 to 180 and from 800 to 1400 respectively,
is inversely related to their specific surface —
Fig. 2 — vanN pER MaREL (1960).

After CArTHEW (1955) for kaolinite a direct relation
exists between the ratio peak area/width of the
peak at half its height = (4/W) and the slope
ratio tan a/tan 8. This relation should be independ-
ant of the particle size and the degree of
crystallinity. As furthermore the A/W ratio is
proportional to the amount of kaolinite, it should
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be possible to estimate the percentage of kaolinite in any sample regardless of its
particle size or degree of crystallinity.
By application of this method to a large number of the samples, there was a
wide spreading of the observations, although the slope of the line representing
the above equation was similar — vAN DER MaREL (1960).
Heat of reaction Heat of reaction

cal/g mass L B cat/g H90

® - kaolinite <2y

© - fire cloy <2p

| - dehydrated halloysite - 13004
[@] - ball cloy <2p

powdered
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AN
] N \
" 900 . N
AY [ ] \
N\ \ . \
800 \ \
\ \
E \
AN
700- N
[ }
0 20 40 60 8 10 120 0 20 40 60 80 00 120

Specific surface-M 2Ig

Fig. 2. Heat of reaction and specific surface for endothermal reaction (4- 600° C) of various kaolin minerals. —
With permission of Silicates Industr., Belgium (1960)

IV. Application to Clay Mineralogy

Fig. 3 represents dta results of some pure clay minerals and the clay separate
(<2 p) of some soil types. Their composition was verified by X-ray analysis.
All diagrams show very poor thermal effects as compared to those of minerals
from pure deposits formed under optimal conditions. Consequently the minerals
are better ordered, not so fine and will thus give thermal reactions of larger
intensity. The figure moreover shows that the occurrence of many common clay
minerals in soils is masked by that of others.

For mixtures of minerals the overlapping effect is mereased partly by changes
in the peak temperatures of minerals with their thermal effects close to each
other e.g. small amounts (5%) of calcite decrease the first endothermic 770°
peak of dolomite to 850° C — HEapy (1952). The shape and intensity of the
exothermic peak of kaolinite is largely decreased by iron oxides and mica. The
overlapping effect is also caused by differences in the amount of a certain mineral
in the mixture investigated. The smaller the amount the lower its peak tem-
perature.

Attempts have been made to increase the thermal reaction by use of high heating
rates, piperidine — Arraway (1949), CartrEW (1955), vacuum — WHITEHEAD
and BREGER (1950), Linsers (1951), WreTELs (1951), or to better separate thermal
reactions close to each other e.g. addition of ethyleneglycol to hydrated halloysite
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halloysite — kaolinite mixtures — Saxp and BaTes (1953), use of high
CO,, pressures for calcite-dolomite mixtures — Rowraxp and Lrwis (1951),
Rowraxp and Beck (1952), Haur and HuvsTEK (1952), and calcite-magnesite
mixtures — STONE (1954).

Pure minerals from deposits (Impurities)
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Fig. 3. D. t. a. of pure minerals from deposits and of the clay separate (< 2u) of soils from various origin

But all these methods are only successfull for some particular minerals and some
particular combinations of minerals which are rare in soil clays, and therefore of
very restricted application. As a result many of the commonest minerals in the
clay separate of soils cannot be distinguished from each other e.g. illite and
expanded illite, soil montmorillonite and swelling illite, soil chlorite and sedi-
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mentary chlorite, chrysotile, antigorite, lizardite. Nor can the numerous types of
interstratifiedm inerals, regular or non regular, which are so frequently found in soil
clays, be distinguished from each other and from their bases components.
Therefore the thermal method is unsuited for quantitative analysis of soil clays;
— VAN DER MAREL (1956, 1960, 1961) such notwithstanding the great perfection
of the modern dta equipment and the great propagation made for it. The suc-
cesses are based mainly on examples of pure minerals of non complicated mixtures
e.g. circumstances mostly absent in the clay separate of soils of various origin
and type. About 20 years ago SPEIL the grounder of quantitative dta, already
warned for the doubtful existence of “Standard minerals” with well defined
constant thermal effects — see p. 24.

Quantitative dta determinations are only possible for samples with high thermal
reactions and coming from a certain locality e.g. a hydrargillite pit defiled with
kaolinite, a kaolinite pitd efiled with guartz, ete.

C. X-ray Diffraction
1. Theoretical Approach

When X.rays of intensity I, and wave length 1 (&) fall on a small area of
randomly oriented crystalline particles as conditions prevailing in the goniometer
diffraction technique, the following relation exists for the intensity I of a certain
reflection minus its background (white radiation, Compton- and air secattering,
noise) — see literature:

I=I,kyjPLN*QAF?

k = constant depending on slit width, current density, effective surface of the incident rays.

§ = multiplicity factor accounting for the number of superposing crystal planes delivering
a certain reflection.

y = factor for preferred orientation of the sample.

P = polarization factor accounting for the amount of partly polarized radiation =

_ 14-cos?20
=—3
L = Lorentz factor accounting for the partly, non equal strong radiation of the incident
1 1
X-rays = -

2 sin?@cosO
N = number of unit cells per cm3.
O = effective surface of the incident rays diffracted by the sample.
4 = absorption factor accounting for the amount of absorbed radiation when the X-rays
penetrate the sample.
F = structure factor accounting for the amount of diffracted radiation by a certain crystal
because of scattering of the X-rays by atoms in different positions in the unit cell.
When a certain mineral is investigated under standardized circumstances of
wave length, intensity of the incident rays and their effective surface and sample
mounting represented by the factor K, the above equation is simplified to
I=I,KypAF2
a) Absorption factor (A). Absorption of X-rays by a solid medium can be repre-
sented by the equation:

£ oot

I=1I,¢e e

u/e = mass absorption coefficient (cm?/g); u = linear absorption coefficient; ¢ = density.
1 == depth to which the X-rays have penetrated (cm).
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Tables of mass absorption coefficient of various elements for various wave lengths

are given in the International Tables for X-ray Crystallography Vol. III, 1962.

