Stress-Induced Interaction of Pairs of Point
Defects in bcc Solutions

M. S. BLANTER AND A. G. KHACHATURYAN

The theory of the stress-induced interaction' has been used to calculate the interaction
energies of interstitials, vacancies as well as interstitials and vacancies, and host atom
displacements around a vacancy and interstitial in four metals with the bcc lattice: aFe,
V, Nb, and Ta. The cases of interstitial location both in octahedral and tetrahedral inter-
stices are discussed. The elastic constants, cohesion energy (for vacancies), Born-Kar-
man constant of the host lattice and coefficients of the concentration expansion of the
solid solution lattice due to the interstitials are the numerical parameters of the theory.
The computer calculation was carried out in the general form suitable for any interstitial
in these four metals and specifically for the interstitial solutions H, O, N in V, Nb, Ta
and C, and N in aFe. In the only case when the quantitative comparison of the calculated

characteristics with the experimental one is possible (interaction of the vacancies with
C in aFe), there is good agreement between calculated and observed values.

1. INTRODUCTION

AS is known, the interaction between point defects is
a very important effect for understanding such phe-
nomena as short-range and long-range order, diffu-
sion, aging in irradiated materials, internal friction,
and so on, This interaction is especially strong be-
tween interstitial atoms in a bce host lattice since
each interstitial atom produces a large crystal-lattice
distortion resulting in the stress-induced interac-
tion (the estimation of a typical pairwise stress-in-~
duced interaction energy in a bce host lattice gives a
value of the order of 1 eV).

The purpose of this paper is the calculation of
stress-induced interaction energies of the interstitial-
interstitial, and interstitial-host atom vacancy pairs
(interstitials in octahedral as well as tetrahedral
interstices). Consideration' of employed static crys-
tal lattices takes into account the discrete atomic
structure of a host lattice in the analysis of elastic
atomic displacements and corresponding stress-in-
duced energies, and therefore enables the calculation
of pair-wise energies of pairs whose separation
vector is commensurable with interatomic distances.

Computer calculations are carried out in the
general form which enables obtaining the stress-
induced energies for any kind of interstitial atoms
(for example, H, O, N, C) in V, NC, Ta, aFe, and
therefore are universal for these metals.

2. CALCULATION TECHNIQUE

The calculation technique employed in this paper
is based on the lattice statics theory formulated in
Ref. 1.

The real stress-induced pairwise interaction ener-
gies Wy, (R) between p-type and g-type defects
separated by the bcc lattice translation vector R is
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calculated by means of the inverse Fourier-transfor-
mation:

Wyg(R) = & % Vpq(k) VR [1]

where N is a total number of the host atoms, the
summation is carried out over all N points of quasi-
continuum inside the first Brillouin of the bcc lattice,
allowed by the cyclic boundary condition, V,,(K) is the
Fourier-transform of the interaction energies. Ac-
cording to Ref, 1 the function qu(k) can be expressed
through such material constants as coefficients of the
concentration expansion of the host lattice and fre-
quencies of crystal lattice vibrations. This function
looks like the scalar product:

where
F(p,k) = %Df(p,R) oiKR (3]

is a Fourier transform of the coupling force acting on
undisplaced host atom at the site R from a p-type de-
fect at R = 0 (the force f(p,R) as well as the vector
F(p,k) are material constants),

+The value qu(k) in Eq. [2] is presented without the term 0Sp,
1 . . .
Q= N EF(p,k)V*(p,k), Spq is the Kronecker symbol) since this term does not

give any contribution in qu(R) at R#0, It is also necessary to bear in mind
that Eq. {2] is not valid for k = 0.’

Vip,k) = ‘% U(p,R) eikR (4]

is a Fourier-transform of the host atom displace-
ment U(p,R) at a site R produced by a p-type point de-
fect in the unit cellat R = 0.

The value V(p,k) can be found from the equation of
lattice statics

D;;(K)V;(p.K) = Fi(p,K) 5]

where i,j = 1, 2,3 are the Cartesian indicies, the
tensor D;;(k) is a dynamical matrix which is the
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Fourier-transform of the Born-Karman constants of
the host lattice. The eigenvalues of a dynamical ma-
trix are squared crystal lattice vibrations frequencies
multiplied by the host atom mass.*

*There is the point of view that Born-Karman approximation for the dynamical
problem may be not sufficiently accurate. However, the final purpose of calcula-
tions is not determining the Born-Karman constants, but the calculation of the
dynamical matrix Dl](k) at any k vectors if we know Dj; (k) at k vectors along

symmetry direction (Dy; (k) at symmetry direction is dlrectly determined from

nonelastic neutron scattering data). Eqs. [AI.1] and [AI.2] give the simplest and
sufficiently accurate extrapolation of Dy;(k) at k points between the symmetrical
directions.

The representation of the dynamic matrix in terms
of the Born-Karman constants is presented in Ap-
pendix I. The solution of Eq. [5] is

Vi(p,k) = Gy(k) Fi(p,k) (6]

where Gi]-(k) is the Fourier-transform of the static
Green function i.e. the reciprocal tensor of the dy-
namical tensor D; (k)

The real atomlc displacements U(p,R) of a host
atom at the site R associated with a defect p can be
found from the inverse Fourier-transformation:

U(p,R) = ZDV(p k) e7ikR (7]

There are two types of interstices in the becc lattice:
octahedral and tetrahedral. Each unit cell of a bec lat-
tice has three types of octahedral sites with co-
ordinates (%,0,0), (0,%,0), (0,0,%) (the origin coincides
with the nearest host atom position). These inter-
stitial positions are identified by indices p =1,2,3
respectively. There are also six tetrahedral 51tes in
each unit cell: (z-,u-,O), (1,3,0), (0,49, (0,1%), 3,0,1),
and (3,0,) (p=1,1,2,2, 3, and 3, respectlvely)

In the case when couphng forces f(»,R) do not
vanish for the nearest and next-nearest coordination
shell around the interstitial at p-position only, the
equation for F(p,k) has an especially simple form.
They can be directly represented in the term of elas-
tic constants of the host lattice ci1, ¢12, cas spacing
of bcce lattice and coefficients of the bee lattice con-
centration expansion.

