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Equilibrium Diagram

The equilibrium phases of the Fe-Ni system are: (1) the liquid, L;
(2) the bee, high-temperature (8Fe) solid solution; (3) the foc
(YFe,Ni) solid solution; (4) the bec, low-temperature (aFe) solid
solution; and (5) the FeNij; intermetallic compound, which forms
by a first-order order-disorder transformation below 517 °C and
has an extended range of homogeneity.

Early systematic efforts to construct a phase diagram for Fe-
Ni were made by [18990sm], [05Gue], [10Heg], and [10Rue].
Evaluated phase diagrams for the Fe-Ni system were given pre-
viously by [38Mar], [Hansen], [Shunk], and [82Kub)]. The
present assessed Fe-Ni equilibrium diagram is shown in Fig. 1.

Liquidus and Solidus

The liquidus and solidus for Fe-rich alloys up to about 12 at.% Ni
were measured by [57Hel] using thermal analysis. [23Han]
measured the liquidus and solidus over the entire range of com-
position. Measurements were also made by [05Gue], [25Kas],
[31Ben], [37Jen], [25Vog], [27Vog] and [28Vog]. The data are
summarized in Table 1. According to [23Han], the minimum in
the liquidus curve is located at 1438 °C (temperatures quoted
throughout were converted to IPTS-68) and about 67 at.% Ni. Ac-
cording to [37Jen], the minimum is between 1422 and 1427 °C.
Based on a least-squares fit taking into account both the measured
boundaries and available thermodynamic data (see Thermo-
dynamics), we find the most probable location for the minimum
to be 1440 °C and 66.0 at.% N, in good agreement with [23Han).

[64Hum] calculated the Fe-rich liquidus/solidus based on an
ideal-solution model. This procedure gives too large a separation
between the liquidus and solidus when extended to Ni-rich al-
loys. The liquidus and solidus separations of Fig. 1 are based pri-
marily on those predicted by the measured thermodynamic
parameters in the liquid and fcc phases, with the assessed bound-
ary location giving greatest weight to the measurements of the lig-
uidus. These boundaries are close to the predictions of [85Tom],
which were based on thermodynamic parameters measured using
mass spectrometry. They are shown on an expanded scale in Fig.
2.

Phase Boundaries

Measurements of the (0Fe/0Fe) phase boundaries were made by
[20Han], [23Han], [25Kas], and [57Hel]. Comparisons with
thermodynamic measurements (see below) and with liquidus and
solidus measurements indicate a narrow two-phase (aFe) + (OFe)
region and a narrow peritectic reaction—L + (8Fe) «» (yFe,Ni) at

1514 = 2 °C and 3.5, 4.9, and 4.2 = 0.5 at.% Ni, respectively.
Measured values are listed in Table 1 and compared with the equi-
librium diagram in Fig. 3.

(aFe)/(yFe,Ni) Phase Boundaries

Due to the sluggishness of the (yFe,Ni) — (aFe) and (aFe) —
(yFe,Ni) phase transformations below 800 °C, the (aFe)/(yFe,Ni)
equilibrium boundaries are difficult to determine (see Metastable
Phases). [36Jet], [390we], [410we], and [490we] used powder
X-ray diffraction (XRD) techniques down to 300 °C. [65Gol]
used electron microprobe techniques to measure concentration
profiles on samples equilibrated at temperatures as low as 500 °C.
[80Rom] used a scanning transmission electron microscope
(STEM) on samples equilibrated between 670 and 300 °C. These
results, along with those of [69Sta], demonstrated clearly the
retrograde solubility of Ni in (aFe). The data of [490we],
[49Jon), [65Gol], and [80Rom] agree fairly well at 500 °C and
above. The boundaries shown in Fig. 1 were constructed using
these data, giving greatest weight to the results of [SORom].
Numerical values determined by the various investigators are
given in Table 2. Figure 3 shows the assessed boundaries and
compares them with the experimental data. Enthalpies of the
(aFe) — (yFe,Ni) transformation were measured by [26Kaw],
{36Sam)], [37Koe], [40Zui], [S9Sch], and [67Hil].

FeNis

Evidence for ordered FeNij was obtained first by [32Dah],
[33Dah], [36Dah), [39Kus], and [39Lee] using XRD. Because of
the nearly equal X-ray scattering factors for Fe and Ni, the order-
ing is difficult to observe with X-rays (see [38Haw]). The results
of [39Lee] were confirmed by [39Haw], also with X-rays. Varia-
tions in the magnetic properties, electrical resistance, and hard-
ness with heat treatment of alloys showing FeNis order were in-
vestigated by [32Dah], [33Dah], and [36Dah}]. Based on X-ray
and electron microscope observation of annealed thin films and
on the results of [S2Hun], [63Heu] concluded that the (yFe,Ni)
phase decomposes eutectoidally to (o«Fe) and FeNij at 345 °C and
52 at.% Ni, a conclusion that still appears valid. (The existence of
a eutectoid near this same point based on the magnetic transition
had been postulated earlier; see [21Mer].)

The critical behavior of the temperature derivative of the resis-
tivity around the FeNi3 composition was investigated by [820re].
No anomaly in the resistivity was found at the order-disorder tem-
perature, but one was found at the Curie temperature. The phase
diagram in the composition range 69to 77 at.% Ni and in the tem-
perature range around 510 *C was studied in considerable detail
by [80Van] and [81Van] using Mssbauer spectroscopy. They ex-
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plained a 15 °C hysteresis zone between ordus and disordus as a
magnetic effect. [81Lef] investigated the local atomic arrange-
ment in FeNij3 using neutron diffuse scattering and a single crystal
quenched from four different temperatures. [72Cal) found that the
order-disorder transformation of FeNij is not second order and
observed a two-phase zone of 5 or 6 °C for alloys between 71 and
75 at.% Ni. On the basis of a calorimetric study, [52lid] and

Phase Diagram Evaluations: Section II

[541id] concluded that short-range order forms in FeNi3 before
long-range order is observable by other methods.