Thus e.g. for A=1.55 A (Cu radiation — 1.54 A): Li = 0.72, Na == 30.6, K =

145, Mg = 39.2, Ca = 164, Mn = 289, Fe = 313, Si = 61.6, Al =494, H=0.44,

C =4.67, O =11.7.

To obtain maximum diffracted intensity the sample’s thickness must exceed a
. .. 32 o .

certain minimum e.g. = g un 6.

¢ = average density of the solid sample, g, = density of sample powder including the inter-

stices — ALEXANDER and Krvc (1948).

b) Structure factor (F). The scattering power of an unit cell for a wave in a crystal

direction defined by Akl is given by: see International Tables for X-ray crystallo-

graphy etc.
v :Zn fnexp 271 (hxn+ kyn +1z,)
= [{Zn fn cos 27 (hxn + kyn + lzn)}z + {ann sin 27 (h‘”n + kyn + lzn)}2]%

f = fo X temperature factor.
fo = the scattering intensity of a single atom at rest at the point z, y, 2, relative to that of
2

a single electron( %ec? = 2.819 - 10713; ¢ = charge of electron — 4.802 - 100 es.u.; ¢ =

velocity of light = 2.9986 - 10'° cm sec™?, m = mass electron = 9.108 - 10728 g )

—B ( gin ©
P

2
Temperature factor = ¢ ) which accounts for the temperature dependent thermal
vibration of the atoms (B = a constant depending on temperature and mass atom).
Tables of f, ratios which depend on sin ©/4 for several atoms and ions are given
in the International Tables of X-ray Crystallography Vol ITI, 1962 p. 202—206.
Thus e.g. for small angles and Cu radiation (1 = 1.54 A) and sin /4 - 108 =0.1
and non ionized elements: Li =2.21, Na =9.76, K = 16.73, Mg = 10.51,
Ca =17.33, Mn = 22.61, Fe = 23.68, Si =12.16, Al =11.23, H =0.81, C =
5.13, O = 7.25; H,O = 8.87 and (H,0)* = 9.68.
Therefore substitutions of (Al/Fe), (K/H;0), (Mg/Ca), (Ca/Na) in crystal struc-
tures may produce appreciable differences in the intensity of the observed re-
flections. The other members of the above structure factor equation contain
terms which are a measure of the arrangement of the atoms in the crystal planes
of the unit cell and their mutal influence — see for values of ecos 2 (...) and
sin 2 (...) for various space groups the structure tables of LoNspaLe (1936) etc.
In the ideal case of a perfect crystal F stands in the intensity equation as F,
but as F?2 in case of an ideal mosaic crystal. The latter consists of a large number
of small perfect blocks each of which being so small that absorption and extinction
can be neglected and each independently scattering the X-rays. For Al and
calcite the intensities of the integrated reflections may vary 30x and 5x —
James (1934) and for diamond 50 X — LoNspaLE (1949).
In an ideal lattice, identical atoms occupy equivalent sites. Each atom en-
countered by the incident X-rays is in the correct position to reflect it. Slight
differences in the arrangement of these elements, will broaden the Bragg reflec-
tions. If these deviations are sufficiently large, there is no loss of intensity as
the effect can be measured by integration. If not there is a decrease in intensity
since the effect cannot be discerned from background radiation. Strain greatly
increases the ability of a crystal to diffract X-rays — WaITE (1950).
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Crystals are of varying degree of structure, strain and mosaic constitution;
especially those as are found in the clay separate of sediments. Therefore the
intensity factor of the diffracted radiation for a certain Bragg reflection is not
a constant for a certain mineral species.

¢) Factor for Preferred Orientation (). Platy minerals may be orientated along
their basal planes when they are investigated in the sample holder. Even fine
particles when dried before and pressure is not applied to fill the sample holder
may do so.

11. Determination of the Intensity of an X-ray Reflection

Best suited for lattice cell dimensions are determinations of the higher angle
reflections. This follows from the Bragg relation 2dsin® =n A delivering:
060 = —1tg @ § d/d when its first differential is equalized to zero.

However, for quantitative analyses the lower reflections are better suited as
they are the least overlapped by those of other minerals.

For a powder sample infinitely thick for the incident radiation with no appreciable
extinction or preferential orientation of the particles, the latter consisting of

several minerals of weight fraction ,, #,, ..., #;, density g, gs, ..., ¢; and linear
absorption coefficient u,, s, ..., g;, the following relation exists for the intensity

I, of a certain reflection of the sample component z; — ALEXANDER and Kiue
(1948).
_ Kz .
Y almd —pB)+ e

K = a constant depending on instrumental equipment, crystal structure of the sample

component.
#% = mass absorption coefficient of sample component = %; = %3 ete.
2
T,
% 3s ; * * aMi Ty
pyr= ditto of matrix (other components than ) = u} z, + pf 234 -+ T—a)
—%

Mass absorption coefficients (em?/g) for Cu radiation (1.5418 A) vary for several
minerals: quartz = 34, kaolinite = 30, illite = 51, montmorillonite = 38, mica
=42, Na feldspar = 33, K feldspar — 48, Ca feldspar = 50, calcite =71,
goethite = 198, hematite — 219, cellulose = 8. Moreover most clay minerals are
of non uniform composition — Chapter I.

Thus great errors may be made in quantitative analyses of complicated minerals
by direct intensity measurements. A solution is to dilute the sample with an
excess of inert material e.g. gum arabic to 80% by volume — MrrcHELL (1960)
which is only possible at high intensities of the sample reflections.

Quantitative analyses can also be obtained by mass absorption — diffraction
analysis if the sample consists of binary mixtures of well defined components —
LEroUX et al. (1953). Intensities of the reflections and mass absorption coef-
ficients of the sample components were used for quantitative analyses by ENGEL-
HARDT (1955} and SEsHLKE (1963).

