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ABSTRACT. We study boundary value problems for the time-harmonic form of the Maxwell 
equations, as well as for other related systems of equations, on arbitrary Lipschitz domains in the 
three-dimensional Euclidean space. 

The main goal is to develop the corresponding theory for L P-integrable bounday data for 
optimal values of p's. We also discuss a number of relevant applications in electromagnetic 
scattering. 

1. Statement of the Problems and Introductory Remarks 
Let us consider the electromagnetic wave propagation in a homogeneous, isotropic medium 

that occupies the exterior of  a bounded domain f2 in R 3 and has electric conductivity cr > 0, electric 
permittivity 6 > 0, and magnetic permeabili ty # .  If  we denote by £, 7-[ the electric and the magnetic 
fields, respectively, and if J stands for the current density, then the Maxwell  equations read 

curlC(X, t) q - / z ~ ( X ,  t) = 0 in (R 3 \ . ~ )  x R, 

curlT-/(X, t) - ~-ff(X, t) = J(X ,  t) in (R 3 \ ~ )  x R. 

Also, in an isotropic conductor, the electric field satisfies Ohm's  law cr£ = J .  An excellent exposition 
of  this material can be found in [24, Vol. I]; cf. also [15]. 

We assume time-harmonic dependency for E and 7-f, that is, that for some t ime-independent 
vector fields E,  H the following separation of  variables holds: 

£(X,  t) = E + E(X)  e -i°~t, 

7-((X,t) = l z -½H(X)e  -i°'t, 
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where to > 0 is the frequency. Summarizing these assumptions and eliminating the time dependency, 
we arrive at the stationary (or reduced, time-harmonic) Maxwell equations 

c u r l E - i k H = O  i n R 3 \ ~ ,  
curl H + i k E  = 0 in R 3 \ ~ ,  (Maxwell) 

where the wave number k ~ C, Im k > 0, is given by k 2 := (o)E + itr)/zo). Note that the stationary 
Maxwell system is equivalent to the eigenvalue problem .M(E, H) = k (E, H), where 

( 0 
At := - i  curl 0 

is the so-called Maxwell operator. We want to stress that the operator curl, and with it the operator 
curlcurl = --A + Vdiv and the Maxwell operator .M, are not elliptic (the rank of the 6 x 6 
characteristic matrix for the latter operator is 4). 

Suppose now that a f2 is perfectly conducting, and fix a direction d ~ S 2 ~ R 3 and a polarization 
p ~ R 3. Also, let n denote the outward unit normal to f2. The direct scattering problem for the system 
(Maxwell) consists in the determination of the scattered wave (E ~, H s) for which the Silver-Miiller 
radiation condition 

lira {Hs(X) x (X / IXI )  - IXIE~(X)} = 0 

is fulfilled and such that 

E(X) := ik-lcurlcurl (p e ik~x'd~) + Es(X) ,  

H ( X )  := curl (p  e ik(X'd)) -I- Hs(X) ,  

is a solution of (Maxwell) satisfying the (perfect conductor, total reflection) homogeneous boundary 
conditions 

n x E = O  onO~,  
( n , H ) = O  on0f2 

(cf., e.g., [24, Vol. I, (4.47), p. 75]). 
Redenoting E s, H s once again by E and H respectively, the above considerations lead us to 

the following formulation of the (direct) exterior Maxwell boundary value problem 

c u r l E - i k H = 0  i n R  3 \ ~ ,  
d ivE = 0 in R3 \ ~ ,  
c u r l H + i k E = O  in R3 \ ~ ,  

div H = 0 in R 3 \ ~ ,  (.Ado) 
E, H satisfy the radiation condition, 
E*, H* ~ LP(Of2), 
n x E = A E LP(Off2), 
(n, H)  = f ~ LP(Of2). 

Here 1 < p < oo and (-)* is the usual nontangential maximal operator (precise definitions will be 
given later). The interior Maxwell boundary value problem (.Mi) in f2 has a similar formulation 
but with the radiation condition excluded. Note that the divergence-free conditions are superfluous 
unless k = 0, in which case (.Me.i) decouple into separate boundary value problems for E and H. 
Also, the boundary data A, f must satisfy certain compatibility conditions. First, obviously, A needs 
to be tangential, that is, 

E n j A j = O  a.e. on 0~2, (1.1) 
i 
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but a more subtle constraint, observed by integrations by parts and which reflects the over-determination 
of (Maxwell), is that 

nl(ntOj - n j O l ) A l  = - i k  f on 092 (1.2) 
l,j 

(note that this also implies that fa~ f d a  = 0, that is, f ~ LP(af2)). 
It is not too difficult to see that once (1.1), (1.2) are assumed and if k ¢ 0, the last boundary 

condition in (-Mi.e) becomes superfluous and, hence, may be omitted in the formulation of these 
problems. This suggests the alternative of completely eliminating the magnetic field H and restricting 
attention only to the electric field E. More concretely, in doing so we arrive at the (exterior) electric 
boundary value problem 

(A + k2)E = 0 in R 3 \ ~ ,  
d i v e  = 0 in R3 \ ~ ,  
E satisfies the radiation condition, (£e) 
E* ~ LP(O92), 
n x E = A ~ LP(892). 

Of course, this time A only needs to satisfy (1.1). There is a similar interior version (£i) as well, 
with the radiation condition dropped. 

As evidenced by the huge number of research articles and monographs (see., e.g., the books 
[68, 52, 53, 14, 77, 76, 15, 24, 87] and the references therein), the treatment of the direct and inverse 
acoustic and electromagnetic scattering problems have always enjoyed center stage in mathemati- 
calphysics. Beside the theoretical importance of these problems, this interest is also motivated by 
their fundamental applications to many areas of science and technology. 

Without trying to discuss the history of the problem exhaustively, let us mention that from the 
work ofC. Miiller [67], A. P. Calder6n [8], H. Weyl [96], W. K. Saunders [81] in the early 1950s, the 
treatment of the problems (Nli,¢), (£i.~) in the case in which the domain 92 has a smooth boundary 
(e.g., 092 ~ C 3 in [8]) is well understood. More recently, their techniques have been refined to 
treat domains with C 2 boundaries [14] and also domains with C 1 boundaries [66]. The approach of 
these authors is based on boundary integral equations, but the method of proof is not constructive 
since it employs "soft arguments"; that is, it relies entirely on compactness and the closed graph 
theorem. In particular, one cannot solve the corresponding boundary value problems on a less 
smooth domain by approximating it with smooth ones, since in such an approximation the constants 
entering the crucial estimates depend unfavorably on the smoothness. Another basic shortcoming 
of the classical approach is that the boundary data have to be smooth (typically in a space of H61der 
continuous functions). However, the need for realistic modeling of engineering problems naturally 
leads to considering domains with irregularities (e.g., with "edges" and "comers") and discontinuous 
boundary data. In this context, the boundary value problem associated with the Maxwell equations 
have been much less understood. The investigation of problems as such has a rather rich history, and 
below we briefly explain the main, dominant trends of this theme and describe some of the major 
difficulties encountered. 