The ordering behavior of FeNi3 was also investigated by [37Kal],
[39Haw], [39Kay], [40Nix], [48Kal], [50Jos], [53Rhi], [53Gei],
[57Lya]), [57Vit], [58Kus), [62Kac], [63Dav], [63Tre], [65Gon],
[72Cal], [73Cal], [75Bil], [75Leb], [77Hut], [79Des], and
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Fig. 1 Assessed Fe-Ni phase diagram with selected experimental data.
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Table1l High-Temperature Phase Boundary Data for Fe-Ni Alloys

Composition, Temperature, “C
at.% Ni Liquidus Solidus ®Fe)/®Fe) + (yFe,Ni) (8Fe) + (yFe,Ni)/(yFe,Ni)
From [10Rue]

0 1538

9.6 1515

19.2 1488

29.0 1472

38.8 1452

48.8 1448

58.8 1443

689 1441

79.2 1446

100 1455

From [23Han]

11 1532 e 1447
20 1530 . 1471
29 1523 . 1497
37 1521 e 1504
5.1 1506

58.... 1506

8.0 1501

10.0........ 1496

14.6. 1493

247 1474

348 1460

45.1 . 1449

54.6 1443 v

593 1442 1437

65.1 1439 1435

66.7 1439 e

69.3 1439 1434

74.5 1440 1436

79.2 1445

84.2 1447

89.1 1453

From [25Kas]

13 . 1532 1526 1454
20 1530 1520 1470
5.0 1518 . v
15 1516 1510 1512
10.0 1510 1504 ee
20.0 1488 1488 1484
40.0 1463 1456 .
60.0 " 1447 1441

80.0 1448 1443

From [31Ben]

11... 1526 1519 1417
21 1526 1512 1443
3.0 e 1523 1490
39 . 1518 1507

6.6 .o 1514 1499

/5 RO, 1511 1497

7.8 1507 1497

8.0 1509 1493

100t nrvenre e saenns s e 1504 1485

149 1492 1483

19.5 1477 1472

19.9.... e 1483 1475

25.7 1472 1462

29.3 1464 1451
492ttt e enenrs 1441 1432

(continued)

Note: All results corrected to IPTS-68 and to agree with 1538 °C as the melting temperature of pure Fe and 1455 °C as the melting temperature of pure Ni.
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Tablel High-Temperature Phase Boundary Data for Fe-Ni Alloys (continued)

Composition, Temperature, °C

at.% Ni Liquidus Solidus @Fe)/@®Fe) + (yFe,Ni) (8Fe) + (yFe,Ni)/(yFe,Ni)
From [37]Jen]

10.0 1479

200 1458

30.0 1447

40.0 1441

50.0 1440

60.0 1439

70.0 1418

80.0 1423

90.0 1438

From [57Hel]

1.84 1528 1526 1455 1462
279 1524 1520 1484 1483
3.76 1520 1514 1503 1506.5
4.62 1516 15115 1514 e
572 15135 1510 v

7.61 1508.5 1503.5

895 1502.5 1598.5

1223 1497 1491

Note: All results corrected to IPTS-68 and to agree with 1538 °C as the melting temperature of pure Fe and 1455 °C as the melting temperature of pure Ni.

[84Lef]. Experimental values reported by various investigators
are listed in Table 3 and compared in Fig. 4.

Metastable Phases

At low temperature (under about 800 °C), the (aFe) + (yFe,Ni)
field is relatively broad, and attainment of equilibrium involves
considerable diffusion. Diffusion rates at these lower tempera-
tures are low; consequently, very long times are required to estab-
lish equilibrium, and normal conditions favor a diffusionless (or
martensitic) transformation. This transformation exhibits consid-
erable hysteresis. In early work, [20Han] used metallography to
determine two sets of boundaries for the (aFe) + (YFe,Ni) two-
phase region—one on heating, and one on cooling. The
(YFe,Ni)/(aFe) + (yFe,Ni) boundary determined in this way
agrees closely with that determined by thermal analysis (the
(aFe)/(aFe) + (YFe,Ni) boundary is not detected by thermal
analysis). [20Han] also concluded that the (aFe) — (yFe,Ni)
transformation is accelerated by the presence of impurities.

From a practical standpoint, a diagram giving the details of this ir-
reversible transformation is often of more importance than one
giving the equilibrium boundaries in this region. Figure 5 exhibits
experimental transformation measurements of [25Pes], [27Hon],
[49Jon], and [56Kau] and compares them with the equilibrium
boundaries. In this figure, the supersaturated bee phase that results
from the diffusionless transformation is denoted a,. The solid
lines are estimates of A5, M, A¢, and My, where A and M are the
so-called austenite and martensite start temperatures (10 vol.% of
the alloy having transformed), and A¢ and Mg are the so-called
austenite and martensite finish temperatures (90 vol.% of the
alloy having transformed). These lines are valid only over a range
of cooling and heating temperatures between approximately 2
and 150 °C/min. The uncertainties in the estimated A, Ag, M, and

M¢ temperatures are large, but decrease as the Ni concentration
decreases.

Inthe o or (YFe,Ni) field, the alloy will be all (yFe,Ni) if it is being
cooled from the (yFe,Ni) field or all o, if it is being heated from
the a; field. Because the transformation from (yFe,Ni) to o is dif-
fusionless, it can occur at very low temperatures for alloys with
greater than 30 at.% Ni. [S6Kau] reported the M; temperature of
(=223 °C) (50 K) for a 33 at.% Ni alloy. In addition, the M tem-
peratures of various steels are known [54Mey, 48Fis, 74Ume,
63Yeo, 82Bro1] to change with the temperature at which they are
austenized. That this change is due to the effect of austenizing
temperature on grain size was shown by [51Mac] and [74Ume].
For an Fe-31 at.% Ni alloy, [74Ume] found that the M tempera-
ture varied between 200 and 230 °C as the grain size varied be-
tween 5 and 70 um. Impurities and internal stresses also have an
important effect on the transformation temperatures [e.g. 82Rod].

The diffusionless character of the a; — (yFe,Ni) transformation
was shown clearly by {32Sch]. [34Deh] reported that the trans-
formed alloy is bec, and is not tetragonal as is Fe-C martensite,
with the microstructural similarity of the two martensites being
due to the similar way in which they transform from the y phase.
[35Sch] found that for greater than 10 at.% Ni, the (yFe Ni) —»
(aFe) transformation temperature could not be lowered by long
annealing times (up to 100 h). Some early diagrams, such as that
of [36Mer], were drawn showing the irreversibility of the dif-
fusionless transformation directly.