However the estimation of packing densities and the production of a certain
radiation of constant intensity, create other problems. Therefore a certain amount
of a Standard mineral is added to the sample for calibration. The Standard may
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thereby serve as a diluent if its intensity is weak compared to that of the mineral
to be investigated. Recommended Standards with only few reflections (cubic
crystals), their use depending on the kind of mineral to be investigated (reflection
of Standard and of mineral should be very near but not overlapping) are stearic
acid, LiF, NaF, ALO,, Sr(NOQ,),, CaF,, KCl, etc. with u/p =5, 12, 24, 31, 58, 91,
125 respectively. Artificial AIOOH (cerahydrate) recommended by GrIFrFIN (1954)
has 28 which is about that of various clay minerals and thereby its most intensive
reflection d = 6.06 A (020) is nearest to that of the basal spacing of the layer silicate
clay minerals. Cholestrine has strong low angle reflections (33.2 4, 17.1 A) but
ulo is only 4.4.

The goniometer is run 4 X over the specified 2@ range and an average value is
calculated from the countings. The registered intensities are corrected for base
line (background). The latter depends on optical conditions of the instrument
(surface of the focus, intensity of the current, thickness of the metalfilter, slit
width, discriminator system); also on properties inherent to the sample (particle
size, amorphous matter).

Preferred orientation of the sample in the sample holder can be decreased by
dilution of the sample, first with ethylcellulose (dissolved in toluene) and there-
after by evaporation of the latter — REDMOND (1947), cork meal — ENGELHARDT
(1955), FLORKE and SAALFELD (1955), or a thermoplastic cement — BRINDLEY
and Kurrossy (1961) which materials also act as diluents. For cork meal
(100:100 volume %) was found for 5 kaolinites a spreading in the intensity of
the (001) reflection of 177:100. For the thermoplastic cement (1:5) was found
for 15 kaolinites calibrated against AIOOH (boehmite) a decrease in the limits
of the I (001, K)/I (020, B) quotient from 167:100 to 147:100 (without sample
G = 135:100).Analogous results were found for the paired reflections: I (002, K)/I
(021, B) = from 185:100 to 178:100 (without G = 143:100) and the I (001, K)/I
(060, K) reflections = from 233:100 to 151:100 and I (002)/I (060) from 193:100
to 157:100. The disorientation effect of the cement is perfect.

II1. Quantitative Analysis — General

For quantitative analyses the intensity of the reflection of the sample registered
by the instrument should be strong, not overlapped by that of other minerals
and constant for each mineral, regardless of its origin or particle size.

Fig. 4 represents the X-ray data of the commonest clay minerals and their ad-
mixtures. Many reflections overlap each other. Their intensities are also variable,
even for kaolinite which mineral has still the most uniform composition of all
clay minerals. In particular kaolinite in the clay separate of soils gives weaker
intensities and several reflections are lacking in the diagram. The same holds
for halloysite.

a) Particle size. Coarse crystallites > 5 to 10 u lose diffracted radiation by re-
flection, interaction of incident and reflected rays which differ n/2 in phase,
entrapment of the rays in crevices, rays prevented to reach crystals in lower
layers which are in the right position to give a Bragg reflection by absorption
of crystals in upper layers. When the sample is rapidly rotated in its own plane,
more crystallites are allowed to participitate in diffraction. The intensity of the
reflections is increased and the statistical fluctuations in the intensities are
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greatly reduced. Various equations have been suggested to determine particle
size in the range 0.1 to 10 w from loss of intensity — see literature.

It is recommended to dry grind the 200 mesh quartz to be measured and the
standard quartz from about 0.5 to 1 hour in a mill — BRINDLEY and Upacawa
(1959). After GorpoN and Harris (1955) the errors with quartz particles of
1 to 20 y. are in the order of 12%. ALEXANDER et al. (1948) and LoNspaLk (1949)
suggest using a crystallite size <5 p. For silica was found 5 to 10 u the best
size for quantitative analyses — DE WoLFF et al. (1959).

sipart from this the quantitative estimation of mixtures of coarse, irregularly
Azed minerals with different linear absorption coefficient is a complicated problem.
Failures to 30% can be made, unless the particle size of the several constituents
of the sample and their absorption coefficient are standardized.

If the crystallite size decreases to below 0.1 p depending on absorption coef-
ficient, crystallite size and shape and grade of distortion of the lattices, the
Bragg reflections are broadened with decreasing particle size. This effect (directly
related to Ifcos @), is caused by small deviations from the path of the mean
diffracted X-ray direction which are not ruled out or intensified by accumulation
in successive underlying planes. Various equations have been suggested to esti-
mate the erystallite size of the sample from line broadening — ScHERRER (1918),
etc. At a particle size of 0.01 . and below the method is very inaccurate. Line
broadening which may also be caused by strain and stress or crystal defects,
means loss of intensity when the effect is large because too weak intensities can-
not be measured and thus fade away in the background.

Decrease in intensity at decreasing particle size is also due to a BEmLBY layer
(1921) effect — Gorpon et al. (1952), GorpoN and Harris (1955). For quartz
as measured from the decrease in density, the decrease in dta reaction and the
amount of Si0, dissolved by a borate buffer the thickness should be 0.03 to 0.05 p,
0.11 t0 0.15 p and 0.02 to 0.03 . respectively — DEMPSTER (1951), CLELLAND et al.
(1952), CLELLAND and Ritcuie (1952), DEmpsTER and Rrrcuie (1952, 1953).
By extraction with HF NaGELscHMIDT et al. (1952) found 0.03 u. GiBB et al.
(1953) found by extraction with HF and borate buffer 0.03 to 0.06 y, JENSEN
(1954) by etching with increasing HF concentrations 0.01 to 0.09 .. R1EcK and
Koopmans (1964) even found 0.4 . from X-ray line profiles for wet ground
quartz particles of 3 . size.