One of the early recognized directions, originating in the pioneering work of Carleman [ 11 ] 
and Radon [75] at the turn of the century, was to allow domains with piecewise smooth boundaries 
(for such domains the singularities are local). In more recent years, this important direction has 
been brought to the general attention by the influential work of V. G. Maz'ya, V. A. Kondrarev, J. 
Kr~l and their collaborators. See, for example, the excellent surveys [58, 50, 51] and the extensive 
literature cited there. 

Another direction, which is a central part of the so-called Calder6n program (cf. [10]), has 
been amply substantiated in the seminal work of B. Dahlberg, D. Jerison, E. Fabes, C. Kenig, 
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and G. Verchota on the Laplacian, the Lam6 system of elasticity, and the linearized Stokes system 
[17, 40, 93, 20, 29, 22]. They showed that the Harmonic Analysis techniques are particularly 
well-suited for obtaining sharp results for elliptic boundary value problems on Lipschitz domains. 
Let us point out here that allowing such nonsmooth domains and "rough" boundary data drastically 
changes the nature of the problem since it affects the compactness of the boundary integral operators. 
In fact, even proving the very boundedness of these operators becomes a fundamentally harder 
problem. Of course, in the context of general Lipschitz boundaries, a major ingredient is the deep 
theorem of R. Coifman, A. McIntosh, and Y. Meyer on the boundedness of the Cauchy integral 
operator on Lipschitz curves [12]. Another basic idea, going back to Rellich [78] (and which has 
been reinvented independently by a number of authors since; cf., e.g., [70, 71, 40]) is to use the 
quantitative version of some appropriate integral identities to overcome the lack of compactness 
of the boundary integral operators on Lipschitz boundaries. Related material is contained in, for 
example, [2, 23, 74, 47, 82, 31, 56, 54]. See also [46] for a more up-to-date survey of developments 
in this very active field of research. 

The Rellich type identities that are relevant for the Maxwell system on arbitrary Lipschitz 
domains in R 3 have first been devised in [64]. Together with certain spectral theoretical arguments, 
these have been used to develop a L 2 theory for the problems (.Adi.e) in this setting. Subsequently, 
this theory has been extended to arbitrary Lipschitz domains in higher dimensions in [39], whereas 
the parabolic form of the Maxwell equations on Lipschitz cylinders has been treated in [65] (cf. also 
[63]). Furthermore, a comprehensive treatment of these problems based on a systematic use of the 
Clifford Algebra framework can be found in [59]. 

Here we continue the work initiated in [64]. Once again, our main concern is the smoothness 
of the domain (i.e., allowing Lipschitz boundaries) and of the boundary data (assumed to be in 
appropriate subspaces of LP(af2)). This time, however, our aim is to present a rather complete L p 
theory for the Maxwell boundary value problems (.Mi,¢), (£i.e), on arbitrary Lipschitz domains in 
R 3 for sharp ranges of p's. 

The solvability range for the problems (.A41.c) turns out to be 1 < p < 2 + E, for some 
= ~(af2) > 0 (see §6). Its optimality has been conjectured in [64] and shows that, in some sense, 

(,Mi,c) behaves more like Regularity and Neumann type problems (cf. the results in [20] for the 
Laplace operator). In fact, this is most visible in dimension two, where the Maxwell boundary value 
problems reduce to the interior/exterior Neumann problems for the Helmholtz operator A 4- k 2. The 
sharpness of this range follows from the counterexamples supplied in §7 which, as far as we are 
aware, are the first of this kind for systems of equations (compare to [20, 45, 73, 21, 83]). Our main 
result in this regard (Theorem 6.1) asserts that if f2 is an arbitrary, bounded Lipschitz domain in R 3, 
then there exists ~ > 0 depending only on f2 such that, for each 1 < p < 2 4- ~ and k ~ C \ {0], the 
compatibility conditions (1.1), (1.2) are necessary and sufficient for the unique solvability of (.M e). 
The solution is expressed in the layer potential form and optimal a priori estimates are obtained. 
As alluded before, this theorem is sharp. A similar result is valid for the interior problem, although 
this time one must take into account the possibility that the wave number k is a so-called Maxwell 
eigenvalue for f2. In this latter situation, existence holds only if the boundary data satisfy some 
further (necessary) compatibility conditions, whereas uniqueness holds only modulo a finite linear 
space. The endpoint case p = 1 for the Maxwell boundary value problems (.Aqi.e) is discussed in 
§8, where the structure of the vector space of boundary data is identified in terms of certain atomic 
Hardy spaces (cf. Theorem 8.4). 

To show the weU-posedness of these direct problems in the range 1 < p < 2 + ~ it is not clear 
how to follow directly the more familiar route (originally discovered in [20] and then successfully 
used in several other important cases, as in for example [21, 3, 73, 83]), which consists of interpolating 
between the atomic results and the L ~ results for the problem at hand. This is essentially because 
of the complicated structure of the spaces of boundary data in the limiting case p = 1 (for instance, 
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individual "atoms" do not belong to these spaces; see §8). Our idea is first to reduce matters to the 
potential theoretic Case k = 0 when the Maxwell system decouples and then, further, to that of the 
Laplace equation. It is at this stage that we shall make use of the sharp results in [20]. In doing so, 
we are naturally led to introducing and studying certain vector-valued layer potential operators as 
well as appropriate spaces of vector fields on the boundaries of Lipschitz domains in R 3 (cf. Theorem 
5.1 and Theorem 5.3). A prominent role in our analysis is played by the surface divergence operator 
considered in a weak sense (see §3). Much of this theory appears to be new even for domains with 
smooth boundaries. 

The main vehicles allowing us to relate the boundary integral operators that are used to solve 
(A4i,e) to the classical double-layer potential operator for the Laplacian on 0f2 are some operator 
identities that we study in §5. As a byproduct of this approach, we are also able to present sharp L p 
results for a number of boundary value problems for harmonic vector fields in Lipschitz domains 
in R 3. A complete L 2 theory of the boundary value problems for harmonic differential forms of 
arbitrary degree in Lipschitz domains in R m, m > 3, has been developed in [61 ]. 