[62Gil] reported that the diffusionless transformation is massive
type for Ni contents less than about 15 at.%. For very rapid cool-
ing and/or for higher Ni concentration, [66Hum) and [62Gil]
reported that the transformation is martensitic type.

According to [49Jon], the diffusionless a; — (yFe,Ni) transfor-
mations are independent of the cooling or heating rate for rates be-
tween 2 and 150 *C/min. [76Ino} and [82Ray] showed that the
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Fig.2 High-temperature region of the Fe-Ni phase diagram.
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Table2 (aFe)/(yFe,Ni) Equilibrium Phase Boundary Measurements

Temperature, Compeosition, at.% Ni Anneal time,
‘C (aFe)/(aFe) + (yFe,Ni) (aFe) + (yFe,Ni) + (yFe,Ni) days Technique Reference
817 1.0 e . X-ray [30Rob]
806 - 3 . Magnetic [40Pic]
800 1.0 45 e X-ray [390we]
19015 3503 31 (a) [65Gol]
744 . 6 o Magnetic [40Pic]
721 e 7.6 e Magnetic [40Pic]
720 38+03 85+03 7 ®) [65Gol]
717 26 e e X-ray [30Rob]
705 - 9 . Magnetic [40Pic]
700........ 25 9 . X-ray [390we]
39x02 9.4£0.2 56 ®) [65Gol]
672 3.94 . 0.7 X-ray [36Jet]
670 4302 121204 74 ®) [80Rom)]
668 - 12 . Magnetic [40Pic]
672 27 e X-ray [390we]
657 41 .o . X-ray [30Rob]
625 - 16 e Magnetic [40Pic]
600 35 14 e X-ray [390we]
5303 193205 180 (a) [65Gol]
5205 194:1.4 127 ®) [80Rom}
585 . 26.20 457 X-ray [36Jet]
20 - Magnetic [40Pic]
572 - - 23 . Magnetic [40Pic]
557 4.0 . - X-ray [390we]
550...... . 18.5 e X-ray [390we]
540 25 o, Magnetic [40Pic]
526 2594 . (c) [63Heu]
523 11.2 - - X-ray [30Rob]
557 422 1 X-ray [36Jet]
518 12.6 . . X-ray {30Rob]
500 5.0 26.5 . X-ray [390we]
6010 315205 608 (a) [{65Gol]
55+04 31.7+23 270 ®) [80Rom)
496 5.0 e . X-ray [390we]
6.07 e 734 X-ray [36Jet]
467 31.1z4 © [63Heu])
456 5.5 X-ray [390we]
5.91 33.36 3150 X-ray [36Jet]
450 58+05 364228 120 () [80Rom]
412 3704 e (© [63Heu]
400 . 6.5 415 v X-ray [390we]
4905 438zx3.1 270 ®) [80Rom}
370 4634 e © [63Heu]
365 - 34 e Magnetic [43Has)
350 58 49 28 X-ray [390we]
49 e X-ray [52Hun])
300 . 56.5 28 X-ray [390we]
4005 534141 430 ®) [80Rom}

(a) Diffusion couple, analyze with electron probe. (b} Quench as a anneal, analyze with electron probe. (¢) Carbonyl vapor pressure.

martensitic transformation in Fe-24 wt.% Ni can be suppressed to
below room temperature by splat cooling. For alloys with less
than about 30 at.% Ni, the transformation is isothermal, and the
transformation temperature is strongly dependent on impurity
contents. Above 30 at.% Ni, the transformation is athermal and
less dependent on impurities [83Kam]. Further investigations of
the nature of the ap — (yFe,Ni) transformation were made for ex-
ample by [29Gos}, [30Rob}, [48Fis], [470el], [51Smo], [62Bre],
[62Yeo], [63Gol], [67Rob], [71Geo], [77Roi}, [79Mat], [81Bor],
[82Duf], [84Bor], [84Izm], and [84Rin].

Considerable supercooling of liquid Fe-Ni alloys is possible.
[78Con) observed supercooling of up to 150 K in an alumina
crucible for alloys between 6 and 90 at.% Ni. [83Abb] studied su-
percooling in levitation melted 25 at.% Ni samples, obtaining su-
percooling up to 270 °C, somewhat less than the 300 °C reported
by [66Kat] for alloys surrounded by glass coatings. Transforma-
tion of (yFe,Ni) to (aFe) in thin films was investigated by { 78Gal].

Alloys containing approximately 20 to 50 at.% Ni—the so-called
Invar alloys—exhibit anomalous thermomechanical and ther-
mochemical behavior, including a region of very low coefficient
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of thermal expansion. [79Cha] showed that these Invar anomalies
tend to disappear in alloys that have been electron irradiated to en-
hance diffusion and thereby accelerate the approach to true equi-
librium. Thus it is probable that the Invar anomalies are a charac-
teristic of metastable alloys. Literature on the Invar state is
extensive, and we refer here to [60Kon], [64Ban], [72Wei],
[78Kat], [78Cha}, and [79Shi], where many additional references
may be found. Recently, [85Chu2] proposed that the presence and
disappearance of the Invar anomalies are related to a spinodal gap
due toa tricritical point arising from the magnetic transition in fcc
alloys (see Fig. 6).

An orthorhombic phase in thin films with a composition in the
(aFe) + (YFe,Ni) region of the equilibrium diagram was indicated
by [58Pin). This phase was not retained above 650 °C. [56Cec]
postulated that small particles of 30 at.% Ni that were rapidly
cooled from the liquid state could pass directly to the (aFe) phase.
Asurface phase, either orthorhombic or tetragonal, which formed
on 50 at.% Ni magnetic tapes after 18 months at room temperature
was reported by [S9Ana). A reversible transformation from one
fcc structure to two fee structures below about 150 °Cin 30 to 45
at.% Ni alloys was reported by [61 Ana]. Rapidly solidified Fe-Ni
alloys were also studied by [73Miz], [79Bos], [84Gor], and
[84Miu]).