But also the surface of clay minerals is coated with an amorphous layer. It
should be formed however by hydrolysis as a result of weathering action and not
by deformation as a result of grinding. EXGELHARDT (1955) estimated for kaolinite
particles a thickness of 1 to 10 A. When calculated on a specific surface of
100 m?/g (fine illite) and 400 m?/g (montmorillonite) thereby assuming a sp. w.
of the amorphous matter to be about 2 as in permutites and the thickness of
the layer to be 10 A, the clay particles should contain 20% and 80% amorphous
matter.

b) Intensity. Many authors have already pointed to the large variability of the
intensity of the Bragg-reflections of clay minerals — DvaL and HENDRICKS
(1952), SCHROEDER (1954), GRIFFIN (1954), GorDON and NAGELSCHMIDT (1954),

ExeELEARDT (1955), JARVIS et al. (1957), GALAN et al. (1958), VAN DER MAREL
(1960).
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Isomorphous replacements to varying degrees as common in feldspars, micas,
mica-related, chlorite and chlorite-related minerals change the intensity of the
reflections — see also GRIM et al. (1951), BRown (1955), BRINDLEY and GILLERY
(1956), PETRUCK (1959), MITCHELL (1960), WiEGMANN and Kraxz (1961), SCHOEN
(1962). When K* of muscovite or illite is replaced by (H,0)* because of weath-
ering action, its (001) reflection is increased — BrowN (1955), WHITE et al. (1961).
However when K,0 is lost the reflections are broadened and peak intensities
decreased — LapHAM et al. (1964). X-ray diffraction intensity decreases also by
K loss from K-feldspars — pe MumMBRUM (1963).
The intensity of the basal reflections of interstratified minerals is lost to about
30% as compared to those of their single components — Mac Ewan (1961).
Vermiculite, montmorillonite and expanded illite when saturated with several
cations have varying intensities of their basal reflections — BarsHAD (1950).
Interlayering of Fe(OH),, Fe(OH)**, Mg(OH)*, Mg(OH), and to a less degree
Al(OH),, Al(OH)** between expanded layers of montmorillonite and the illite-
related minerals, also change their intensities. Even kaolin minerals which have
the most homogeneous composition and structure of all clay minerals, show
large differences in the relative intensities of the reflections of samples from
various origin for each group — TFig. 5. Badly crystallized kaolinite (fire clay
mineral) cannot be distinguished from better ordered halloysite.
By calibration of the (001) reflection of kaolinite d = 7.09 A against the (020)
reflection of Cerahydrate (trade name for AIOOH) d = 6.08 A, an inverse rela-
tion was found between the peak intensity or the integrated peak intensity and
the specific surface of the kaolinite investigated — van DER MAREL (1960). The
samples investigated were all from well known deposits, not defiled with other
minerals after X ray- analysis and after chemical analysis containing only 5 to
15% impurities.
For kaolinite with a specific surface of about 70 m?/g the decrease in peak in-
tensity or integrated intensity was from 1.5 to 0.5 and from 1.8 to 0.9 (relative
values) respectively as compared to that of well crystallized kaolinite with a
specific surface of about 16 m?/g. These large differences are not relative to the
small differences in the amount of impurities.
BrinDpLEY and KuRrossy (1961) believe that preferred orientation effects are
the main cause of the above results. But the remaining spreading of the cement
treated (disoriented) samples = 147:100, and 178:100 for the (001) and (002) re-
flection of kaolinite respectively, is too large to be tolerated in quantitative
analyses.
When using the (060), (331), (331) reflection, which is less affected by preferented
orientation owing to the b,/3 displacements in disordered kaolinites, better re-
sults are obtained — ExcrLHARDT (1955), WiEaMaNN and Kranz (1961).
Fig. 6 gives the results for several types of pure to nearly pure (85%) kaolin
minerals from various origin for which the (001), (002), and (060), (331)
(331) reflections were calibrated against the (111) reflection of 10% CaF,. Further
the results of the same samples but treated before with Vertex Sc.! a poly-
merizable harshon two component basis.

! Vertex selfcuring wax (methylmetacrylate) on two component basis fabricated by
Kunstharsfabriek DIVO, Zeist, Netherlands.

Contr. Mineral. and Petrol., Vol. 12 8
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The analyses show that notwithstanding the excellent disorientation effect of
the harsh, there still remains a large spreading in the intensities of various
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samples for each kaolin type. For the (002) reflection of kaolinite from deposits,
the spreading of the peak intensities (between bracelets = peak surface) of the
harsh treated kaolinite samples = 109% (100%), for ditto from soils = 218%
(185%), for fire clay, ball clay = 217% (234 % ), for halloysite—7 A from deposits =
180% (150%), for ditto from soils = 71% (83%). The intensities of the (060)
reflection is even somewhat increased by the harsh treatment; in particular for
kaolin minerals with a large orientation effect. Such because by the disorientation
relative a larger number of (060) layers are available for the X-rays to produce
a reflection.

For the (060) intensities of the harsh treated samples is found for kaolinite from
deposits = 79% (88%), ditto from soils = 62% (62%), fire clay, ball clay = 57%
(63 %), halloysite from deposits = 56% (80% ), ditto from soils =29% (43%).
There is a decrease of the intensities with breadth and particle size — see also
VAN DER MaAREL (1960, 1961).

Apparently the smallest particles are the less ordered, the most strained and
have the largest thickness of amorphous Beilby material coating their surface.
For, when the crystal is highest ordered there will only be a minimum of loss
of X-rays which do not participitate at a Bragg reflection as a result of atoms
which are situated at regular distances from each other and also in planes parallel
to each other. Assuming a Beilby layer of 1 and 10 A, the finest kaolinite sample
investigated (128 m?/g), should consist of 2.56 and 25.6% amorphous material.
Fig. 7 shows the results of analogous experiments with several pure to nearly
pure (85%) Na-saturated montmorillonites of various origin. In this case of fine
particles the orientation effect is absent. The Vertex treated samples even show
an increase of the intensities of their basal spacings which is caused by a better
orientation of the plates.

The remaining variability is for the (060) reflection, which is the least affected
by orientation, still 36 % (peak height) and 77% (peak surface). Surface intensities
are for weak reflections less accurate as peak height intensities because of instru-
mental errors in the readings and the unsharp border of the background.