Another important connection between these problems is that the electric field tends, as the 
wave number k approaches zero, to the corresponding electrostatic field. This is commonly referred 
to as the principle of limiting absorption and shows how the resolvent that we constructed behaves 
near the spectrum. Here we prove the validity of this principle for bounded domains in R 3 having 
connected, Lipschitz continuous boundaries of topological genus zero. 

The electric problems (~i,e) are  studied in §9..They are shown to be well-posed in the range 
2 - E < p < 2 + E for any bounded Lipschitz domain f2 in R 3 (for the interior problem, in the 
case in which k is a Maxwell eigenvalue for f2, this should be modified accordingly). See Theorem 
9.1 for a precise statement. A considerable amount of analysis goes into the proof of this result. 
In fact, for the indicated range of p's,  this is an extension of the theory for the Maxwell boundary 
value problem, as we show that (£i,e) reduces precisely to (A4i,~) whenever the boundary data is 
sufficiently regular, that is, when )-'~q,j nl(nlOj -- njOl)Al E LP(O~). Thus, by contrast, it seems 
natural to refer to (.Mi.~) and (Ci.~) as the regularity and the nonregularity, respectively, boundary 
value problems for the Maxwell system. 

The basic difficulty in dealing with the electric problems is the lack of control of curl E to 
the boundary. For this reason, no useful estimates can be immediately derived from the Rellich 
identities of [64] (see (5. l)) and new ideas are required. We present two proofs of the invertibility 
of the boundary integral operators corresponding to these problems. One is algebraic and relies 
on duality arguments; the other one is based on devicing some new Rellich type idetities that are 
suited for the situation at hand. In this connection, let us also point out the remarkable fact that the 
natural boundary integral operators used to solve (El,C) may fail to be invertible on the space of pth 
power integrable tangential fields on 0 f2 except for p = 2. Also, the key element in the proof of the 
uniqueness part is the continuous dependence of the solution of the regular problem on the boundary 
of the domain. 

In § 11 we undertake a systematic study of the so-called Maxwell eigenvalues and Maxwell 
poles of a Lipschitz domain ~2. The former represent the collection of all wave numbers k such that 
there exist two divergencefree vector fields E, H E L2(~2), not identically zero in f2 (called Maxwell 
eigenfields) for which there holds 

c u d E - i k H = 0  inf2,  
c u r l H + i k E = 0  i n ~ ,  
n/x E = 0 on 0f2, (Eigenvalue) 

n.  H =O on0f2.  

For the case of bounded smooth domains, this study goes back to [69] and we utilize both integral 
equation and Hilbert space techniques to extend the classical theory to this more general setting. 
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Difficulties may arise here due to the lack of coerciveness of the Maxwell operator.M. In particular, 
the classical inequality of  Friedrichs 

Ilullw,.~<a) _< C(llcurl ullL~(a) + lldiv ullz~<.) + Ilulh.~<a)), (1.3) 

for u ~ WLz(f2) with n J u = 0, which is valid if 012 is smooth, fails for general Lipschitz domains. 

We overcome this obstacle by using an appropriate version of (1.3) for vector fields in W½'2(12) 
and then invoking a regularity result for harmonic functions with L z boundary traces [40, 26, 41]. 
Another ingredient, which is in fact interesting in its own right, concerns the solvability of the 
nonhomogeneous boundary value problems for the equations of static electromagnetism (cf. [24, 
Vol. I, p. 87]). Our approach is constructive and relies on the invertibility results from §5. As a 
corollary of this, by employing Hodge-like decomposition results for L p vector fields in C l and 
Lipschitz domains, we are able to solve the nonhomogeneous version of (Eigenvalue). 

The aforementioned results have considerable impact in virtually all aspects of the well- 
established, classical mathematical theory of the acoustic and electromagnetic scattering by ob- 
stacles with smooth boundaries. As an illustration, we include an application to inverse scattering. 
Specifically, based on our results for the direct electromagnetic scattering problem from the previous 
sections, in § 12 we prove a uniqueness theorem for the inverse obstacle problem for scatterers having 
only Lipschitz continuous boundaries. This improves upon a theorem of A. Kirsch and R. Kress 
([49]; cf. also [15]) where the scatterers are assumed to have (C 2) smooth boundaries. 

Finally, in §13 we outline several directions of further research and formulate a number of 
relevant open problems and questions. 

2 .  D e f i n i t i o n s ,  N o t a t i o n ,  a n d  P r e l i m i n a r y  R e s u l t s  

Recall that for a domain f2 in R m (for our purposes m = 2, 3), the Sobolev-Besov space 
Ws'P(f2), 0 < s < 1, 1 < p < ~ ,  is the collection of all distributions on f2 such that (with dV 
standing for the Lebesgue measure in R 3) 

/  lSo I"' Ilu II ,.. ,(a) := lO"ul p dV 
1 

if s is an integer and such that 

{. ,sso Ilullw.<~) := 10"ulP + ~ IX - YI "+p(`-I'I) 
I _ ] lat=ls] 

i f s  -- [s] > 0 (here Is] stands for the largest integer, which is < s). Furthermore, if Wg'P(f2) stands 
for the closure of C~rnp(~2) in the II • II w:<~) norm, then we also set W-"e(f2) for the dual space of 

1 Wo "q(f2),whereO<s< l a n d l  < p , q  < e ~ , ~ + ~ = l .  

Now consider ~2 a bounded, connected open subset of R 3 with connected boundary (note that 
this automatically implies that f2 and R 3 \ ~ are connected). We shall call f2 a bounded Lipschitz 
domain if for each P ~ 0£2 there exist r, h > 0; a coordinate system {Yo, Yi, Y2} in R 3 that is 
isometric to the usual one and has origin at P; and a Lipschitz continuous function ~o : R 2 ~ R 
such that if C(r, h) denotes the cylinder {(Yl, Y2) ; lyjl < r. j = 1, 2} x (0. h) C R 3, then 

f2 f3 C(r, h) = {Y = (Yo, Yl, Y2) ; lyjI < r, 0 < j < 2, y0 > ~0(yl, y2)}, 

0[2:3 C(r, h) = [Y = (Yo, Yl, Y2) ; lyjI < r, 0 ~ j < 2, y0 = ¢P(Yl, Y2)}. 

We shall call af t  N C(r, l;) a coordinate patch for 0f2. Since ~f2 is compact, it is always possible 
to cover 0£-2 with finitely many coordinate patches. Each such a collection is called an atlas for 0f2. 
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Also, we denote by g ( a ~ )  the topological genus of  the surface 0f2 (i.e., the number of"handles" of  
f2). 

