Phase	Composition, at.%	Pearson symbol	Space group	Strukturbericht designation	Prototype
(Cu)	0	<i>cF</i> 4	Fm3m	A1	Cu
Cu ₁₃ Ba	7.1	cF112	$Fm\overline{3}c$	D23	Zn ₁₃ Na
CuBa	50	hP8	$P6_3/mmc$		
(Ba)	100	c I 2	Im3m	A2	W

Comment on Ca-Fe (Calcium-Iron)

H. Okamoto

The Fe-Ca phase diagram in [Massalski2] was redrawn from the evaluation published later by [92Kah]. The Fe-rich side of the Fe-Ca phase diagram is shown in Fig. 1a. [64Spo] reported the maximum solubility of Ca in (δ Fe) to be approximately 0.032 at.%.

[93Gla] determined the Fe-rich end of the Fe-Ca phase diagram by DTA (Fig. 1b). Ca acts as an α stabilizer. Accordingly, a γ loop forms. The maximum solubility of Ca in Fe found by [93Gla] is approximately 0.0004 at.%, in agreement with [60Kre] but ~ 1/100 of the value estimated by [92Kah]. The effect of Ca gas pressure may have to be considered to account for this substantial disagreement.

Cited References

- 60Kre: N.S. Kreshchanovskii, "On the Partition of Calcium in Cast Steel," *Liteinoe Proizvod.*, (8), 31 (1960); quoted in [93Gla].
- 64Spo: D.L. Sponseller and R.A. Flinn, *Trans. AIME*, 230, 876-888 (1964).
- 92Kah: D.J. Kahan and L.J. Swartzendruber, *Phase Diagrams of Binary Iron Alloys*, H. Okamoto, Ed., ASM International, Materials Park, OH, 84-86 (1992).
- **93Gla:** V.N. Gladkii and N.T. Shevelev, *Izv. Ross. Akad. Nauk Met.*, (6), 207-209 (1993) in Russian; TR: *Russ. Metall.*, (6), 113-115 (1993).

Table 2 Cu-Ba Crystal Structure Data

Section III: Survey of Current Literature

Comment on Cu-Ti (Copper-Titanium)

H. Okamoto

The Ti-Cu phase diagram in [Massalski2] was redrawn from [87Mur]. No experimental data were available for the liquidus and solidus of (β Ti). Accordingly, the (β Ti)/(β Ti) + Ti₂Cu boundary was not well defined.

[94Yam] determined the Ti-rich region of the Ti-Cu phase diagram by EPMA of heat-treated and quenched alloys (solid lines in Fig. 1). The maximum solubility of Cu in (β Ti) is ~ 1.5 at.% higher and the (β Ti) \leftrightarrow (α Ti) + Ti₂Cu eutectoid temperature is ~10 °C higher in comparison with those in [87Mur]. The [87Mur] diagram is shown with dashed lines in Fig. 1. [94Yam] also investigated the phase relationships in the same Ti-rich region at 1.9 and 2.8 GPa.

Cited References

87Mur: J.L. Murray, *Phase Diagrams of Binary Titanium Alloys*, J.L. Murray, Ed., ASM International, Metals Park, OH, 80-95 (1987).

94Yam: T. Yamane, S. Nakajima, H. Araki, Y. Minamino, S. Saji, J. Takahashi, and Y. Miyamoto, J. *Mater. Sci. Lett.*, 13, 162-164 (1994).