This figure further shows that a particle size/X-ray intensity relation for the
various samples investigated is absent.

But also non platy minerals like hydrargillite, boehmite, goethite, limonite,
hematite show a large variability in the intensities of their X-ray reflections —
VAN DER MAREL (1961).

Even non complicated minerals like rock salt — RENNINGER (1934), quartz —
Porrack et al. (1954), DEspusors (1957), LEeranp and Nicoras (1958), tridymite
and cristobalite — SwinpaLE (1955), FLORKE (1955) show appreciable variations
in the intensities of their reflections from one individual to another. In this
case they are mainly caused by differences in their mosaic character. If the
particles are too small or if the crystallites have crystal defects (mosaic structure)
there is increased scattering of the X-rays — DuspusoLs (1957).

IV. Application

Fig. 8 shows the X-ray spectra of the organic poor clay (< 2 ) separate of
various soil types. The reflections are all broad at their base and of an intensity
of maximal 30 cts/sec = 10 cm on the diagram.
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Fig. 8. Intensities of Bragg reflections of minerals in the organic poor clay separate (< 2u) of some soil types
compared with those of pure minerals, —— With permission of Acta Universitatis Carolinae, C.8.R. (1961)

As a contrast those of pure minerals are much stronger : halloysite = 25, illite =50,
montmorillonite = 75, kaolinite = 175, quartz = 300 cm. Vermiculite has, when
measured with the X-ray equipment used, even a peak of 2400 cm.
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The poor spectra of the clay separates of the soils are caused by bad ordering,
isomorphous substitutions and defects in the crystals. The latter are partly of
primary (inherent to the minerals) and partly of secondary (caused by weathering)
origin — see also CLARK et al. (1937). Another cause is small particle size (broaden-
ing, loss intof ensity) and contamination with fine amorphous inorganic and organic
matter (scattering of the rays). The latter can be removed by 10% H,0, which
gives an improvement — for details of various treatments — BEUTELSPACHER
and VAN DER MAREL (1961a, 1961b).
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Fig. 9. Basal spacings of the clay separate (< 2u) of some soil types (4 Loess-Netherlands, B Alluvial-Nether-
lands) as related to their pretreatment

Also the line which can be drawn through the bases of the separate reflections
is very irregular. This is caused by overlapping of several reflections. In particular
when the diffraction maxima are close together and the concentration of one
mineral far exceeds that of the other, the effect is large.

Apart from the above difficulties there is the severe problem of finding one and
the same mineral in various sediments. Even kaolinite which still has the most
uniform composition and structure has a large variability. For the interstratified
minerals which are very common in the clay separate of soils, this will be even
larger. The same holds for various mineral types which are formed by deposition
of Al- and Fe hydroxy groups in the interlayers of expanded illite, swelling
illite and soil montmorillonite by weathering action.



Quantitative Analysis of Clay Minerals and their Admixtures 121

All these expanded minerals with various charge densities of their interlayers
and the latter filled to various extents with cations of various polarizability,
hydroxides of various composition or H,0 molecules have (001) reflections which
position and intensity moreover depend on conditions during the separation of these
minerals from the sediments and the preparation of the sample afterwards before
its spectrum is registered by the instrument. This is illustrated by Fig. 9.

Peak intensities of montmorillonite which contain a large amount of exchange-
able cation between the layers surrounded by hydrated H,O molecules, depend
largely on the amount of oriented H,0 layers — Barsuap (1950). The Ca and
Mg saturated samples with 2 oriented H,O layers give the highest intensities,
because parallelism and preferential orientation are enhanced — TALVENHEIMO
and WHITE (1952).

Other examples of the influence of pretreatment of the sample on the shape
of the spectra are given by MILNE and Warsuaw (1956), WarsHaw (1960),
HEriER (1961). BEUTELSPACHER and FiEDLER (1963), SavEGH et al. (1965). By
different mounting techniques the results may vary in the order of even 250% —
Giss (1965).

D. Infrared Analysis
1. Theoretical Approach

When under normal (room) temperature conditions atoms and molecules which
continuously vibrate at 10'2 to 10'* Hz around their equilibrium positions, are
radiated with electromagnetic rays of the infrared range 3 to 30 p. (103 to 104 Hz),
they will absorb energy when the energy of the rays is in resonance with the
energy needed for their vibration. Only those vibrations are infrared active
where the dipole moment of the atoms or molecules is changed in direction and
magnitude by the vibrational movement (non active I.R. vibrations may be
Raman active for which a change in polarizability is needed). In the ideal case
of two free moving atoms of small amplitude and a highly syrametrical stretch-
ing path, the following relation exists — BARNES et al. (1944).

h k k
E=w+1)5- l/;z (v +1/5)5.11 x 107 {75 °

E = vibration energy (eV mole™ = 23.04 k cal atom™).

k = bond force constant between the two atoms (dyne em™) = 1.86 - 105/(r —d;;)® in which
r = interatomic distance (A), d;; = a characteristic for a diatomic molecule consisting
of an atom of the i-th and the j-th row respectively in the periodic system — BADGER
(1934).

my X my

u = the reducing mass = (m, and m, = mass atom m, and m, respectively in g.

2
h = constant of PLANCK = 6.625 - 10727 erg sec.
v = vibrational quantum number (0,1, 2, 3, ...).

The vibration energy is commonly expressed in the frequency » of the rays = 1/4
in which A4 = the wave length in A. Thus when 1/4 = 1 cm™ also called Kaiser
(K) unit:

— 2 —hc=1986x10 erg.
Ideally the vibrating frequency of two atoms varies inversely with the root of
their atomic mass. Thus if Al is replaced by Fe, the absorption band shifts to
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a lower energy (cm™) level. Vibrational energy depends also on the bond force
constant (k) between the two atoms. For atoms in tetrahedral configuration (4 B,)
the following relation exists — Gorpy (1946):

72

k(A B) =3.29 (w)“/« — 040 -

z4 and zp are electronegativities of the bonded atoms; r = internuclear distance.