Let ~2 be a Lipschitz domain in R 3, and let (Uv, ~0v)v be an atlas for 0~2 (here ~0v are the corre- 
sponding Lipschitz functions describing a ~  in Uv). Also, fix (0,)~ a partition of unity subordinated 
to the finite, open covering (U~)~ of  af2. A distribution u on On of  order _< 1 is said to belong to 
the Sobolev-Besov space W~,P(Of2) with Is[ _< 1, 1 < p < ~ ,  if 

(OvU) o Zv E Ws 'P(R  2) 

after extension with zero outside the support, for each v, where zv(yl, Y2) :=  (~o~(yl, Y2), Yl, Y2). 
We endow this space with the norm 

Ilullw,<an) := ~ II(0vu) o z~llw,.,<R2). 
v 

Clearly, with dcr standing for the canonical surface area on 0f2, the spaces W°'e(Of2) and 
Wl'P(0f2) can be identified (algebraically and topologically) with LP(O~), the Banach space of  
measurable, complex-valued functions that are p-integrable with respect to d a  on af2, and with the 
space of  functions f ~ LP(af2) for which )--~v IV[(0vf) o z~]l belongs to LP(R2), respectively. We 
endow this latter space with the natural norm II f II w,,<o~) := II f II Lp(a~) + ~ v  II V[(O~ f )  o zv]ll L,(R2). 
It is not difficult to check that, for 0 < s < 1, 1 < p < oo, an equivalent norm on Ws,P(Of2) is 
given by 

Ilull w,.~(a~) := (fafzlulPdcr + ~ lu(P)-u(Q)lPdcr(P)da(a)) ~_ "Q--~'~'~ 

It is a well-known fact that the Sobolev-Besov spaces with fractional index also arise as interpolation 
spaces. Specifically, for any 1 < p < ~ and 0 < s < 1, real interpolation techniques give that 

[LP(af2), wl'P(O~'~)]s,p = WS,p(a~2). 

We shall frequently use the following lemma. 

Lemma 2.1. 
1 = 1 ,  Let ~2 be a bounded Lipschitz domain in R 3. For any Is l _< 1, 1 < p, q < cx~ with ~ + 

one has (w~.P(afl)) * = w-s.q(af2). 

The proof can be adapted from that of  [57, Theorem 7.6, p. 36] with only minor alterations 
and is omitted. 

If  we now introduce W~'P(Of2) :=  {u ~ W"P(0f2); (u, 1) = 0}, then for Isl _< 1 and 
1 1 1 < p, q < oo with 7 + q = 1 we also have Wo"P(Of2) = (W',P(af2)/C) *. We shall occasionally 

write L~(af2) in place of W°'P(Of2). A useful observation is that the collection of  all Lipschitz 
continuous functions on al l  is dense in Ws,P(O~2), Isl _< 1, 1 < p < cx~. 

Next, let y denote the restriction to the boundary operator initially defined on C~(f2) ,  say. 
The well-known lemma of  Gagliardo asserts that for each 1 < p < oo the application Y extends 

1 I 
as a bounded operator from WI'p(f l )  into W -7'P(af2) and has a bounded right inverse. In fact, 7 

' i < s < 1 + 1 (cf. [34, Theorem maps WS'P(f2) boundedly into W~-;'P(Of2) for 1 < p < oo and 7 - 7 
1.5.1.2]). 

Let f2 be a Lipschitz domain in R 3 and set f2+ :=  f2, f2_ :=  R 3 \ ~ .  For a complex- 
valued function (or vector field) u defined in f2+, the nontangential maximal function u* is given by 
u*(X) :=  supy~r~(x) lu(Y)l, where I • I refers to the absolute value or Euclidean norm in R 3. Here 
F± (X) denote the interiors of  the two components (in f2+ and in f2_) of a regular family of  circular, 
doubly truncated cones {F(X); X 6 af2}, with vertex at X, as defined in, for example, [93]. Also, 
the boundary trace u lan, of a function (or vector field) defined in f2± is assumed to be taken as the 
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nontangential limit almost everywhere with respect to surface measure on the boundary (whenever 
this exists). 

In the sequel, we shall find it useful to approximate, in a suitable sense, a given Lipschitz 
domain with a sequence of C °o domains. More specifically, we note the following Ne~as-Verchota 
type result. 

Lemma 2.2. 
For any Lipschitz domain f2 in R 3, there exist two families of  C °o domains f2j C f2 and 

f2~ ~ f2, respectively, approximating ~2 in the following sense. 

i. There exists a covering of a f2 with Jinitely many coordinate cylinders that also form a family 
of coordinate cylinders for Of 2 j, for each j .  Moreover, for each such cylinder C (r, h ), if ~o 
and ~oj are the corresponding Lipschitz functions whose graphs describe the boundaries of 
f2 and f2j, respectively, in C(r, h), then IIV~oj ILL,* -_- IIV~011z.~ and ~7~Oj ~ ~r~O pointwise 
a.e. 

ii. There exist two sequences of Lipschitz diffeomorphisms A j : aS2 ~ af2j and A'j : af~ --+ 

af2~ such that the Lipschitz constants of  A j, A j -I,  A ~, A ~ -x are uniformly bounded in j .  
°°" A I m. Forall j andall Q ~ Of 2, A j ( Q )  ~ F+(Q), j (Q)  E F_(Q) ,andsupQ~aa( IQ-Aj (Q) l+  

IQ - A~(Q)I) < C/j .  
iv. There existpositivefunctions oJj : a f2 ~ R+, boundedawayfrom zero and infinity uniformly 

in j ,  such that for any measurable set F C of 2, f v  wjdcr = f^~(F) dcrj, where dcrj denotes 
the surface measure on af2j. In addition, wj --~ 1 a.e. and in every LP(a~),  I <_ p < oo. 
A similar statement with A~ in place of A j  is also valid. 

v. I f  nj and n~ are the outward unit normal vectors to af2j and to af2tj, respectively, then 
n j (A j ( . ) )  and n~(A~(.)) converge a.e. and in every Lt'(a~2), 1 < p < oo, to n(.), the 
outward unit normal to 0 f2. 

vi. There exists a real-valued, smooth, compactly supported vector field 0 in R 3 and r > 0 
such that (®(Aj(P)) ,  n j (A j (P ) ) )  > r > O, at almost every P ~ O~2,for all j .  A similar 
statement with A'j in place of A j is also valid. 

A proof can be found in [70, 92]. These approximating sequences of domains will be denoted 
by fgj 1" f2 and f2~ $ f2, respectively. The various constants appearing in the statement of this 
lemma will, in short, be referred to as the Lipschitz character off2. The above lemma is particularly 
useful for, for example, performing integrations by parts that would normally require boundaries 
smoother than Lipschitz. However, the reader is warned that many times in what follows this will 
be used only tacitly, with no specific mention. 