If an interstitial atom is situated in the octahedral
site with p = 3 (Ref. 2):

F°°(3,k) = id*(0:sin+ Ka, cos % Ka,, 0, sin 4 Ka,

X cos % kay, o3 sind kas) e &;3 [8]

If an interstitial is situated in the tetrahedral inter-
stices with p = 3 and p = 3 (Ref. 3):

FPY (3 %) = id® ¢t kat’z{ o1sin Ez"!, o18in k_zae_ e

ikag/z
H

k—;z—eikaii/z — cos 52"3)}

— 103 (cos

Lo g . ka . _;
F (3 k) = id® e “"ai’z{—ol sin 52, —01S1n—2ka—'2e ikay2

2
~ i03 (cos % c1K83/2 _ og k—;i)} [9]
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where
0y = (Cu1 + C12)Un + Cr2Uss = Uss[Ciz + (G + Ci2)t)

03 = C11Uss + 2C12Uy; = Uss[Cut + 2C;2t| [Qa]

t = Uyy/Uss.

a1, 82, and as; are translations of the bcce lattice along
[100], [010] and [001] directions:

dal _ dds r
Un = al—dc_’ Uss = a_g,d_c: Lgb]
are the coefficients of the concentration expansion
of bee interstitial solution caused by interstitials
situated in p = 3-type interstices only (C-concen-
tration). These coefficients are elements of the con-
centration expansion tensor U;; (Ref. 3) at p = 3:

Un O 0
Uij(s) =10 Uy 0 |
0 0 Uss

[10]

The numerical values of U;; and Uss are presented in
Appendix II for the cases C and N in ¢Fe as well as
H, O, N in V, Nb, and Ta.

Equations [8] and [9] enable the values of the
Fourier-transform F(p,k) of the coupling force to be
obtained for any other positions p and p by means of
both the cyclic permutation of the indices of the
vectors a;, a, as, and the vector component within the
curly brackets.

The numerical values of the coefficients U;; and Uss
displayed in Appendix II cannot be considered highly
reliable and need to be determined more accurately
in the future. That is why the energy values of the
stress-induced interactions of interstitials in «Fe, V,
Nb, Ta, and host atom displacements were calculated
in the form being suitable for arbitrary values of the
coefficients Uy and Uss. The results of these calcula-
tions easily enable one to find the numerical values
of interaction energies and displacements for any
interstitials in aFe, V, Nb, and Ta without an addi-
tional computer calculation. To do that, it is suffi-
cient to make use of the numerical values of U;; and
Uss inherent for the relevent interstitial atom and the
results of numerical computer calculations listed in
the tables.

The calculation of displacements caused by vacan-
cies and stress-induced interaction energies of inter-
stitial atom-vacancy pairs is based on the pair-wise
interaction potential between host atoms employed in
Ref. 4:

A B
E(R) =— I? + RE
where

4= ea’ 81ed
T 78S 256S;’

€ is a cohesion energy.

The parameters A and B entering in the potential
are chosen so that the cohesion energy and spacings
calculated by means of the potential would be equal
to the experimental observed ones. The vector FY
corresponding to such a potential is

,B=- S, = 22.638, S, = 10.355, and

€ (k)
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Table |. Coefficients for Calculation of the Pairwise Stress-Induced Interaction Energies of Interstitials in Octahedral Interstices

\4 Nb Ta Fe
(x, 3, z) n b d n b d n b d n b d
(0, 1/2,0) -0.619  -2.892  —2.090 -1.020 4612  -3.407 -0.390  -1.68%  -1.407 -0.162  —0.713  —0.546
(1/2,0,1/2) -0.101  —0.671  —0.948 -0.160  -1.109  -1.531 -0.072 0424  —0.566 -0.038 0216  —0.277
1/2,1/2,1/2) -0.103  —0.199  —0.226 0192 0391 —0.419 -0.047 —0.110  —0.133 -0.032  -0.080  —0.089
0,0,1) +0.664  +1.121 +0.547 +0.868  +1.611  +0.880 +0.338  +0.656  +0.335 +0.122 40168  +0.022
1,0,0) +0.016  +0.032  —0.073 +0.017  —0.003  —0.252 -0.010  —0.028  -0.054 -0.018  —0.039  —0.045
(1,1/2,0) +0.110  +0.561 +0.363 +0,519  +0.777  +0.165 +0.067  +0.318  +0.248 +0.013 40077  +0.042
/2,1, 1/2) ~0.011  —0.004  +0.207 —-0.037  —0.058  +0.251 +0.005  +0.054  +0.155 —-0.005  —0.006  +0.048
1,1,0) +0.075 40352 +0.614 +0.139  +0.598  +0.981 +0.045 40227  +0.360 —0.002  +0.043  +0.131
(1,0,1) —0.067 —0.126  —0.078 -0.092 0165  —0.077 —0.021  -0.052  —0.058 -0.003 0015  —0.021
a,1/2,1) ~0.008  —0.138  —0.130 -0.007 0173  -0.192 +0.005  —0.031  —0.043 +0.009  +0.005  -0.011
(0,3/2,0) -0.030 -0.088  ~0.063 -0.068  —0.242  —0.200 -0.023  —0.087 —0.071 -0.007  —0.040  —0.022
1/2,0,3/2) -0.018 —0.043  —0.015 -0.039  —0.094  —0.046 -0.014  —0.036  —0.035 -0.006 -0.020  —0.026
(3/2,1/2,1/2) -0.012  -0.045  -0.068 ~0.001  —0.070  -0.145 -0.004  —0.033  -0.061 -0.006 —0.017  —0.015
1/2,1/2,3/2) +0.033  +0.015  —0.022 +0.036  +0.054  +0.050 +0.015  +0.005  +0.009 +0.012  +0.005  —0.011
,1,1) -0.025 -0.025  -0.085 -0.017  —0.008  —0.100 —0.003  +0.020  +0.005 +0.005  +0.033  +0.020
,3/2,0) +0.005  -0.008  -0.002 +0.004  -0.005  —0.022 0.000  —0.007  —0.010 —-0.003 0012  -0.006
(3/2,1,1/2) +0.008  +0.038  —0.009 +0.025  +0.082  +0.019 +0.003  +0.018  —0.001 +0.003 40016  +0.008
2,0,0) -0.020 -0.074  +0.006 -0.029  -0.070  +0.086 -0.004  —0.023  +0.005 -0.003  -0.008  —0.005
(©0,0,2) +0.049  -0.024  ~0.057 +0.246  +0.263  +0.012 +0.014  —0.004  +0.002 +0.010 0.000  —0.010
2,1/2,0) =0.011  +0.007  —0.023 +0.001  +0.101  +0.044 -0.004 0.000  —0.006 -0.002  —0.002  —0.007
(1,3/2,1) ~0.015  —0.040  +0.022 -0.017  ~0.032  +0.038 -0.007  —0.016  +0.010 +0.001  +0.007  +0.024
1/2,2,1/2) -0.004 —0.015  +0.021 —0.001  +0.028  +0.093 -0.001  —0.005  +0.003 ~0.002  —0.009  —0.001
(3/2,0, 3/2) +0.010  +0.025  +0.025 +0.007 0.000  +0.023 +0.004  -0.002  —0.001 +0.002 0.000  —0.003
(3/2,3/2,1/2) +0.009  +0.040  +0.084 +0.026  +0.098  +0.123 +0.002  +0.010  +0.033 0.000  +0.010  +0.029
(3/2,1/2,3/2) -0.010 -0.012  —0.004 -0.029  —0.047  —0.020 -0.009  —0.017  —0.022 0.000 0.000  —0.004
2,1,0) -0.004  -0.008  +0.009 —-0.011  —0.009  +0.058 0.000  —0.008  —0.020 -0.003  —0.007  +0.002
©,1,2) +0.023  +0.026  +0.001 —-0.005  —0.038  ~0.029 +0.011  +0.017  +0.016 +0.002  —0.003  —0.007
(2,0,1) +0.006  +0.052  +0.056 +0.021  +0.079  +0.062 0.000  +0.011  +0.010 -0.002  -0.003  —0.003
FVeC(g) = 3 BE ikR - ; 9¢ea’ 256 (¢,R) separated by a vector r = (x,y,z) from the first
R R 2 RR one,
Table I gives the numerical values of coefficients
1 9/16 a* . n, b, and d for various distances r between inter-
X\ 996435~ 10355 &% et KR [11] stitials in octahedral sites for aFe, V, Nb, and
) ’ Ta. Table I can be directly employed to find the