Metastable FeNi and FegNi

The existence of ordered structures based on Fe3Ni and FeNi have
been proposed by a number of investigators. For the equiatomic
composition, an order-disorder reaction below 321 + 2 °C was
reported by [60Pau), [62Paul), and [62Pau2] for alloys that were
heavily irradiated by neutrons. [56Tin] gave X-ray data support-
ing the existence of an ordered structure near the Fe3Ni composi-

tion. The existence of FesNi and FeNi ordered structures was in-
vestigated further by [43Hos], [58Kus], [60Pau], [61Ban],
[63Heu], [63Mar], [64Nee], [70Gro], [71Hau], [79Sco], and
[84Cen]. Ordering in FeNi after either electron or neutron irradia-
tion was observed by [78Cha] and [79Cha). FeNi superstructure
was observed in meteorites by [77Pet] and investigated further by
[79Sco], [80Meh], and {82Gol]. In a study of meteorites, [82Jag]
found that compositions of 30 to 40 at.% Ni consisted of ordered
(YFe,Ni) + ordered FeNi, whereas [79Lin}, in a STEM study of
Fe-Ni meteorites, found decomposition into (aFe) + (yFe,Ni)
with ~5 and 47 at.% Ni, respectively.

[82Gol] proposed a metastable phase diagram, with FeNi having
AuCu superlattice structure to account for the “cloudy zone”
structure found in meteorites [78Alb1, 78Alb2]. [84Ros1] and
[84Ros2] recently proposed that ordered FeNi be included as an
equilibrium phase in the Fe-Ni diagram. Figure 6 compares the
cluster variation calculations of [84'Yam] for the ordering reac-
tions with the assessed diagram of Fig. 1. Also shown in Fig. 10
are the calculations by [85Chu2], [85Chu3), and [86Chu] of a
possible tricritical point and spinodal arising from the magnetic
interaction. [71Hau] identified Fe;Ni order in Invar alloys using
electron diffraction and pointed out its similarity to Fe3Ni. Com-
puter modeling of the order-disorder transformation in FeNij was
performed by [74Gol]. Recent work on Fe-Ni meteorites by
[89Reu] also pointed to the existence of FeNi and FesNi in the
equilibrium diagram.

The FeNi and Fe3Ni ordered structures are not shown on the dia-
gram of Fig. 1. Although still an open question, it is probable that
these ordered phases are metastable or unstable structures
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Table3 FeNiz Equilibrium Boundary Measurements

Phase Diagram Evaluations: Section II

Temperature, Composition,
Reference Technique Equilibrium °C at.% Ni
[50Jos] Dilatometry (yFe,Ni)/FeNi3 479 67
491 69
500 71
504 73
501 75
492 i
474 79
[53Gei] Dilatometry (yFe,Ni)/(yFe,Ni) + FeNi3 482 67
495 69
504 !
509 73
503 75
494 77
477 L
Dilatometry (yFe,Ni) + FeNia/(yFe,Ni) 452 67
481 69
494 7
503 73
492 75
480 77
461 79 -
[63Heu] Carbonyl (yFe,Ni)/(yFeNi) + FeNis 365 5324
vapor pressure (yFeNi) + FeNis 365 62x4
FeNiy/FeNis + (YFe,Ni) 300 874
FeNi3 + (YFe,Ni)/(yFe,Ni) 300 92x4
(aFe) + FeNis/FeNi3 333 63.3
319 64.5
277 674
253 69.2
232 70.2
[81Van]...... Massbauer (YFe,Ni)/(yFe,Ni) + FeNis 510 69
spectroscopy 516 7
516 73
511 75
501 77
(yFe,Ni) + FeNia/(yFe,Ni) 505 69
512 7
515 73
508 75
494 77

reached in alloys in which the sluggish (YFe,Ni) — (aFe) + FeNis
eutectoid reaction has been suppressed.

Crystal Structures and Lattice
Parameters

A summary of the crystal structures found in Fe-Ni alloys is given
in Table 4, and lattice parameters are listed in Table 5. Measured
values of the lattice parameters for the (aFe) and (yFe,Ni) phases
vs composition are shown in Fig. 7 and 8. The solid lines in Fig. 7
and 8 represent a weighted least-squares fit to these values.

[370we1] found that the (yFe,Ni) phase lattice parameter at room
temperature (20 °C) as a function of composition reaches a maxi-
mum value of 0.3597 nm at 39 at.% Ni and then diminishes at al-
most the same rate at which it increases. [37Bra] made lattice
spacing measurements on alloys containing 27 to 100 at.% Ni that
were quenched from 700, 800 and 900 °C. This quenching gave
larger lattice spacings than annealed, ordered alloys. Values
shown in Fig. 8 are for their annealed alloys, which are more rep-

resentative of equilibrium. [260sa1] and [260sa2] measured the
lattice parameters and the densities for alloys annealed at 1150 °C
and then slow cooled. [63Dav] investigated the variation in lattice
parameter in FeNi; on annealing at 480 °C for up to 1000 h.

Lattice parameters were also measured by [21And], [22Kir],
[23Bai], [23Mck}, [27Jun], [31Phr], [370wel], [370we2],
[370we3]), [370weA4], [370we5), [410we], [49Hah], [S3Wak],
[54Lih], [55Roy], [S5Sut], [66Abr], {69Ree], [69Asa], and
[83Sen). The most extensive work is that of [410we]. Over most
of the region of the Fe-Ni diagram, lattice parameters measured at
room temperature will depend on the exact heat treatment given
the alloy.

Thermodynamics

[Hultgren,B] assessed the thermodynamic work on Fe-Ni
through about 1972. [73Kau] and [70Prel] reviewed thermo-
dynamic properties of the system for use in calculations of the
phase diagram. Since then, phase diagram calculations were
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Tabled4 Fe-Ni Crystal Structure Data

Phase Diagram Evaluations: Section II

Composition, Pearson Space Strukturbericht

Phase at.% Ni symbol group designation Prototype

(FeXa) 0t03.5 ) Im3m A2 w

(yFe,Ni)b) 0t0100 cF4 Fm3m Al Cu

(aFe)c) 0to5.5 c2 Im3m A2 w

FeNi, 63t085 cP4 Pm3m L1y - AuCus

Metastable phases

FeNi tP2 Pa/mmm Llg AuCu

FeyNi e cP4 Pm3m L1, AuCus

(a) From 1538 to 1394 *C at 0 at.% Ni. (b) From <1394 to 912 °C at 0 at.% Ni; at all temperatures at 100 at.% Ni. (¢) Below <912 °Cat 0 at.% Ni.