For tetrahedral configuration k(Si— Q) == 5.85 - 10° dynes/cm and k(Al—O) =
5.06 - 105 dynesjem (r = 1.62 A, x5, = 1.8 eV, z, = 1.5 eV, z, = 3.45 eV) there
will be a shift of the I.R. band to lower cm™ values when Si is replaced by Al
in increased amounts.

However, in reality the above equations for a stretching vibration give only a
simple representation of what actually happens e.g. the repulsing forces between
the atoms considerably increase at small distances. A crystal consists of a frame-
work of densely compacted atoms and atomgroups with numerous types of
vibrations in case of polyatomic structure. Thus the vibration energies of two
atoms in a crystal may be changed and even damped because of dipolar association
effects from surrounding atoms and molecules. For bending and wagging, rocking,
twisting movements indicated by & and y, vibrating in a direction parallel
and perpendicular or oblique to the molecule plane respectively, the calculations
of the vibrational energies are very complicated and mostly impossible. Apart
from the fundamentals and their weaker sums (CO,: v, -+, = 3716 em™ and
multiple overtones (H,0: 2%, = 7251 cm™, 3», = 10631 cm™?) also vibrations of
somewhat higher or somewhat lower energy level may exist. They result from
perturbations by neighbouring components, anharmonic coupling, interactions,
crystal dislocations, strain, stress, vacant holes, Frenkel and Schottky crystal
defects, isomorphous substitutions of incidental character (impurities), disorder
in the arrangement of the atoms which all modify the electronic structure in
their neighbourhood. The effect is a broadening of the bands.

Crystals have a large number of low level (<300 cm™) lattice (skeletal)
vibrations. They also broaden the bands of sharp harmonic vibrations by an-
harmonic coupling with lattice vibrations or even cause forbidden vibrations to
appear in the spectrum by combination e.g. that of the strong NH,-ion band
at 1754 cm™ of NH,Cl or NH,Br crystals — HorNie (1948).

By association with other atoms or atomgroups, the bands move to lower energy
levels e.g. the 3300 cm polymer of the O—H stretching vibration of ethyl-
alcohol moves to 3630 cm™ of its monomer thereby increasing in intensity when
this liquid is largely diluted with an inert solvent like CCl, or CS,. The O—H
stretching band at 3756 cm™ of monomeric H,0 molecules in vapour or in in-
active solvents, is replaced by an intensive doublet at 3515 and 3575 cm™ of
its polymer, when water is dissolved in dioxane or pyridine — ERRERA and
Sack (1938). The O—H stretching vibration may even fail in organics like
m-nitrophenol, salicylic aldehyde and 2.6-dihydroxybenzoic-acid as the protons
are in this case in a “chelated” position between two oxygen ions — HILBERT

et al. (1935). Also in spectrography of crystals analogous association effects are
known — see further.
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11. Determination of the Intensity of a Vibration Band
After Lambert-Beer’s law the intensity of the transmitted rays of a certain
frequency (v) at a certain temperature is related to the concentration of the
sample absorbing the rays in the inert solvent in which the sample is homo-
geneously dissolved:

I =], exp ¢!
which delivers:

E (extinction) = — log I/I, = A (absorbance) = log I,/I = ¢,cl.

I and I, = intensity of the transmitted and incident radiation.

¢ = concentration of the sample (mole/liter).

£, = molar extinction coefficient (liter cm™ mole™).

I = thickness of the sample (cm).

From the above follows that, given a certain thickness of the sample, a linear
relation exists between extinction and concentration. For spherical particles of
diameter d when pressed in a non absorbing medium like KBr can be written:

3

E=— 2FKdlog[ K)+K0O]-
m = mass of the sample dispersed in the KBr disc.
¢ = density of the particles.
d = diameter of the particles.
F = cross sectional area of disc.
. ) — (kd + 1) eta . ..
© = transmittance of the particles = B (k = linear absorptivity).

K = the geometrical fraction of the surface normal to the incident rays that is covered by
the particles.

As particle size increases there is a decrease in the extinction. For calcite par-
ticles to about <10 . the effect however is small, but it increases largely for
coarser sizes.

For molecular dispersion of the particles (kd — 0) in the KBr pellet the relation

exists:

m k
Egisoy= 7o X 23

which equation is similar to that of Lambert Beer for absorbing liquids in a
solvent when read for % = ¢ and for Fi@ =¢ ] — for details OTv0s et al. (1957)

and DuvckagrTs (1959).

I a double beam instrument is used with always the same slit width and pellet
surface, addition of a standard mineral is superfluous unless Lambert-Beer’s law
is not followed. Non linearity of the law is caused by non linearity of the photo-
cell, asymmetric vibrations, association effects from other atoms and atom-
groups.

For mixtures with non linearity of the Lambert-Beer’s law calibration curves
should be made by a plot of the ratios for £ mineral to be investigated/E internal
standard against their weight ratios. The amount of the internal standard added
to the samples should be taken constant and that of the mineral to be investigated
variable. Another procedure is to calibrate the % of the unknown component
in the mixture against increasing amounts of the pure component in the reference
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sample = differential absorbance method — HaMMER and Rog (1953). An esti-
mation of the maximum extinction of a band for quantitative purposes can be
obtained by the WRicuT (1941) and HEIGL et al. (1947) procedure for base line
correction. In the Nujol technique a certain amount of the sample is mulled
together with a certain amount of a Standard mineral e.g. dl-Alanine = 851 cm™
— BARNEs et al. (1947), CaCO, = 875, 1435 cm™ — KuEeNTZEL (1955), KCNS =
2041 and 2127 cm™! — WIBERLEY etal. (1957), Pb(SCN), = 2041 cm™* —

_— {
Ml Extinction (- log T:) J

3622 cm-' { Sericite
1'24 > Nacrite /

/

3693cm-!
08 ./ /‘/ - W 3625 em-!
. Kl .
!/ s~ 3620 cm o/°
06 x/ o
/o ‘/ /o /o/
o
0.4 . ° e
‘/ /o/ o
. ./ o . o/
02{ / o o ~ Illite P
. o o
/o ’o/
0 — Y T T u
141 3693cm"/ l
. . . * - Brucite
124 / ¢ ] Kaolinite ] ,/3695 em-!