The inverse Fourier transformations Eqs. [1] and
[7] have been carried out by means of the summation
over 10,592 points in the first Brillouin zone of the
bee lattice. Increase in the density of these points
has not resulted in significant change of Wy, (R) and
U(p,R). All calculations were performed on the
BESM-4 computer.

3. INTERACTION BETWEEN INTERSTITIALS
OF THE SAME KIND

The stress-induced energies of the pairs of the
same interstitial atoms separated by a vector r = xa,
+ ya, + za; (v, y, z are the coordinates) were calcu-
lated vs the tetragonality factor ¢ = U,,/Uss. Since
F(p,k) is a linear function of ¢ and D;;(k) is independent
of t it follows from Eqs. [6] and [2] that the energies
Wpq(R) = W(r) are a polynomial of the order of two
with respect to the parameter #:

W(x,y,2)

BCala® n(x,y,z) + bx,y,2)t + d(x,y,2)t?

[12]

where n(x,y,2), b(x,y,z) and d(x,y,z) are universal co-
efficients which are valid for any interstitial solid
solution based on the relevant host lattice. It is
assumed that one interstitial whose position is taken
to be zero occupies the octahedral position (0,0,%)

(p = 3), the second occupies the arbitrary position
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numerical values of the interaction energies by means
of Eq. [12]. Table II demonstrates the numerical
values of the interaction energies for specific of in-
terstitials in octahedral sites.* These values were

*A negative interaction energy means attraction, a positive energy, repulsion.

calculated by means of the coefficients n(r), b(r) and
d(r) listed in Table I, numerical values of the parame-
ters f and Ujs; taken from Appendix II and parameter
Caad® from Appendix III.

The interaction energies in Table II are large and
range up to =1 eV, They are almost an order of mag-
nitude higher than the values obtained from the in-
ternal friction data for the same solutions. This dis-
crepancy can result from a number of causes.

To our mind, the main reason is that the internal
friction data cannot be associated with interstitial
pairs whose binding energy is of the order of 1 eV.

In fact, the reorientation of such pairs during the re-
laxation process should result in the destruction of a
pair with one orientation (this process is accompanied
by an increase of the energy by the value of the order
of 1 eV) and its restoration but with different orienta-
tion (the energy takes on its previous magnitude).
This increase contributes to activation energy that re-
sults in a substantial shift of the internal friction
peak, i.e., the relaxation peak corresponding to these
pairs cannot be observed at relevant temperature
range. According to the experimental procedure,’ the
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Table 1. The Stress-induced Pairwise Interaction Energies W(x, y, z) {eV) of Specific Interstitials Located in Octahedral Interstices