Table 5 Fe-NiLattice Parameter Data

Composition, Lattice parameter,

Phase at.% Ni nm Comment Reference

(8Fe) 01035 0.29322 A11394°C, [65Pea]
0Oat.% Ni

(Fe,Ni) 0t0 100 0.36468 At916°C, [65Pea]
0Oat.% Ni

0.35240 At25°C, [Massalski2]

100 at.% Ni

(aFe) 0toS.5 0.28664 At20°C, [65Pea]
0at.% Ni

FeNi, 63to0 85 0.35523 At20°C, [65Pea]
75 at.% Ni

Metastable phases

FeNi

Fe;Ni

made by [74Bas], [74Rao], [77Has], [77Lar], [79Lar], [80Lar],
[81Imr], [81Nis], [82Cha], [82Vel], [85Chu2], [86Chul], and
[86Chu2].

[74Rao] analyzed phase diagram data, together with ther-
mochemical information, to deduce analytical equations for the
thermodynamic functions in solutions. [77Kub] assessed partial
and integral enthalpies and entropies of mixing for (yFe,Ni) al-
loys. [82Vel] derived analytical polynomial expressions for the
integral enthalpies of mixing, excess entropies, and the Gibbs
energies for the liquid and (yFe,Ni) alloys and used those expres-
sions for the evaluation of the phase diagram.

Enthalpies of mixing of liquid alloys were measured in
calorimeters by dropping one pure solid component into a bath
with the other component molten. This method was used by
[71Toz]}, [811gu], [74Bat], and [66Elt]. [70Pre1] used differential
thermal analysis for determination of the heat of mixing, The
study of [66Elk] contradicts the other investigations, has consid-
erable scatter of experimental values, and was dropped from fur-
ther consideration. The study of [71Toz] gave unreasonably low
values of heats of mixing; they were replaced with new values by
the same authors in [81Igu]. The experimental results of [81Igu],
[74Bat], and [70Pre1] agree satisfactorily (see Fig. 9).

Enthalpies of mixing for solid alloys were obtained by
calorimetric measurement of the heat of reaction between pow-
dered components at 1400 to 1600 K. This method was used by

[63Den], [67Kub], and [71Spe]. [61Ste] dissolved solid com-
ponents and alloys in liquid tin inside the calorimeter at 1123 K.
The results of [63Den], [67Kub], [71Spe], and [61Ste] agree
satisfactorily and they are also shown in Fig. 9. When all the ex-
perimental results are plotted in one graph (see Fig. 9), it is ob-
vious that the data for solid and liquid alloys are partially overlap-
ping, i.e., the enthalpies of mixing for solid and liquid alloys are
the same, within the experimental error.

The problem of differentiating the data for liquid and solid alloys
was discussed by [77Kub] and [70Pre1]. [70Pre1] measured heats
of melting of ten alloys. Their results deviate from the additive
value by 400 to 700 J/mol, which can be compared with the errors
in determination of the heat of melting of components given by
[70Pre2]: 750 J/mol. If the experimental data for both the solid
and liquid heats of mixing are least-squares fitted to a four-term
Redlich-Kister expression, the following equation is obtained for
the excess enthalpy:

H = Xp, Xpi[-16 226 - 14 982(Xp, — X))
+200(Xg, - Xn)? + 11 382(X5, — Xpo)°)

This curve is plotted as a solid line in Fig. 9. The uncertainty in the
integral values of heat of mixing is on the order of 600 J/mol. In
Fig. 9, the dotted line represents the liquid excess enthalpies cal-
culated from the thermodynamic mode! below, and the dashed
line represents the solid excess enthalpies calculated from the
same model.
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Fig. 15 Fe activity coefficients for (YFe,Ni) at 1273 K.
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Table 6 Thermodynamic Parameters Used to Model the Fe-Ni Phase Diagram

Liquid phase
G(Fe,L)=0
GNiL)=0

G™(1) = Xpo Xni[-16 391 + 3.17 T+ (12075 - 2.6 T) (X — Xni) + (~2000 + T) (X = X)) + (<1500 = TXXge — Xpi)?]

bee phase

G(Fe,bec) = 12736.4—17.216 T+23.18 Tn T—0.0048155 T2
G(Nibec)=-12500+9T

GeX(oce,T > 1667 K) = Xpe X [1950 —3.05 T+ (<2000 + TXXge - Xni)? + (<1500 - T) (K — Xni)]
G(bee, T < 1185 K) = X, X [13 274 - 13 T + (<2000 + T)(Xge —Xi)2 + (<1500~ T) (Xp, —Xni)’]

GX(bee,500 < T < 1850 K) = X X (9381-~8.7757)
G(bee,mag) = RTc(bec) In [Blbec) + 11 (1)

1=T/Tc (bcc)

ft<1)=-0.9053 +¢-0.153¢4-0.068 10-0.00153 /16
fit>1)=-0.0641714-0.002037 ¢ -14-0.0004278 1 24

T(bee) = 1043X g, + Xpe XN [-757.6 + 1946(Xpe - Xp) + 2153(Xpe —XNi)z -2779%(XFe -XNi)3]
Blbee) = 222X, + Xpe X [1.176 + 1.445 (Xpe ~Xny) +2.275 (Xpe —XNi)P-2042 Kre-Xni))

fec phase

G(Fe,fco) = 11 274-16.3878 T+ 22.03 Tln T- 0.0041755 T2
G(Nifce) = 3667.6-14.4177 T+ 20.113 TIn T—-0.004561 T2

Go(fcc) = Xpe X [-15 291 +3.47 T+ (12061 - 2.5 TY(Xpe —Xny) + (<2000 + T)(Xpe - Xog)? + (<1500 T XX 5 ~Xnp)]