/3622 cm-! o .

08 —
<~ 3620 cm-! /
056+ 5 1 o
/ o/ 3670 cm-!
.
™ / / ‘ /
/s

o — Montmorillonite 1 o

/ o/

2 3 i 5 0 1 2 3
Concentration in mg on 300 mg KBr

0.21 ° - Pyrophyllite

Fig. 10. Mineral concentration in mg on 300 mg KBr and extinction — Lambert-Beer law

BrapLeY and Ports (1958). The spectrum of this mixture is compared to similar
mull spectra in which a pure compound of the sample replaces the unknown
in increasing amounts.

In the KBr pellet (disc) technique of StiMson and O’DoNNELL (1952) and ScHIEDT
and REINWEIN (1952) a certain amount of the sample is first mixed and slightly
ground with infrared pure KBr (for spectroscopy) in a mullite mortar. After
drying at 120° C the mixture is pressed (ca. 10 tons/cm?) in an evacuated die to
transparent pellets of a certain constant diameter inherent to the instrument
used.

Fig. 10 shows the extinctions at increasing concentrations for kaolinite (<2 p)
and powdered pyrophyllite, talk, brucite, nacrite. Lambert-Beer’s law is followed.
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Only at high extinctions there is some deviation. A measurement of the integrated
intensity of an absorption band provides a closer approach to the real intensity
of the vibrational movement; such in particular for broad, asymmetric bands.
Its calculation by graphical way is very tedious however, but modern instru-
ments may be provided with an automatic integrator.

I11. Quantitative Analysis — General

Absorption bands suited for quantitative analyses should be of high intensity
and not be overlapped by neighbouring bands of other minerals. Moreover the
band should be small and deep so that the exact point where resonance absorption
caused by a vibrational movement of atoms or atomgroups has started and ended,
can clearly be distinguished from background absorption caused by noise of the
detector circuit and conversion of absorbed radiation in unordered thermal
motions of the crystal components. The background base line should be of
minimum elevation at either side of the peak. Finally the bands of a mineral
should be reproducible regardless of its origin or particle size.
The I.R. spectra of most common clay minerals and their admixtures mainly
show broaded bands of small intensity overlapping each other even for the
minerals apart — Fig. 11.
Particle size. When particle size is much larger than or about equal to the wave
length of the incident transmitted infrared rays, in this case = 2.6 to 24y,
there will be a decrease of the intensity of the absorption band mainly because
of non wavelength selective reflection and diffraction respectively — see for
calcite: DUYKAERTS (1959). Smooth (polished) surfaces and large differences in
refractive index (Fresnel equation) give increased reflection and therefore poorly
developed infrared spectra. The Christiansen effect which is characterized by an
asymmetrical shape of the band at its higher frequency side from which results
a non linearity of the Lambert-Beer’s law, is only negligible for particles smaller
as their wavelength. This is caused by a rapid change of the refractive index in
the vicinity of an absorption band.
If the particles are < 0.1 to 0.3 of A the intensity of the transmitted rays is
decreased (base line = background absorption increased) by allside, wavelength
selective Tyndall scattering. After RAYLEIGH s scattering equation — see VALESEK
(1960), the intensity of scattering is inversely related to the 4th power of 4 and
reversely to the 6th power of the radius.
1__ m)2 2

=1, "2 (14 o 0) 2N
= intensity scattered rays; I, = intensity incident rays.
= refractive index of scattering particle; n = ditto of embedding medium.
N = number of scattering particles; V = volume of ditto.

A = wave Jength used; @ = scattering angle.
R = distance from the sample to the observer.

I
nl

The above equation is only valid if the amount of light scattered per particle
is small and the phase shift of the scattered light can thus be neglected — Zimm
and DANDLIKER (1954).

Scattering of ZnO (n = 2.0) in water (n = 1.33) was found to be negligible for
particles >0.9 1 at 1 = 0.48 to 0.63 .



126

A

Transmittance

K8r-prism

535 695]
w

5%
\’\”;_/

|
425 | 520
% m

696

Kaolinite

696
Halloysite {2 HZO)

|

Montmorillonite

Beidellite

Nontronite

Medmontite

ite [

Sepiolite

H. W. vAN DER MAREL:

NeCl-prism

CaF; -prism —

i
1Kaolinite

1
'
'
'
'
'
'

Halloysite {2 Hy0

i
Montmerillomte

Vermiculite
1

i
Attapulgite

'

'

J
N !
Sepiolite (
|
1

1
€0,
1630 2350

s !
) A not common Wove number H— em-!
| 1024 |
59 500 588 5 833 ! 1250 200 217 3300 3700
2Un 20y B 1w 2 0p 8y 6p e 30 26
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Maximum scattering occurred at about 0.25 . For smaller particles at equal
concentrations by weight, scattering decreases because of the V2 factor —
Stutrz (1930), CLEwELL (1941).
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For clay particles (n = 1.56) with a maximum specific surface of 60 to 450 m?*g
(equivalent particle @ =0.04 . to 0.005p respectively) embedded in KBr
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(n = 1.56) there will be some scattering only in the shortest range of their 1. R.
bands at ca 2.7 to 3 . Fine amorphous admixtures (8i, Fe, Al-gels) and organic
matter (humus) will also give some scattering (background) in that traject —
BrUTELSPACHER and vAN DER MAREL (1961). The latter can be removed by previ-
ous oxidation with H,0,.

Intensity of a vibration. The intensity of an absorption band (E) depends on the
magnitude of the dipole moment (u) change of the atomgroups (atoms) during
the vibrational movement. Therefore £ of HCI is stronger than that of HJ
(p - 10'® = 1.08 and 0.38 e.s.u. respectively).