(x,¥,z) V-0 V-N Nb-O Nb-N Ta-0 Ta-N Fe-C Fe-N V-O-N Nb-O-N Ta-O-N Fe-C-N
0,1/2,0) —0.73 -0.41 —-0.82 -1.52 ~1.05 —1.44 -1.18 -1.27 -0.57 -1.12 -1.23 -1.23
1/2,0,1/2) -0.07 —0.01 -0.08 -0.18 -0.16 -0.22 -0.23 —0.26 —0.04 -0.12 -0.19 -0.25
1/2,1/2,1/2) —-0.25 —0.25 —0.24 —0.37 -0.17 -0.22 -0.31 -0.31 -0.25 —0.30 -0.18 —0.31
0, 0,1) +1.60 +1.59 +1.11 +1.71 +1.19 +1.62 +1.33 +1.38 +1.60 +1.37 +1.39 +1.33
1,0,0) +0.03 +0.02 +0.02 +0.04 —0.04 -0.05 -0.18 -0.18 +0.03 +0.03 —0.04 —0.18
(1,1/2,0) +0.11 +0.04 +0.12 +0.24 +0.17 +0.23 +0.07 +0.08 +0.07 +0.17 +0.20 +0.08
1/2,1,1/2) -0.02 —0.01 —0.04 —0.07 0.00 +0.01 —0.05 -0.05 -0.01 -0.06 0.00 —0.05
1,1,0 +0.11 +0.10 +0.13 +0.22 +0.11 +0.16 -0.06 —0.06 +0.10 +0.17 +0.13 —0.06
1,0,1) —0.16 —0.15 -0.12 —0.18 -0.07 -0.10 -0.02 —0.02 —0.16 ~0.15 -0.08 —0.02
1,1/2,1) 40,03 +0.05 +0.02 +0.01 +0.03 +0.04 +0.11 +0.10 +0.04 +0.02 +0.04 +0.10
©,3/2,0) -0.06 -0.05 -0.07 -0.11 —0.07 —0.09 —0.04 —0.05 -0.06 —-0.09 —0.08 -0.04
(1/2,0,3/2) —0.04 -0.03 —0.04 -0.07 -0.05 —0.06 —0.05 —0.05 -0.04 ~0.06 —0.05 -0.05
3/2, 1/2,1/2) —-0.02 -0.02 +0.01 +0.01 -0.01 -0.01 —0.06 —0.06 —-0.02 +0.01 -0.01 -0.06
(1/2,1/2,3/2) +0.10 +0.10 +0.05 +0.07 +0.06 +0.08 +0.14 +0.14 +0.10 +0.06 +0.07 +0.14
1,1,1) -0.07 -0.08 -0.03 —0.04 —-0.02 —0.03 +0.02 +0.03 -0.07 -0.03 -0.02 +0.03
(1,3/2,0) +0.02 +0.02 +0.01 +0.01 0.00 0.00 -0.02 —-0.02 +0.02 +0.01 +0.01 ~0.02
(3/2,1,1/2) +0.01 0.00 +0.03 +0.04 +0.01 +0.01 +0.02 +0.02 0.00 +0.03 +0.01 +0.02
(2,0, 0) -0.03 -0.02 —0.03 -0.05 -0.01 -0.01 —0.03 —0.03 -0.02 -0.04 -0.01 -0.03
0,0,2) +0.16 +0.18 +0.35 +0.52 +0.06 +0.08 +0.13 +0.12 +0.17 +0.42 +0.07 +0.12
2, 1/2,0) —0.04 —0.05 -0.02 -0.02 —0.02 -0.03 -0.02 —0.02 -0.04 -0.02 -0.02 -0.02
1,3/2,1) —-0.03 —0.02 —0.02 -0.03 -0.02 -0.03 +0.01 +0.01 ~0.02 —0.03 -0.03 +0.01
1/2,2,1/2) 0.00 0.00 0.00 -0.01 0.00 -0.01 —0.01 -0.02 0.00 -0.01 -0.01 -0.01
(3/2,0,3/2) 0.00 +0.02 +0.01 +0.02 +0.02 +0.03 +0.03 +0.02 +0.02 +0.01 +0.02 +0.02
(3/2,3/2,1/2) +0.02 +0.01 +0.03 +0.04 0.00 0.00 —0.01 —0.01 +0.01 +0.03 0.00 -0.01
(312,112, 3/2) -0.02 -0.03 —-0.04 -0.06 -0.03 —0.05 0.00 0.00 -0.02 —0.05 -0.04 0.00
,1,0) -0.01 —0.01 —0.01 -0.02 0.00 0.00 —0.03 -0.03 —0.01 -0.02 0.00 -0.03
©,1,2) +0.01 +0.01 0.00 0.00 +0.04 +0.05 +0.03 +0.03 +0.06 ~0.01 +0.05 +0.03
2,0,1) 0.00 0.00 +0.02 +0.04 0.00 —0.01 -0.02 -0.02 0.00 +0.03 0.00 -0.02

Table 111, Coefficients for Calculations of the Stress-Induced Pair-Wise Interaction Energies of Interstitials in Tetrahedral Interstices
Nb Ta

{x, y,z) n d n b d n b d
(©, 1/4,1/4) -1.042 -4.817 -5.098 -1.745 - 7.341 - 7.114 —0.671 -2.933 -2.906
0,0,1/2) _ -1.074 -1.701 +2.607 -1.932 -10.236 +14.996 —0.435 -1.336 +2.406
174,172, 19 —0.641 —2.793 —1.844 -1.070 — 4.096 - 1.306 —0.406 -1.608 -1.030
©, 1/4,3/4) +0.040 -0.024 +0.166 +0.071 + 0.108 + 0.485 +0.009 —0.022 +0.060
(3/4,1/2, 1/4) +0.234 +1.097 +0.681 +0.391 + 1.582 + 0.441 +0.151 +0.623 +0.381
1,0,0) —0.413 +0.470 +0.485 —0.668 - 0.043 + 2.508 —0.215 -0.069 +0.647
©0,0,1) -0.079 —0.256 +0.102 -0.380 - 0.660 + 0.690 +0.026 -0.028 +0.026
1,0,1/2) -0.495 —0.274 +1.023 ~0.835 -0.378 + 2.737 —0.233 —0.084 +0.724
(3/4,1/2, 3/4) +0.011 —0.408 -0.454 ~0.009 - 0.800 - 0.981 +0.008 —-0.142 —0.193
©,0,3/2) -0.045 —0.124 —0.106 -0.057 - 0.168 - 0.122 +0.010 +0.007 -0.012
1,1,1/2) _ +0.215 +0.403 +0.125 +0.467 + 0.800 - 0.256 +0.094 +0.222 +0.091
(1/4,3/2, 1/4) +0.006 —0.097 —0.087 —0.006 - 0.234 - 0.254 —0.008 —-0.087 —0.079
(1,1,0) +0.185 +0.173 —0.092 +0.436 + 0.483 - 0.577 +0.054 +0.038 —0.045