Now consider f2 a bounded Lipschitz domain in R 3 and recall that n stands for the outward 
unit normal to ~, dtr stands for the usual surface measure on 0f2, and x is the usual vector product 
in R 3. Let f ,  g be two Lipschitz functions in R 3 such that f is scalar-valued and g is vector-valued. 
Straightforward integrations by parts then yield the formula 

faf2In × V f  , g)dcr = -  fa f (n, (2.1) 

Furthermore, if both f and g are scalar-valued, then 

fa g(n  × V f )dcr  = -  fa f (n x ~ (2.2) 

Note that n x V : =  (n203 - n302, n301 --hi03,  hi02 --n201) r and  (n,  cur l  ) : =  ((n203 - n 3 0 2 ,  n3/91 - 

n l03, n l02 -- n2 01 ) ,  ") contain only tangential derivatives and, hence, can be thought of as operators 
on af2. In fact, by (2.1), (2.2), duality and interpolation, we see that these operators map WS'P(Of2) 
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boundedly into WS-Le(O~2), for 0 < s < 1, 1 < p < oo. Also, the integration by parts formulas 
(2.1), (2.2) naturally extend to the case in which f E W s'p (a f2) and g ~ W l-s,q (0 f2), for 0 < s < 1, 
1 < p, q < c~, ± + ± = 1. Another simple but useful observation is that f ~ LP(Of2) has 

q 

(n x V ) f  = 0 on ~'f2 if and only if f equals a constant a.e. on 0f2. 
The usual div and curl operators will be considered acting in the distribution sense for vector 

fields defined in an open domain f2 in R 3. For any vector field u ~ L l (f2) such that curl u ~ L 1 (f2), 
we define the (vector-valued) distribution n A u in R 3 (which is actually supported on af2) by 

(nAn ,  := f fn(curlu, dv - f fn<u, curl,) dV (2.3) 

for each test vector field 9 in R 3. Similarly, for a vector field u ~ Ll(f2) with divu 6 Ll(f2), we 
define the distribution n • u by 

(n .u ,  ~o) := f f~ ~odivudV + f f (u, V~o)dV, (2.4) 

where ~0 is an arbitrary test function in R 3. Obviously, n • u is once again supported on 0f2. Also, 
note that if, for example, u 6 C l (~),  then n A u and n-  u coincide with n x u and (n, u), respectively. 

Lemma 2.3. 
Consider f2 a bounded Lipschitz domain in R 3, and let 1 < p < oo. If the vector field 

1 

u E LP(f2) is such that curlu E LP(f2), then n/x u E W-;'P(Of2) and there exists a positive 
constant C depending only on the Lipschitz character of 0 f2 so that 

IIn/x ullw_L,(0n) < C (llullLp(n) + Ilcurlulltp(n)). 

Also, ifu E LP(f2) is such that div u ~ LP(~), then n • u E W-{'P(Of2) and 

IIn • Ilw_~.,(a~)u , _< C (llullL,(n) + Ildiv ullt,(n)) 

for some positive C depending only on the Lipschitz character of 0 f2. 

q be the conjugate exponent of  p so that W-~'P(Of2) = (Wl-~'q(0~2)) *. By P roof .  Let 
1 I 

the classical Gagliardo lemma, any v ~ W - ; 'q (0f2)  is the boundary trace of  some ~o ~ wl.q(~)  

with [leo I[ w~.q (n) < C [[ v [[w'- ~ 'q (a~)" Thus, we may extend n A u as a linear functional on W t-  ~.q (8 f2) 

by setting 

(n ̂ u, v) := f L(curlu, co)dv - f f (u, curlco)dV. 
1 I 

Since W l'q ( f2) /W d 'q (f2) is isomorphic (algebraically and topologically) to W - ;  'q (Of2) (cf. [70]), 
it follows that this definition is correct, agrees with the old one, and the norm of the functional n A u 
does not exceed a (fixed) multiple of Ilu II tp(~> + Ilcurl u II t,(n). The first part of the lemma follows. 

The proof of  the second part, based on (2.4), is similar and, hence, omitted. [ ]  

3 .  S i n g l e - L a y e r ,  D o u b l e - L a y e r  a n d  N e w t o n i a n - l i k e  P o t e n t i a l  

Operators 
For each k ~ C, we let Ok stand for the standard radial fundamental solution for the Helmholtz 

operator A + k 2 in R 3, 

eiklXI 
o d x )  . -  x # o. 

4rr lXl '  
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In particular, ~0 is the usual fundamental solution for the Laplacian in R 3. 
The single-layer acoustic potential operator with density f is defined by 

Skf(X) : =  f dPk(X - -  Q)f(Q)dry(Q), X E R 3 \ 0f2. 
Ja [2 

For any f in L p (0 f2) we have that Sk f is a vector field in R 3 \ 0 f2 that solves the Helmholtz equation 
(A + k2)Skf = 0 in R 3 \ 0 ~  and, i f I m  k _> 0, satisfies I[(Skf)*llL,<a[2,) + II(VSkf)*llt.,<a[2,) _< 
CIIfllL~<a[2) for any 1 < p < oo [12]. The (interior/exterior)nontangential boundary traces of Sk f  
are given by 

lira S , f ( X )  = Iim Skf(X)  = Skf(P), P ~ Of 2, 
X ~ P  X ~ P  

XEF+(P) X~F_(P) 

where 

1 fan eiklQ-PI sky(P) :=  -~-~- - ~ - - ~ l f ( Q ) d a ( Q ) ,  P ~ aft. 

The action of  the operators Sk, Sk on vector fields is defined componentwise. 
Note that Sk : LP(0f2) > LP(a~) is a compact operator for any 1 < p < o~. In addition, 

at almost any P ~ 0 ~ ,  

OSkf "X" x--e li_m ~ ) :=  lim (n(P) ,  VSkf(X)) =:  (=~½I + K~) f (P) ,  
XEF±(P) xEr±(P) 

where K ;  is the formal transpose of the principal value integral operator 

1 fa (n(Q), Q - P)egkiQ_el(1 - i k [ Q  - Pl)f(Q)dcr(Q), Kkf(P) :=  p.v.~-~- [2 IQ - p[3 

the so-called (singular) double-layer acoustic potential operator. In fact, if we set/Ck f :=  - d i v  ,-qk (n f ) ,  
then clearly 

lim 1Ckf(X) = (+½I + Kk) f (P) ,  
X ~ P  

X~f'±(P) 

at almost any P ~ 0 ~.  
Combining the techniques of  [28] with the results in [12] we can infer that for any vector field 

A in L ' ( a ~ ) ,  I < p < ~ ,  at almost any P ~ a ~  we have 

lim divSkA(X) = q l (n, A)(P) +p.v.f dive {dPk(P -- Q)A(Q)}dcr, 

and 

1 £ 
lim curlSkA(X) = q:=(n x A)(P) + p . v . ]  curie {~k(P  -- Q)A(Q)}da. 