G(fec,mag) = RT¢ (fec) In [f(fec) + 117 ()

t=T/Tc (fec)

flt<1)=-0.5597-0.63151-0.09178 ¢ 4 + 0.001872 110-0,007715 16
At>1)=-0.03184 14 +0.002468 ¢ -14 - 0.0019904 ¢ =24

Te(foc) = — 80X, + 627.4X; + Xie Xpvi [2040.5 ~1250(X e — X;) - 2627 (X - Xni)2 — 1784 (K —Xni)? ]
B(fOC) = _1'59XFC + 0-62XNi +XF¢ XNi [8644 +7.691 (ch —XNi) +4.435 (XFC —XNi)z +0.585 (XFC _XNi)3]

FeNis phase

G(Fein FeNis) = 1127.4—16.388 T+ 22.03 Tin T +0.0041755 T 2
G(Niin FeNiz) =3667.6~ 14.418 T+ 20.11 Tln T—0.0045610 T 2

G“(FeNi;;) =XFCXNi [-24185+1.9T+21475 (XFe "XNi) +(=1700 + D (XFe —XNi)2 +(-1500- T)(Xpe —XNi)S]

G(FeNis,mag) = RT¢ (FeNi3) In [p(FeNiz) + 1) A1)

t=T/Tc (FeNi3)

ft<1)=-0.5597-0.6315¢ ~0.09718 £ 4 + 0.001872 110 0.007715 116
Re>1)=-0031841-4+0.002468 ¢ ~14-0.0019904 ¢ -2¢

T(FeNi3) = - 80X, + 627.4 Xy + X Xni [2040.5 — 1250(X g — Xpg) — 2627 (Xpe - Xii)? - 1784(X g — Xpi)?]
B(FeNiz) = — 1.59X g, + 0.62X; + X5 Xni8.644 +7.691(Xpe — Xii) + 4.435(X e — Xni)? + 0.585(Xpe — X))

Note: Xy and Xy; are atomic fractions; Gibbs energy values are in J/mol; and Tis in K.

Measurements of the activities in liquid alloys using the transpor-
tation method with a stream of inert gas were made by [59Zel] at
1830 to 1891 K, by [78Mar] at 1873 K, and by [660ni] in dilute
alloys at 1825 to 1930 K. The transpiration method based on
analysis of condensate evaporated in vacuum was used by
[59Spe] at 1783 10 1873 K, by [72Mil] at 2178 to 2558 K, and by
[71Tse] at 1873 K. The Knudsen cell with a mass spectrometer
was used by [77Kub] at 1773 to 1923 K, by [78Con] at 1500 to
1900 K, by [67Bel] at 1863 K, and by [81Ram] at 1373101923 K.
The results obtained by [71Tse] deviate considerably from other
studies and were discarded. All other investigations appear to be
in reasonable agreement, at least over most of the concentration
range. Most of the results are plotted in Fig. 10 and 11. (In these
figures, the dotted lines represent the values calculated from the
thermodynamic model given below.) From the analysis of infor-
mation given in the original papers, it is difficult to reject a study
completely or to give preference to any particular group of inves-
tigations.

[72Dav], [78Con}, and [81Ram)] also made measurements of ac-
tivities in the solid alloys. Solid alloy activity measurements using
CO/CO; equilibrium over the Fe-Ni-O system were made by
[77Gri] at 1573 K for alloys between 0 and 27 at.% Ni. [76Rob]
reported on Ni activities in two alloys with 4.8 and 9.4 at.% Ni
at 1400 to 1550 K measured by Knudsen cell with a mass
spectrometer. These results agree satisfactorily and are plotted in
Fig. 12 and 13. (In these figures, the dotted lines represent the
values calculated from the thermodynamic model given below.)
Early investigations of solid activities were made by [58Lyu],
who measured vapor pressures of alloys using a mass
spectrometer at 1463 to 1583 K and by [74Vre] using the
transpiration method at 1509 K for alloys between 13 and 94 at.%
Ni. The results of [S8Lyu] are close to ideal values for both com-
ponents—in considerable contradiction with the other results—
and were dropped from further consideration. The results of
[74Vre], plotted in Fig. 12 and 13, were given low weight because
of their scatter and contradiction with the later investigations.
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Table 7 Average Magnetic Moments Measured for Fer-
romagnetic Fe-Ni Alloys

]
Composition, Bohr
Phase at.% Ni magnetons Reference
(53220 R 0 2.22 [63Cra]
14 221 [25Pes]
15 2.24 [63Cra]
3.0 2.26 [63Cra]
35 222 [25Pes])
43 227 {63Cra)
5.1 2.23 [25Pes}
6.2 2.29 [63Cra]
6.9 2.24 [25Pes]
93 228 (63Cra)
113 223 [25Pes])
11.5 229 {63Cra)
159 222 [25Pes)
189 2.23 [63Cra]
19.0 221 [25Pes]
233 2.17 [63Cra]
252 213 [25Pes]
25.5 2,12 [25Pes]
29.7 2.00 [25Pes]
30.4 2.00 [63Cra]
0 220 [25Pes]
TN P 325 1.93 {63Cra]
308 1.25 [63Cra]
321 1.61 [63Cra]
343 177 [63Cra]
35.3 1.82 [63Cra]
408 1.80 [25Pes]
1.84 [63Cra]
420 1.79 [25Pes]
43.5 1.77 [25Pes]
496 1.67 [25Pes]
4938 1.69 {63Cra]
510 1.65 [25Pes]
517 1.52 [25Pes]
60.0 1.50 [63Cra)
67.0 1.36 [25Pes]
79.7 1.07 [63Cra]
80.2 1.06 [25Pes]
87.7 0.88 [25Pes]
100 0.61 [25Pes,
63Cra)

With decreasing temperature, the vapor pressure and the
reliability of activity measurements drop rapidly. The difference
in values of the Ni activity coefficients at 1473 K (Fig. 12) be-
tween two similar investigations [78Con, 67Bel] looks natural,
considering the probable uncertainty of the methods used. For
both solid and liquid alloys, the uncertainty in determination of
the activity coefficient of either of the components is on the order
of £0.03 for a component in an alloy near the pure component,
+0.08 in alloys around the equiatomic composition, and +0.15 for
acomponent in alloy near infinite dilution,

Other reports of activities in solid alloys were provided by
[49Kub), [530ri], [69Kus], {64Roe], [70Gat], [72Dav], [75Tri],
[76Dal], [770no], and [79Tan]. Most of these contradict each
other, and it is worthwhile to plot only some of the latest studies.
[75Tri] measured CO/CO; equilibrium over the Fe-Ni-O system
at 1273 K. [76Dal] used the same technique at 1065 to 1380°K.