Table IV. The Stress-Induced Pairwise Interaction Energies W(x, y, z) (eV)

of Specific Interstitials Located in Tetrahedral Interstices

(x,y, 2/ Nb-H Ta-H V-H
(0, 1/4, 1/4) -0.058 -0.193 -0.118
0,0,1/2) ~-0.018 —0.009 -0.054
1/, 1/2,1/4) -0.026 —0.094 -0.065
(0, 1/4,3/4) +0.002 +0.001 +0.002
(34,112, 1/4) +0.010 +0.036 +0.025
1,0,0) +0.001 +0.002 —0.009
©0,0,1) -0.003 +0.001 -0.006
@,0,1/2) -0.001 +0.003 —-0.019
(3/4,1/2, 3/4) -0.006 ~0.009 —0.006
(0,0, 3/2) ~0.001 0.000 ~0.004
(1.1,1/2) _ +0.006 +0.014 +0.014
(1/4, 3/2, 1/4) —0.001 —0.005 —0.001
,1,0 —0.003 +0.003 +0.009

temperature range employed provides the reorienta-
tion of pairs whose binding energy is of the order of
0.1eV.

The second reason may be associated with a screen-
ing of direct stress-induced interaction of a pair
which is caused by other interstitials (a similar
phenomenon— the Debye screening Coulomb interac-
tion—occurs at a set of charges).

Equation [12] is also valid in the case when inter-
stitial atoms occupy tetrahedral sites, The corre-
sponding numerical calculations give the coefficients
nlx,y,2), blx,y,2), d(x,y,2) which, naturally, differ from
ones in the case of the octahedral site occupation.
These coefficients are listed in Table OI.* Table IV

*1t is assumed that one interstitial whose position is taken to be zero occupies
the tetrahedral position {14,0,%) (» = 3).
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displays the stress-induced energies of H-H pairs

in V, Nb, and Ta when H-atoms occupy tetrahedral
sites (neutron diffraction studies® demonstrate that
H-atoms in Nb, Ta and V are distributed along tetra-
hedral and octahedral sites, preferentially occupying
tetrahedral sites).

4. INTERACTION OF DIFFERENT KINDS OF
INTERSTITIALS IN OCTAHEDRAL INTERSTICES

One can easily see from Eq. [6] that in the case of
interaction of different kinds of interstitial atoms («
and § kinds of interstitials) their interaction energy
W(a,B; x,9,2) is

Waﬁ(x,y;z)

t
T ne,y,2) + blry,2) B dix,2 )ty
@°CaqU33U 53

[13]

where ty = UY/US%, tg = UR/US are the parameters
related to the a- and B-kind interstitials, respec-
tively; », b and d are the same coefficients which
enter in Eq. [12] and are presented in Table I (dif-
ferent kind atoms occupy octahedral sites) and in
Table III {(different kind atoms occupy tetrahedral
sites).

1t follows from Eq. [13] that

Woza/(x;y’z) < Waﬁ(x’yrz) < WBB(x!yrZ)

if Wy olx,y,2) < WBB(x,y,z). It means that the strong-
est interaction in an interstitial solution containing
two solute elements in the host lattice is observed be-
tween pairs of the same atoms. The energies of a
number of such solutions are presented in Table II.

5. METAL ATOM DISPLACEMENTS CAUSED
BY AN INTERSTITIAL ATOM

It follows from Eqgs. [5] and [7] that host atom dis-
placement function U(p,R) = U(R) is a linear function
of the factor ¢ = Uyy/Uss.

UR)

7, = h(R) + g(R)! [14]

where R is a distance between the coordinate origin
and displaced host atom. We assume that an inter-
stitial atom in the octahedral site occupies the position
(0,0,%) (p = 3), in the tetrahedral one—(%,0,4) (p = 3).
The vector h(R) and g(R) in Eq. [14] are material con-
stants of the relevant host atom crystal. For the case
of occupation of octahedral sites, these constants are
presented in Table V; for the case of occupation of
tetrahedral sites, in Table VI. The components of
vector U(R) for the specific solid solutions are pre-
sented in Tables VII and VIII.

Taking into account the calculated displacements
of the nearest host atoms, one can see that the ef-

Table V. Coefficients for Calculation of Host Atom Displacement with Respect to the Interstitial in Octahedral Interstice {0, 0, 1/2}

Nb Ta
R h g h g h g h g

0,0,0) Uy/a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
U, /a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Usfa —0.307 -0.184 -0.305 ~0.216 —0.225 —0.265 —0.187 -0.134

1/2,1/2,1/2) Uy/a +0.038 +0.218 +0.049 +0.333 +0.042 +0.188 +0.023 +0.128
Upfa +0.038 +0.218 +0.049 +0.333 +0.042 +0.188 +0.023 +0.128

Usla 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(1,0,0) Uy fa —0.008 —0.010 —0.016 -0.013 —0.009 —0.001 —0.004 +0.012
Usfa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Us/a +0.003 +0.012 +0.004 +0.025 -0.003 +0.004 —0.008 0.000

,1,1) Uyla +0.006 +0.043 +0.014 +0.083 +0.006 +0.035 +0.006 +0.035
U,fa +0.006 +0.043 +0.014 +0.083 +0.006 +0.035 +0.006 +0.035

Us/a —0.004 +0.010 —0.008 0.000 —0.001 +0.014 +0.006 +0.021

Table VI. Coefficients for Calculation of Host Atom Displ t with Respect to the Interstitial in Tetrahedral Interstice (1/2, 0, 1/4)
Nb
R h g h g h g

0,0,0) Uila -0.107 -0.424 ~0.115 ~0.458 -0.112 ~0.392
Uzfa 0.000 0.000 0.000 0.000 0.000 0.000

Usfa -0.284 -0.216 -0.295 -0.088 -0.235 -0.176

(1/2,1/2,1/2) U /fa 0.000 0.000 0.000 0.000 0.000 0.000
Usfa +0.107 +0.424 +0.115 +0.458 +0.112 +0.392