If the polarity of one of the two vibrating atoms (or atomgroups) is increased
by coordination with another atom (atomgroup), the intensity of the vibration
increases too because of an increase in the dipolemoment — see N—H in ethyl-
enediamine and ethylenediaminebromoplatinum — Svaros et al. (1955). Irregu-
larities in the crystal caused by incidental isomorphous substitutions, crystal
defects and impurities, change the electronic structure in their neighbourhood
and therefore the magnitude of the dipolemoment transition. The frequency and
intensity of a certain vibration depends on the nature of the components, the
surrounding components, their distances and the degree of association or chela-
tion; in general on their geometric arrangement. In a highly ordered crystal
there will be a maximum of resonance absorption of I.R. rays for a certain
vibration of two atoms (or of an atom and an atomgroup etc.). For, the deviations
in the distances between these atoms (or atoms and atomgroups etc.) are the
smallest and their surroundings are in this case also the most constant as com-
pared with those of a badly ordered crystal. In literature many examples are
given — Laves and HarNEr (1956, 1957), SERRATOSA and BraDpLEY (1958),
Basserr (1960), Mikey (1960), Lyon and TuppeENHAM (1960), Liese (1963),
MangaNANT and HowEr (1964) — see further A.

The spectra of the same mineral but of various origin are not always constant
either. This is demonstrated in Fig. 12 for the bands of free O—H, octahedral
O—H and O—H between the plates — see also BEUTELSPACHER (1956), VAN DER
MAREL and Zwikrs (1959), ete. for 85 to 95% pure kaolin minerals of various
origin.

There is an inverse relation between extinction and particle size for the 795,
754 and 698 cm™! bands of kaolinite. Also halloysite shows this relation —
vAN DER MAREL (1960). Its specific surface however is relatively larger, because
of strongly bonded ethyleneglycol molecules (Dyal-Hendricks method) between
the layers. The same holds for the 3693 cm™ band of free O—H. The 3622 cm™?
band of octahedral O—H is influenced by the strong 3440 cm~ band of O—H
of absorbed H,0 molecules and therefore has a large spreading — Fig. 13.

In this case of well defined pure minerals of non scattering particle size (specific
surface = 20 to 100 m?/g or with equivalent @ = 0.11 to 0.022 y) differences
in the I. R. traject investigated are mainly caused by differences in crystal ordering
in such a way that the magnitude of the dipolemoment decreases as particle size
decreases; for the rest by a Beilby layer coating the particles with amorphous —
non I.R. active material. Assuming a thickness of 1 and 10 A the decrease is
0.4 to 2% and 4 to 20% respectively. Of the existing clay minerals the above
example of kaolinite is still the best ordered and of most uniform composition.
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Fig. 12. Infra-red spectra CaF,-prism of various kaolin minerals 0.58% in KBr pellets

IV. Application

Fig. 14 demonstrates I.R. analyses of the clay separate (<2 u) of various soil
types — VAN der MaREL (1961). — Their composition was verified by X-ray
analysis. The spectra mainly show broaded bands of small intensity overlapping
each other moreover. Their intensities are also smaller than those of minerals
from pure deposits particularly those of organic liquids e.g. benzene; such by
disorder in the crystals, scattering effects, the prevailing of an amorphous Beilby
layer — see before. The CaF, traject is not suited for quantitative analyses of
minerals with a large surface because of the strong 3430 cm™! band, which largely
Contr. Mineral. and Petrol., Vol. 12 Qa,
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deform the O—H stretching vibrations of various minerals in the 3400 to 3700 cm ™
traject. It is caused by losely absorbed water molecules on the particle surface
with O—H . .. O distance — 2.87 A. (Strongly absorbed monolayered H,0 mole-
cules on the particle surfaces, hydrated H,0O molecules of cations and H,0 mole-
cules in narrow pores have 3220 cm™ with O—H ... O distance = 2.77 A.
H,0 molecules in ice have 3180 cm™! with O—H ... O distance = 2.76 A).

Extinction
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.
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Fig. 13. Extinction (—log I/I,) at 3622 and 3693 cm~* (CaF,-prism) of various kaolin minerals and their specific
suriace. Samples (0.58% ) pressed with XBr to pellets

In the higher frequency level occur free O—H, O—H—O and M(metal)—O—H
stretching bands of high energy. In the middle level are O—H, O—H—O, bend-
ing and M—0—H, M—O0O, M—0--M stretching and ditto bending vibrations
of lower energy level. In the lower regions are mainly M—O0, M—O—H and
M—0—M bending vibrations of lowest energy level.

The spectrum of goethite is far better developed than that of the less ordered
limonite. Bayerite, hydrargillite and boehmite, common minerals in bauxite de-
posits may easily be distinguished from each other. Also in this case the bands
are overlapped by neighbouring bands of other minerals. Quartz and cristobalite
may be distinguished from each other by the 780 em™, 800 cmn-! doublet and
790 cm ™ band. Quartz amounts of 1% may be detected when not overlapped
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Fig. 14. Infra-red spectra of separate < 2u from various soil types, kaolinite, quartz and benzene. Impurities

between bracelets. — With permission of Acta Universitatis Carolinae, C.S.R.

(1961)

by other bands and when particles are of uniform size — Hunt and TURNER

(1953).

Calcite may be distinguished from aragonite by the 880, 1430 and 859, 1480 cm™
bands respectively. Aragonite however is a rare mineral in the clay separate
of sediments. Dolomite may be distinguished from calcite and magnesite by
the 730, 715 and 750 cm™ band respectively. As these bands are sharp and not
overlapped by others, they are — if particle size thereby is uniform — best

9b
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suited for quantitative analysis. From the above follows that (semi) quantitative
analyses by the I.R. method will be restricted to non complicated mixtures of
the better ordered minerals of well defined composition, particle size and sample
locality and thereby with narrow bands of high intensity and sharpness e.g.
quartz, hydrargillite, carbonates, sulfates, etc.
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