[770no0] measured the Fe activities by the emf method at 1023 to
1423 K. Figures 14 and 15 show thatat 1273 K, the results of three
of these studies agree satisfactorily. (The dotted lines in the
figures represent the values calculated from the thermodynamic
model given below.)

Specific heat measurements in the Fe-Ni system at low tempera-
tures were reported by [40Kee], [64Gup}, [65Ehr], and [66Shi]
and at higher temperatures by [39Lee], [73Kol], and [82Bro2].

An attempt was made to construct a thermodynamic model that
represents the Fe-Ni diagram over the widest possible tempera-
ture range and agrees, within the above stated experimental er-
rors, with the thermodynamic measurements. This model was
used as an aid in the evaluation of the measured phase diagram
boundaries, and greater weight was given to these boundaries
than to the thermodynamic measurements. In the model, the
Gibbs energy for a phase p is represented by:

G(p) = X G(p,Fe) + Xp,G(p,Ni) + G(p, mag)
+RT(XFC lnXFe +XNi lnXN,) + G(p)ex

where G(p,Fe) is the Gibbs energy of pure Fe, and G(p)ex is the
nonmagnetic excess free energy. Following [74Ind], the magnetic
contribution to the Gibbs energy is of the form:

G(p,mag) = RTc(p) In (B(p) + DA?)

where t is the reduced temperature 7/T¢, Tc is the Curie tempera-
ture, and B is magnetic moment in Bohr magnetons. Both T¢ and
B are functions of composition. In the Fe-Ni system, all three
phases in the equilibrium diagram are ferromagnetic, and the
magnetic contribution is significant, especially at temperatures
below 912 °C. Early estimates of the magnetic contributions to
phase equilibrium in the Fe-Ni system were given by {73Sch].

The functions for T and B for the bee and foc phases were ob-
tained by least-squares fitting the literature data. For the FeNij
phase, Tc and B values were taken to be approximately equal to
those in the fcc phase. For the bec phase, the function fi7), as ex-
panded in a power series by [78Hil], was used (the resultant con-
tribution to the Gibbs energy agrees well with the alternate form
used by [85Chul]). For the fcc phase, the same power series for
f(H) was used, with the coefficients being obtained by least-
squares fitting the evaluated specific heat data of [84Des] for Ni.
For pure Fe, the thermodynamic functions given by [79Agr] were
used. For pure Ni, the enthalpies of melting and specific heat
values given in the evaluation of [84Des] were used to construct
the nonmagnetic part of the thermodynamic functions. For bec
Ni, the lattice stability estimates of [73Kau] were used. In assess-
ing the diagram, the thermodynamic modeling and optimization
procedure of [81Sun] were used. For the liquidus and solidus,
greatest weight was given to the liquidus measurements, especial-
ly those of [S7THel].

The parameters found by a combination of optimization and trial
and error to best fit the diagram are given in Table 6, and the cal-
culated Fe-Ni diagram is shown in Fig. 16. Above about 500 °C,
the calculated and assessed diagrams are nearly identical (1 °C
in temperature and 0.5 at.% in composition). At lower tempera-
tures, the assessed and calculated boundaries differ somewhat.
Especially noticeable is the tricritical point predicted by the
model and arising from the influence of the magnetic contribution
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Table8 Measured Curie Temperatures vs Composition for Fe-Ni Alloys

Curie, Curie,
Composition, Temperature, Composition, Temperature,
Phase at.% Ni * Reference Phase at.% Ni °C Reference
() 32) [T 0 M [25Pes) (YFe,Ni)(cont.)........ 55.0 558 [53Wak]
770 [29Gos] 57.7 590 [25Pes]
14 766 [25Pes] 60.0 . 592 [53Wak]
238 763 [29Gos) 591 [63Cra]
35 758 [25Pes] 65.0 613 [53Wak]
48 755 [29Gos) 67.0 612 [25Pes}
5.1 752 [25Pes] 68.0 616 [53Wak]}
6.9 748 [25Pes] 70.0 614 [53Wak]
15.9 740 [25Pes] 720 608 [53Wak]
19.0 715 [25Pes] 74.0 600 [53Wak)
230 565 [43Hos)] 75.0 598 [53Wak]
297 597 [25Pes] 76.0 589 [53Wak]
313 535 [25Pes) 78.0 585 [53Wak]
333 460 [25Pes) 79.7 570 [63Cra]
338 435 [25Pes) 80.0 577 [53Wak]
(YFe,Ni) ....ocovreeennee 29.7 120 [25Pes] 80.2 576 [25Pes]
30.8 100 [63Cra) 81.0 571 {53Wak]
313 160 [25Pes] 85.0 543 [53Wak]
318 174 [25Pes] 87.7 511 [25Pes]
321 156 [63Cra] 100.0 360 [25Pes)
333 228 [25Pes] 361x1 [63Cra]
338 245 {25Pes] 3543 [68Kou]
353 261 [25Pes] FeNis.ooovvvrnnnrresins 45.0 49425 [53Wak]
228 [63Cra] 50.0 543 [53Wak]
36.1 250 [63Cra] 55.0 580 [53Wak]
370 285 [25Pes] 60.0 616 [53Wak]
385 300 [29Gos] 65.0 636 [53Wak]
39.0 317 [25Pes] 68.0 668 [53Wak]
40.8 321 [25Pes) 70.0 680 [53Wak]
354 (63Cra] 720 696 [53Wak]
420 346 (25Pes] 740 691 [53Wak]
435 403 {25Pes] 750 681 {53Wak]
45.0 468 [53Wak] 76.0 654 [53Wak]
47.1 415 [29Gos] 78.0 624 [53Wak]
493 506 [25Pes) 80.0 599 [53Wak]
4938 513 [63Cra) 81.0 584 [53Wak]
50.0 520 [53Wak] 85.0 543 [53Wak]
51.0 522 [25Pes)