Usla +0.284 +0.216 +0.295 +0.088 +0.235 +0.176

©,1,0) U /a +0.016 -0.004 +0.018 -0.013 +0.011 -0.018
U, /a -0.019 +0.021 ~0.022 +0.038 -0.015 +0.018

Us/a +0.040 +0.021 +0.062 +0.017 +0.022 +0.002

0,0,1) Uyfa -0.011 +0.044 -0.002 +0.065 ~0.008 +0.038
U,/a 0.000 0.000 0.000 0,000 0.000 0.000

Usla +0.021 ~0.055 +0.006 -0.100 +0.028 -0.047

©, 1, 1) Uy fa -0.017 -0.023 -0.019 -0.010 -0.018 -0.027
Us/a +0.031 +0.073 +0.040 +0.092 +0.025 +0.063

Us/a +0.042 +0.046 +0.063 +0.040 +0.034 +0.039
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Table Vil. Atom Displ 1ts with Respect to the Specific Interstitials in Octahedral Interstices {0,0,%)
R V-0 V-N Nb-O Nb-N Ta-0O Ta-N Fe~-C Fe-N
0,0.0) Uifa 0 ] 0 0 0 0 0 0
U,/fa 0 0 0 0 0 0 1} 0
Usla -0.184 -0.185 -0.142 -0.175 -0.117 -0.137 -0.149 -0.146
(£.%.%) Uila 0.003 -0.005 0.006 0.013 0.012 0.014 0.008 0.010
Usfa 0.003 -0.005 0.006 0.013 0.012 0.014 0.008 0.010
Usla 0 0 Q ¢} 0 0 0 0
(1,0,0) Uiyja -0.006 -0.007 -0.007 ~0.009 -0.004 -0.005 -0.005 -0.004
U,la 0 0 0 0 0 0 0 0
Usla 0.001 0.000 0.001 -0.001 -0.002 ~0.002 -0.007 -0.007
(1,1,1) Uyja 0 -0.002 0.002 0.004 0.001 0.001 0.002 0.002
Usfa 0 -0.002 0.002 0.004 0.001 0.001 0.002 0.002
Us/fa -0.004 -0.004 -0.004 -0.005 -0.001 -0.001 0.003 0.003

Table VIIL. Atom Displacements Caused by Specific Interstitials
in Tetrahedral Interstices (14,0,%)

R V-H Ta-H Nb-H
(0,0,0) Ui/a ~0.017 -0.019 -0.012
Us/a 0 0 0
Usfa -0.026 -0.018 -0.011
(8.0, %) Uifa 0 0 0
Us/a +0.017 +0.019 +0.012
Us/a +0.026 +0.018 +0.011
0,1,0) Ui/a 0.001 0 0
Us/a 0.001 0 0
Us/a 0.003 +0.001 +0.002
0,0,1) Ui/a 0 +0.001 0
Us/a 0 0 0
Us/a 0.001 0 0
©,1,1) Ui/a ~0.002 -0.002 -0.001
U,/a +0.004 +0.003 +0.003
Usfa +0.004 +0.003 +0.003

fective radius of an oxygen interstitial atom (which is
equal to the radius of the octahedral interstice after
penetration of an interstitial atom) is 0.76A for V,
0.69A for Nb, and 0. 614 for Ta. The radius of an
N-atom is 0 J16A for V, 0.80A for Nb, 0.684 for Ta,
and 0. 61A for ¢Fe. The radius of a C-atom in aFe

is 0.64A. The values of a radius differ from the
usual accepted atomic radii of free atoms: oxygen at
0. 66A nitrogen at 0 '?1A and carbon at 0.77A.

means that interstitial atoms cannot be conS1dered as
a rigid sphere inserted into octahedral interstice and
displacing the nearest host atoms.

6. INTERACTION OF VACANCIES
Host Atom Displacements

The Fourier-transforms of atomic displacements
around a vacancy and of the stress-induced inter-
action of vacancies are determined by Egs. [2] and {5]
where FV2°(k) is determined by Eq. [11]. The inverse
Fourier-transformation gives the numerical values
for displacements and stress-induced energies of
pairs of vacancies. These values are presented in
Table IX. The volume of a vacancy depending on the
atomic displacements of the nearest atoms is also
included in this table.
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Table 1X. Calculations of the Vacancy and Bivacancy Characteristics

Ratio of the Interaction Energy of Two
Nearest Atom A
Metal  Displacement Vacancy Volume ' Vac.ancxes (ineV) i
’ to the Atom First coordina- Second coordina-

Ufa Volume tion Shell tion Shell
\% 0.038 0.87 -0.029 -0.109
Nb 0.037 0.88 -0.030 -0.169
Ta 0.033 0.89 -0.036 ~-0.155
Fe 0.024 0.92 -0.028 -0.068

It is interesting to note the fact that the attraction
between the vacancy and a next-nearest vacancy is
stronger than that between the vacancy and a nearest
vacancy. The interaction of vacancy pairs increases
in the sequence aFe — V — NC — Ta, which cor-
responds to the increase in the cohesion energy.

The calculated displacements caused by a vacancy
are in good agreement with the values which can be
obtained by other methods: displacement of the
nearest atom for aFe is 0.024a in comparison to
0.019a in Ref. 8, for V is 0.046a in comparison to
0.038¢ in Ref. 8.

7. INTERACTION BETWEEN A VACANCY AND
INTERSTITIAL ATOM IN OCTAHEDRAL
INTERSTICES

According to Egs. (2] and [6], the Fourier-transform
of stress-induced energies between a vacancy and in-
terstitial atom is

VY (p,k) = —F % () V*(p,k) = ~ F**(K)G;(k)

x F{(p,k) [15]

where F "2 (k) and Foo (p,k) are determined by Egs.
[11] and [8].

Since F2°(p,k) is a linear function of ¢, the inter-
action energy W(vac,p; x,y,2) between a vacancy and

interstitial atom is also a linear function of ¢:

W(vac; x,y,2)

= Ix,y,2) + mix,y,2)t. [16]
U33

The coefficients I(x,v,2z) and m(x,y,z) in Eq. [16] are
the material constants for each metal and do not de-
pend on the kind of the interstitial. The calculated
values of these constants are presented in Table X
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and the specific values of interaction energies calcu-
lated by means of the Table X data for a number of
solid solutions are shown in Table XI.