X~r.(P) 

Another basic boundary integral operator for us here is the so-called magnetic dipole operator 
defined by 

MkA :=  n x (p.v. curl S~A) 

for vector-valued densities A on a£2. Set 

LPtan(Of2) :=  {A : 0f2 ---> C 3 ; A E LP(0~'2) ,  (n, A) = 0 a.e. on 0f2}. 
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Once again relying on the results of [12] one can show that, for each 1 < p < c~, the operator M~ is 
a bounded mapping of L~(Of2). Also, from the above discussion and since for A ~ LP~(Of2) one 
has n x (n x A) = - A ,  we see that 

lim n(P)  x curlS, a ( x )  = (-4-½1 + Mk) A(P)  
X~F±(P) 

at almost any P ~ 0 f2. 
Finally, we shall also work with the Newtonian potential type operator 

L k f ( X )  := f f~  ~k(X  -- Y ) f ( Y )  dY, X ~ f2 

(note that for k = 0 this is precisely the more-familiar Newtonian potential operator on f2). 

L e m m a  3.1. 
Let ~2 be a bounded Lipschitz domain in R 3. For any 1 < p < ~ ,  k E C, the operator Sk 

maps W-7"P (Of2) boundedly into WI"P(f2). In particular, n • ~TSk = --½I + K k on W-7'P (Of2). 
1 t Also, under the same assumptions, the operator ICk maps W - ~' p (8 f2 ) boundedly into W l.p (f2) 

1 

and, moreover, 2/o ICk = ½I + K~ on WI-7'P(Of2). 

P r o o f .  If q is the conjugate exponent of p and if f,  g are two scalar- and vector-valued, 
respectively, Lipschitz functions in R 3, then 

< 

< 

< 

Ifa f (  d ivLkg)da I 

C II div Lkg Ilw,_ ~., (an)II f II W- ~ ,p(a~) 

CUdiv Lkgllw,.q~)llf[I , 
W- ~'P(afl) 

CIIgllL,(a)llfll , 
W-~,P(Of2)  

The last inequality follows from the boundedness of the operator Lk from Lq(~)  into w2'q(~ '2 ) ,  

which, in turn, is a direct consequence of the classical Calder6n-Zygmund inequality. Thus, by 

density, VSk extends as a bounded operator between W-~'P(af2) and LP(f2). Similarly, Sk maps 

W-~ 'p (af2) boundedly into L p (f2), and this completes the proof of the boundedness of Sk. 
Next, we note that Lemma 2.3 and the above reasoning imply that f ~-> n. V S k f  is a bounded 

mapping of W-)'P(Of2). Since, by the techniques in [28], the conclusion in the lemma obviously 
holds if f belongs to, for example, LP(ak"2), an easy density argument finishes the proof of the first 
part of the lemma. 

To see the second part, let f ~ WI-~'P(Of2) and let u ~ Wl'P(f2) be such that F(u) = f with 
Ilull w,.pt~) <_ Cllftlw,-~.p~ ). Green's integral formula (cf. [70]) then yields 

u = ICkf + div Lk(Vu) + k2LkU. 

Consequently, 1Ckf ~ WI"P(f2) and II1Ckfllw,,p~) < CIIfllw,_~.~ta~). In particular, by Gagliardo's 
1 I 

lemma, F o/Ck is a bounded mapping of W -; 'e(Of2). Now the conclusion easily follows from this 
and a density argument. [ ]  

R e m a r k .  It is easy to see that the boundary trace map y extends to a bounded operator 
between W2.p(f2) and WI"P(Of2) for any 1 < p < oo. Using this, the fact that Lk maps LP(f2) 
boundedly into W2'p(fl) and a duality argument, it follows that Sk also maps W -I'p (Off) boundedly 
into LP(f2) for each 1 < p < ~ .  [ ]  
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Next we present a basic integral representation formula (a version of  the so-called fundamental 
theorem of  vector analysis). 

T h e o r e m  3.2. 

Let [2 be a bounded Lipschitz domain in R 3, k E C and 1 < p < c~. I f  u E LP(~2) is such 

that curl u E L P ( f2 ) and div u ~ L P ( ~2 ) , then at almost any point in f2 one has 

u = k 2 Lku -- curl Lk(curl u) + VLk(div u) - VSk(n • u) + curl Sk(n/x u). 

P roo f .  Let u be as in the statement of  the theorem and extend u, curl u, and div u with zero 
outside f2. First, we claim that there exists a sequence (u j ) j  of  functions in C°° (f2) with u j ,  curl u j,  
and div uj  converging in LP(f2) to u, curl u, and div u, respectively. To see this, using a partition 
o f  unity, there is no loss of  generality to assume that supp u f3 a[2 lies in a coordinate patch o f  0f2. 
Hence it is possible to construct an open, upright cone F centered at the origin of  R 3 and such that 

F + (0£-2 N supp u) c R 3 \ ~ .  (3.1) 

Let ~0 be a smooth, compactly supported function in R 3 having integral one and such that supp ~o _c F. 
Also, let ~o~ :=  E-3~0(-E -1) for E > 0. Clearly, u • ~0~, (curl u) • ~0~, and (div u) • ~o, are smooth in 
R 3 and converge in LP(f2) to u, curl u, and div u, respectively. 

Next, curl (u • ~o~) = (curl u) • ~0, + v • ~o~, where v is a distribution supported on 0~2 fq supp u. 
Thus, by (3.1), 

supp (v • ~o,) c F + (0f2 A supp u) c R 3 \ ~ .  

Consequently, we have curl (u.~o,) ~ curl u in L p (f2). Similarly, we also obtain div (u.~0~) ~ div u 
in LP(f2) and the claim is proved. 

For arbitrary smooth u and f ,  the following identities are easily verified: 

divLku = Lk(divu) - Sk((n, u)), 

curlLku = Lk(curlu) - -Sk (n  x u), 

V L k f  = L k ( V f ) - - S k ( n f ) .  

Now we observe that by straightforward integration by parts based on the above identities the cor- 
responding statement of  the theorem for functions in C~(f2)  holds true. On account of  Lemma 2.3 
and Lemma 3.1, the proof of  the theorem is now concluded by a simple limiting argument. [ ]  

A frequently used consequence of  Theorem 3.2 is a Green type integral representation formula 
for divergencefree vector fields with metaharmonic components (i.e., the components are annihilated 
by the Helmholtz operator A + k2). 