to the Gibbs energy. (The tricritical point was also calculated by
[77Hut].) [85Chu2] gave convincing arguments for the existence
of this tricritical point, but further experimental confirmation ap-
pears necessary. In fitting the (aFe)/(8Fe) and (aFe)/(YFe,Ni) ex-
perimental boundaries, better fits are obtained if the expression
for the excess energy of the bee phase is divided into two tempera-
ture regions—one for the (aFe) and one for the (OFe) region. An
expression for the bee excess energy that covers the entire tem-
perature range, which gives a good approximation to the observed
boundaries and which is more sensible from a thermodynamic
point of view, is also included in Table 6.

In Fig. 9, the heats of mixing obtained from the parameters of
Table 6 are compared with the measured values (the dotted line is
for the liquid, the dashed line for the solid). In Fig. 10 through 15,
the theoretical values of the activities calculated from the model
parameters (dotted lines) are compared with measured values. In
all instances, agreement is within experimental error. However,
the fits are in some respects unsatisfying, especially for the Ni-
rich heats of mixing and Fe-rich Ni activities. The slight oscilla-
tion in the Ni activity coefficients on the Fe-rich side (Fig. 12 and
14) evidently is unjustified by the data. This may be in part due to

the poor accuracy of the measured values of the solidus and liqui-
dus of the Nirich alloys.

Pressure

The equilibrium diagram for 50, 100, and 150 kbar was calculated
by [61Kau1]. [61Kau2] showed that pressure lowers the (yFe,Ni)
— (aFe) transformation temperatures. [66Mcq] investigated the
effect of pressure on the density of Fe-Ni alloys by the shock tech-
nique up to 2000 kbar. Using XRD, [68Tak] measured the effect
of pressure on the crystal structure and molar volume.

Magnetism

The saturation magnetization, average magnetic moments, and
Curie temperatures for single-phase fcc alloys from 30 to 100
at.% Ni were measured by [63Cra). They also measured the
average magnetic moment for single-phase bec alloysin the range
010 30 at.% Ni. Magnetic moments onindividual Fe and Ni atoms
were measured by [62Col], [73Cab], [74Nis], and [S5Shu] be-
tween 40 and 100 at.% Ni. The use of magnetic measurements for
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studying two-phase Fe-Ni alloys was described by [39Suc] and
[40Pic]. The effect of heat treatment on the magnetic properties of
FeNis, including the maximum permeability, coercive force,
remanent, and saturation magnetization was investigated by
[53Wak]. By extrapolating the magnetization vs temperature
curves, they estimated the Curie temperatures for ordered FeNij
and found a higher Curie temperature for the ordered alloys than
for the disordered. A slightly higher saturation magnetization is
also found for the ordered alloys ([40Gra], see Table 7). Figure 17
and Table 7 compare the various measured magnetic moments,
and Fig. 18 and Table 8 compare the various measured Curie tem-
peratures. The Curie temperature of pure Niistakenas627.4 K, in
accordance with [68Kou] and [82Rhy].

Alloys of high maximum permeability, the so-called permalloys,
can be formed by rapidly cooling alloys near the FeNi3 composi-
tion [32Dah, 38Kay, 53Boz1, 53B0z2, 64Sch]. The magnetic
properties of an equiatomic single crystal of FeNi that had been
ordered metastably in the AuCu structure by neutron irradiation
below 320 °C were studied by [64Nee]. Further anomalies in
magnetic properties and phase separation have been observed by
[51Suc], [59Dek] and [61Gor]. [75Ind] showed how the Curie
temperature variation in (yFe,Ni) may be closely fitted to a Red-
lich-Kister form with a single interaction term. [77Mio] showed
how this interaction parameter is related to the two-moment
model for yFe of [63Wei]. [73Miz] measured Curie temperatures
and magnetic moments in rapidly quenched amorphous quasibi-
nary alloys with 0 to 90 at.% Ni and boron and phosphorus addi-
tions.
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841-843(1962) in French. (Meta Phases; Experimental)

62Pau2: J. Pauleve, D. Dautreppe, J. Laugier, and L. Neel, “Estab-
lishment of an Ordered Structure in FeNi by Imradiation with
Neutrons,” Compt. Rend., 254, 965-968 (1962) in French. (Meta
Phases; Experimental)
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SSSR, Met., (3), 19-31 (1966) in Russian; TR: Russ. Metall., (3),10-16
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dynamic Functions for Dilute Solutions of Nickel in Liquid Iron,” C.
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Heat Capacities in the System Iron-Nickel-Chromium,” J. Chem.
Eng. Data, 12,418-420(1967). (Thermo; Experimental)
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(Crys Structure, Magnetism; Experimental)
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Study of Liquid Iron and Nickel Alloys Using Electromagnetic
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Magn.,4,49-55(1973).(Thermo; Theory)

74Bas: ML1. Baskes, “Phase Stability of Iron Alloys,” Mater. Sci. Eng.,
15,195-202(1974).(Thermo; Theory; #)

74Bat: G.I. Batalin, N.N. Mineko, and V.S. Sundavisova, “Enthalpy of
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mochemistry and Phase Equilibria,” Mater. Sci. Eng., 14, 47-54
(1974). (Thermo; Theory; #)
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copy of an Ordered Phase (Superstructure) of FeNi in an Iron
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(1980). (Equi Diagram; Experimental)

81Bor: G. Bordin, G.C. Cecchi, and G.B. Fratucello, “Remarks on the
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Diagrams of Iron Alloys,” J. Iron Steel Inst. Jpn., 67, 2086-2097
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81Ram: W, Rammensee and D.G. Fraser, “Activities in Solid and Liquid
Fe-Ni and Fe-Co Alloys Determined by Knudsen Cell Mass
Spectrometry,” Ber. Bunsenges. Phys. Chem., 85, 558-592 (1981).
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