One can easily see from Table XI that there is a
great attractive interaction between a vacancy and the
nearest interstitial, and as in the case of the inter-
action between two vacancies, the strongest interaction
is proved to be with the next-nearest interstitial.

The calculated data agree qualitatively with the ex-
perimental data for V-O and Nb-O (Refs. 9,10) solu-
tions in which the relaxation methods reveal a signifi-
cant quantity of vacancy-oxygen pairs.

aFe-C is the only case for which there are reliable
experimental data on the vacancy-interstitial binding
energy. It is the case of @Fe-C solution that was
studied in Ref. 11, According to Ref. 11, the binding
energy of a vacancy-carbon pair in irradiated aFe
is 0.41 eV. The calculated value presented in Table XI
is 0.37 eV. These quantities are in good agreement
with each other.

8. CONCLUSION

The numerical calculations of the stress-induced
interaction energies of interstitials, vacancies, inter-
stitials and vacancies in bee metals ¢Fe, V, Nb, and
Ta, as well as displacements of host atoms caused
by these defects have been performed. The cases
of occupation of octahedral and tetrahedral inter-
stices are discussed. The numerical coefficients b,
n, d, I, m, h, and g, which are the material constants
of aFe, V, Nb, and Ta have been calculated by means
of a computer. These coefficients enable directly
calculating stress-induced pairwise interaction ener-
gies between any interstitials, befween interstitials
and vacancies, as well as being able to calculate host
atom displacements if the coefficients of the concen-

tration expansion of the host bee lattice (concerning
the relevant interstitial) are known.

Such formulation seems useful since the available
experimental data for U;; and Uss can hardly be con-
sidered as final and should be more accurate. The
microscopic theory employed in this paper allows
taking into account an atomic structure of a solid
solution; the Born-Karman constants being the only
parameters made use of in the computer calculations.
These constants for aFe, Nb, and Ta were found by
the inelastic neutron scattering method, and V- was
found by the X-ray diffuse scattering method.

The stress-induced interaction energies and host
atom displacements for concrete solid solutions have
been evaluated proceeding from the calculated numeri-
cal coefficients b, n, d, I, m, h, g, and available ex-
perimental data on Uy; and Uss (far from being com-
pletely accurate).

The large stress-induced interaction of the inter-
stitials in all four discussed metals reveals that these
solid solutions cannot be considered as ideal because
of the extremely small content of interstitial atoms
and the possibility of short-range or long-range order
or decomposition which should be taken into account.

APPENDIX 1

Equation for the calculation of D;;(k) (interaction in
eight coordination shells):

Dyi(k) = 8, [1 — cos ka, coS ka, cos —kig]
2 2 2
+ [4a; sin® —k% + 4, (sin’ % + sin® —kziS)]

+ [4a3(2 — coska; coska, — coska, coskas)

Table X. Coefficients {in eV) for Calculations of the Stress-Induced Interaction Energies of a Vacancy Located
in the Coordinate Qrigin and Interstitial Located in Octahedral Site with the Coordinates {x,y,z)

v Nb Ta Fe

(x.3.2) 1 m 1 m 1 m 1 m
(0,0,%) ~-0.881 -2.776 -1.290 -3.892 -1.32% -3.624 -0.537 -1.463
(%,%,0) -0.861 -0.908 ~1.155 -1.168 -1.191 -1.448 -0.497 -0.590
(1,0,%) -0.049 -0.021 -0.068 -0.013 -0.070 -0.082 -0.058 -0.084
(%,%,1) 0.322 0.174 0.404 0.294 0.489 0.442 0.159 0.075
(1,1,%) 0.102 0.454 0.132 0.575 0.021 0.706 0.046 0.243
1,1%) 0.020 -0.070 0.031 -0.034 0.036 -0.036 0.044 0.017
(4.%,2) 0.013 0.034 0 0.070 0.016 0.006 0.010 0.001
2,1,%) -0.001 -0.009 0.015 0.075 -0.005 -0.030 -0.007 -0.004

Table XI. Interaction Energies (in eV) of a Vacancy Located in the Coordinate Origin with the Specific
Interstitial Located in Octahedral Interstice with the Coordinate {(x,y,z}

(x,y,2) V-0 V-N Nb-O Nb-N Ta-0O Ta-N Fe-C Fe-N
(0,0,%) -0.299 -0.221 -0.398 -0.560 -0.479 -0.563 -0.330 -0.344
(%.,%.,0) -0.479 ~-0.469 -0.518 -0.645 -0.501 -0.589 -0.374 -0.371
(1,0,%) -0.034 -0.033 -0.037 -0.048 -0.030 -0.035 -0.042 -0.042
(%.%,1) 0.194 0.196 0.187 0.230 0.212 0.249 0.130 0.127
1,1,%) 0.020 0.006 0.035 0.055 0.068 0.080 0.018 0.021
(1,1.%) 0.020 0.023 0.017 0.019 0.018 0.021 0.036 0.035
(%.%4,2) 0.005 0.005 -0.006 -0.007 0.007 0.008 0.009 0.008
(2,1,%) 0 0.001 0.005 0.006 -0.001 -0.002 -0.006 -0.006
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+ 485(1 — coska, coskas)] + [8as (1 —cos 312(31

Xcos—kzﬁcos 3)+8ﬁ4(2—cos 3kae
ka ki
X eos 21 cos %— cos 3?‘3 cos % cos ——)]

+ 8as(1 — coska, coska, coskas) + [4ae sin®ka,

+ 4B (sin’ka, + sin’ka,)] + [88; (1 ~ cos ka,

2
X cos 312{3'2 cos 312‘9‘3) + 8a,(2 — cos ka,
2
X cos 312‘3‘1 cos 312‘8‘3 — cos k2a3 cos §2E”-
X cos 312(3‘2)] + [404(2 ~ cos2ka; coska,

— cos2ka, coskas) + 48:(2 — coska, cos2ka,
— coska, cos2kas) + 4v; (2 — cos2ka, coskas
— coska, cos2kag)]; [AI.1]

kaekﬂ.