Corol lary  3.3. 

Let f2 be a bounded Lipschitz domain in R 3, and consider a vector field u ~ LP(f2), 1 < 

p < oo, that is divergencefree, satisfies the Hetmholtz equation (A + k~)u = 0 in ~ and such that 
curl u ~ LV(f~). 

Then at almost any point in ~2 we have 

u = curlSk(n/x u) - VSk(n • u) + Sk(n/x  curl u). (3.2) 

Proof. Using the fact that curl curl = - A  + Vdiv, simple integrations by parts give 

curl Lk(curl u) - k 2 Lku = - L k ( ( A  + k2)u) - Sk(n/x  curlu),  

so that everything follows from Theorem 3.2. [ ]  
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4 .  T h e  S u r f a c e  D i v e r g e n c e  a n d  R e l a t e d  F u n c t i o n  S p a c e s  a n d  

O p e r a t o r s  

Let f2 be a bounded domain in R 3 that, for the moment, we assume to have a smooth boundary. 
A basic invariant associated to a (smooth, complex-valued) tangential vector field A = (Aj)j on 0~"2 
by tangential differentiation is the (scalar-valued) function 

DivA : =  E nt(nlOj -- njOl)Aj (4.1) 
j,l 

which is called the surface divergence of A. 
An intrinsic definition ofDiv A can be obtained as follows. If A is supported in a surface patch 

where 0f2 has the parametric representation a ~  ~ P = 7 (q, t2) and A = alO17 + a21~7, then 

DivA ~ 1 (~ t l  0 ) = + , 

where g := det((ajV, Ot~))j.t (cf., e.g., [68, p. 154]). 
For the following calculation assume that the tangential field A has been smoothly extended 

to all R 3. Since, by (4.1), Div A = div A - (n, (n • V)A) = (n, curl (n x A)), using for example 
(2.1) it is not difficult to see that 

fa (V~o, a)dtr = -  fa ~oDivadtr (4.2) 

for any (eventually complex-valued) ~o E C°~(R3). 
The above formula (4.2) is the departure point for extending the definition of the surface 

divergence operator Div to the case when the boundary of the domain is only Lipschitz continuous. 
For the rest of this section, we fix an arbitrary Lipschitz domain ~ in R 3. To be more specific, if 

P 1 < p < ~ and A e Lm(0f2), we define DivA as the functional 

(Div A, f )  := - f (A, V m f )  dtr, (4.3) 
da ~2 

where f is an arbitrary Lipschitz continuous function on 0f2. Since A is tangential, this definition 
1 is in agreement with (4.2) in the case when f extends smoothly in all R 3. Also, if ~ + ~ = 1, 

I(DivA, f ) l -<  IIAIIL'(a~)IIX7~flIL~(a~> <--IIAIILp(a~)llfllw~.~(a~). 

Thus, by density, DivA extends to an element in (wLq(~ ) )  * = w-Lg(afi). In fact, the surface 
divergence operator 

Div : L~(0f2)  --+ W-LP(af2) 

is well-defined, linear, and bounded and we have the integration by parts formula 

fa fDivAdtr  = -  faa(n x a,(n x (4.4) 

i = 1. Going further, another for any A E L~(Of2), f E wLq(of2), where I < p , q  < oo, ~ + q 
important observation is that 

Div (n x A) = - ( n ,  curiA) (4.5) 

for any vector field A ~ LP(O~) (note that n x A e LP(0f2)  and that the operator (n, curl .) in 
the fight-hand side has to be interpreted as an intrinsic tangential derivative operator in the sense 
discussed in the previous section). This follows immediately from (4.4) and (2.1). 
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Lemma 4.1. 
Let 1 < p < o0 andu E LP([2) such thatcurlu E LP(~2). l fn  A u ~ LP(O[2), then in fact 

1 

n A u ~ LP(o[2) and Div (n A u) = - n  • curl u. Inparticular, Div (n A u) ~ W-~'P(O[2). 

Proof .  Using a partition of  unity and working in local coordinates it is possible to construct 
a sequence of  smooth function ~j  in R 3 such that ~ i  l a~ -+ 0 in W l'q (0[2) and (V~0j)la~ ~ P n in 

l 1 Lq(O[2), ~ + ~ = 1 for some positive scalar-valued p that is bounded away from zero and infinity. 

Fix an arbitrary smooth function ~o in R 3. Then 

f a ~ ( n A u ' n )  p~°da = l~j fo ( n A u ,  V(~o~pj))da 

= limffa(cur u, 

j i ( n -  curl u) ~o~pj da = O. lira 

Hence In A u, n) = 0 a.e. on 0[2 so that n A u ~ L~(012) .  
To calculate the surface divergence of  n A u, we use (4.2) to write 

fo f2~°Div(nAu)da  = - f a n < n ^ u ' V ¢ ) d a = -  f f  ( cu r lu 'V¢ )dV  

- jlf2 (n • curl u) ~oda. 

Therefore the first part of  the lemma follows from a simple limiting argument. The last part of  the 
lemma is immediately seen from Lemma 2.3, and this concludes the proof. [ ]  

Next we study the action of  the surface divergence operator in connection with the boundary 
integral operators introduced in the previous section. 

L e m m a  4.2. 
For k ~ C, 1 < p < oo, and A ~ L~(O[2), we have 

div Ska = Sk(Div A) 

in R 3 \ 0[2. Moreover, a similar identity is valid by interpreting the operators in the principal value 
sense on 0 g2. 

Proo f .  For a fixed point X ~ R 3 \ 0[2, we have 

( d i v S k a ) ( x )  = - f ( ( V ~ k ) ( X  - Y) ,  A(Y))  da (Y)  
Ja ~2 

= [ Ok(X- -  Y ) ( D i v A ) ( Y ) d a ( Y )  
Ja f~ 

= Sk(DivA)(X) ,  

which proves the first part of  the lemma. To see the second part, we shall use a limiting argument. 
First, let us note that the vector space 

oo 3 
{n X tplaf2 ; tp e Ccomp(R )} 

is densely embedded into LPm(0[2). Indeed, any A ~ LPtan(O[2) can be written as A = - n  x (n x A) 
and, if {~0j }i is a sequence of  functions in ~ 3 CcCo~p(R ) such that ~ojlaf~ ---> - n  x A in LP(af2), then 
n x tpj ---> A in LP(O[2). 
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Next, ~oj ~ CcC~omp(R 3) so that Aj :=  n x ~oj la~ converges to A in LP(O~'2). In particular, 

Div Aj  "--+ Div A in W-I'P(Of2). Now, for each fixed j and at almost every P ~ 0 ~ ,  we have that 

Sk(DivAj)(P) = lim S k ( D i v A j ) ( X ) =  lim (divSkAj)(X)  
X ~ P  X ~ P  

X~I'+(P) X~F+(P) 
= (div SkAj)(P).  