Dy, (k) = 88, sm% smT €08 === + 4v, sinka; sinkae

+ [884 (sin 3 smT+sm o) s1n—§—)

ka, 3kas ]

sin —— cos
2 2

X cos% + 874 sin kza

+ 88; sinka, sinka, coska; + [85,(sin ka,

2
% sin 3Ka, + sin ka, sin 31‘3‘1) cos Ska,
2 2 ) 2
+ 8y, sin 32 sm%kﬁ cos —2—] + 485 (sin2ka,

X sink@, + sinka, sin2ka,); [AL.2]

where «, 8, v, and 5 are the Born-Karman constants
in notations according to Woods.”** The remaining

components of the matrix Di]-(k) are obtained by cyclic
permutation of the subscripts.

APPENDIX II. DETERMINATION OF U;; AND Uss

The coefficients Uy, Uss, and f = Uy1/Uss of the con-
centration expansion of bce solid solution were de-
termined by two various methods.

1) For ¢Fe-C and aFe~N which form an ordered
supersaturated interstitial solution (carbon and nitro-
gen martensite) as well as for V-H, Nb-H, and Ta-H,
ordered S phase determination has been performed
over crystal lattice parameter data (Eq. [9b]).

2) For the interstitial solutions of oxygen and nitro-
gen in V, Nb, and Ta, the coefficients U;; and Us;
were found proceeding from the concentration de-
pendence of the crystal lattice parameter of a dis-
ordered solid solution and from Snoek relaxation
caused by interstitials'*’** by means of the following
equations:

da
adC

d -1 1/2
3 kT, Qmax
Uss = Ui =\ T —aC

where C is the fraction of interstitial atoms related to
the total number of host atoms; @74« is the height of

the Snoek-peak; T, is the absolute temperature of the

peak; and I is the effective crystal orientation factor

(T ~ 0.2 for polycrystal without a texture):

U33 + 2U11 =3

[AL.1]

_ 1
T S84+ 2I(251; - 251> — Sis)

G (A11.2]

the rigidity modulus; Si1, S{z, and Sis are the compli-
ance coefficients of a cubic crystal in usual notations.
The values which were made use of for calculation
are shown in Table XII and Appendix I1I.

It is necessary to note that the value 2U,, + Uy for
V-H disordered solution at low H-atom content'® is
distinct from that for ordered B phase, This can
be understandable if one remembers that H-atoms

Table XIl. Experimental Data for Determination of U, and Uj;3

1da . dg! Employed Values
All ==X 10 max o e
oy 7 dc 2 Th K AC Aay, A Aay, A Un, Uss ¢
Fe-C -0.09  +0.86  ~0.10 (Ref. 20)
Fe-N -0.07  +0.83  ~0.08 (Ref.21)
V-0 1.5 (Ref. 22) 8 (Refs. 30, 31) 453 ~0.10  +0.66  ~0.15
V-N 1.38 (Ref. 25) 8 (Refs.31,32) 540 -0.14  +0.69  ~0.2
Nb-O  1.26 (Ref. 23) 4.9 (Refs. 5, 33, 34) 413 -0.06 +0.50  -0.12
Nb-N  1.67 (Refs. 28,26) 4.8 (Refs. 34, 35) 550 -0.05 +0.60  ~0.08
Ta-0 133 (Refs. 24,27) 74 (Ref. 36) 413 -0.04 +047  -0.08
Ta-N 1.5 (Refs.27-29) 7.3 (Ref. 37) 610 -0.05 +0.56  -0.09
V-H 04310073 298 t03.00 327 t03.32 (Ref.38)
+0.025 +0.074 +03
05 10075 301 10303 331 10339 (Ref.39) 'O 2 4
3.405 to 3.420%
Nb-H . . T3, : . +0. 032 +0.
07 10097 o0 Tass 342 10345 (Ref.40) +0.019 +0.032  +06
Ta-H 0.45t00.75 3.363t03.397  3.397 to 3.445 (Ref. 41) +0.034 +0.051 +0.7

*Peak temperatures are presented at those frequencies (™1 Hz) at which heights of Snoek peak were determined.
fay and a, differ slightly in this solid solution, and Uy, is taken as an average of the values determined from 2, and a,.
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in V occupy simultaneous tetrahedral interstices as
well as octahedral ones and their distribution along

both of them depends on the composition and ordering.

APPENDIX III

Appendix I1l. The Magnitude of Constants Used in Calculations

. A 2C., €, eV X107 (units dyn/em?)"’ X102 (units cm?/dyn)*”
eV Ref. 4 C“ C12 C44 S’ll ‘Siz SfM
v 3.026 7.35 -5.30 24.6 134 2.87 0.760 0.287 0.892
Nb 3.300 6.45 -7.46 22.8 119 4.26 0.660 0.233 348
Ta 3.303 18.5 -8.05 26.7 16.1 8.25 0.686 0.258 1.212
Fe 2.87 17.2 -4.29 242 14.65 112 0.683 0.234 2.348
Born-Karman Force Constants (X102 units dyn/cm}
a, B a, B2 a3 B3 T3 as Ba Ya 5a as Bs ag Bs Qg B Y7
Fe (Ref. 18)17.86 1491 1492 0.36 124 -109 03 -06 =006 028 0.1 -0.23 -0.24
V(Ref.19) 10.87 724 649 =215 -4.69 299 0.57 144 029 -1.15 122 001 -0.12 -139 034 -036 -0.14 0.09
5,
-0.43
Nb (Ref. 12)14.14 884 14.16 -3.64 227 -638 076 3.61 =075 -0.95 126 -1.16 -1.33 -7.08 132 -0.03 ~0.1 0.37
8, ag Bs Y8 8q
-0.17 051 -0.27 081 -0.06
Ta (Ref. 13) 16.98  11.2 11.82 142 355 -543 194 358 -072 -1.73 098 -049 081 -370 013 056 -0.24 0.11
54
~-0.68
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