The second equality is provided by the first part of  the lemma, and the third equality follows from 
the jump relations for the derivatives of  the single-layer potential operator (cf. §3) and the results in 
[12]. 

Thus, by the continuity properties of  Sk and div Sk (cf. also the remark after Lemma 3.1), we 
have 

Sk(Div A) = lira Sk(Div A j) = lim div SkAj = div SkA 
J J 

in L P ( ~ ) .  [] 

Lerama 4.3. 
For any k ~ C, 1 < p < oo, and any scalar-valued function f ~ LP(O~), we have 

cur lSk(nf )  = --Sk(n x V f )  

in R 3 \ Of 2. A similar result holds on Of 2 too. 

P r o o f .  As in the proof  of the Lemma 4.2 it suffices to prove the identity in R 3 \ O~ and for 
f E W1"P(O~). In this case, fixing an arbitrary point X E R 3 \ 0f2, from (2.2) we have that 

Sk(n x V f ) ( X )  = [ Ck (X- -  Y)(n × V) f(Y)da(Y) 
Ja f2 

- -~-/~ [(n x V)C~k(X -- .)](Y)f(Y) dcr(y) 

= / n(Y) x (V~k)(X- Y)f(Y)dcr(Y) 
Ja 

= - cu r l  Sk(nf ) (X) ,  

and the conclusion follows. [ ]  

The following lemma will also be used many times in the sequel. 

L e m m a  4.4. 
p For each k E C, A E Lt~(Of2), and 1 < p < cx~, we have that 

Div M~A = -k2(n,  SkA) - K~(Div A) 

in W-1"P (Of2). ln particular, for each 1 < p < oo, the diagram 

Mo 

Div I IDiv 

Wol,e(a~ ) - r ;  > Wol,p(~2) 

is commutative. 

(4.6) 

P r o o f .  If A is of the form n x B with B a smooth vector field in R 3, then the above identity 
is a corollary of  Lemma 4. I, I .emma 4.2, and the fact that curl curl = - A + Vdiv. The general case 
follows from this and the density argument employed in the proof of the Lemma 4.2. [ ]  
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We conclude this section by introducing some Banach spaces of  boundary vector fields that 
will play a fundamental role in the sequel. First, for each 1 < p < c~, we set 

P . L P ( O ~ ) } .  Lt~Div(0f2) :=  {A E Ltan(0f2), Div A E 

By Lemma 4.4 and the results in [12], we see that Mk is a bounded mapping o f  Lt~Div (0~) ,  for each 
1 < p < oo, k ~ C. We shall also use the principal value singular integral operator Nt,  called the 
electric dipole operator, defined by 

NkA :=  n x cur lcud SkA = kEn x SkA + n  x VSk(Div A) 

for A ~ L~mV(Of2). Since, by (4.5), we have Div NkA = -k2(n ,  curl SkA), it follows that Nk is a 

bounded mapping ofL~Div(0~2) foreach 1 < p < oo. In particular, note that NoA = n x VSO(Div A) 
p,Div 

for A ~ Lt~ (0f2). 
Second, introducing 

L~a°(Of2) :=  {A E L~(O~2) ; Div A = 0}, 

then once again by Lemma 4.4 and the results in [12] we have that M0 is a bounded mapping of 
L~°(Of2) for each 1 < p < cx~. We remark that from (4.5) the operator n x VS0 maps L P ( O ~ )  

houndedly into L~°(Of2) for each 1 < p < ~ .  In fact, the tangential derivative operator n x V 
p,0 maps Wt'P(Of2) boundedly into Lt~ (0f2), 1 < p < c~. It follows that No also maps L~nt~v(O~2) 

boundedly into L~°(Of2) for 1 < p < oo. 
A Sobolev-like scale of  spaces in which L~°(Of2) can be incorporated is obtained by setting 

V~aS'P(o[2) := {(n x V ) f ;  f E Wl-S'P(0f2)} _c W-S,P(Of2) (4.7) 

for 1 < p < oo, 0 < s < 1. This is because, as we shah see in the next section (cf., e.g., Corollary 

5.2) one has V~n p L~°(Of2). These spaces are complete when equipped with the natural norm 
IIAIIv~'.pfa~>, which we take to be 

inf{ll~. + fllw~-,.p~a~) ; X ~ C, f E Wl-S'P(O~2), (n x V ) f  = A}. 

Note that, with this notation, the operator n x VSO maps W-"P(Of2) boundedly into V~"P(Of2) for 
1 < p < ~ a n d 0 < s < l .  

5 .  I n v e r t i n g  B o u n d a r y  I n t e g r a l  a n d  B o u n d a r y  D e r i v a t i v e  

O p e r a t o r s  

In this section we discuss the L p invertibility of  vector potential and tangential derivative 
operators on Lipschitz boundaries in R 3. The main results in this direction are Theorem 5.1 and 
Theorem 5.3. Recall that g(O~2) stands for the topological genus of 0£2. 

Theorem 5.1. 
Let f2 be a bounded Lipschitz domain in R 3 with g(Of2) = O. Then there exists E positive, 

depending only on 0 f2 such that the following operators are isornorphisms between the indicated 
spaces. 

i. 

i i .  
o o o  

IlL 

iv. 

In, curl So) : L~°(Of2) --+ L~(Of2)for each 1 < p < 2 + E; 
p,O n x VSo : L~(Of2) --~ Lan (O~2)for each 1 < p <_ 2 + ~; 

T : L~(Of2) x L~°(Og2) ~ L~nDiv(Of2),where T ( f ,  A) :=  n x V S o f + n  x SoA,foreach 
1 < p < 2 + E ;  

p Div p 0 rr o (n x SO) : L~a°(Of2) --+ L G  (3~2)/L~ (3f2), where 7r is the canonical projection 
p Div p 0 operator of L~aDiv (o~) onto L ~  (Of2) /L~ (O~2) for each 1 < p <_ 2 Jr E; 
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v. n x V : WI'P(O£2)/C --+ L~n°(af2)foreach 1 < p < ~ ( in factn  x V : WI-s,P(O[2)/C 
V~S'P(af2)for each 0 < s < 1, 1 < p < ~ ) ;  

vi. (n, curl So) : V~s'P(O[2) -+ WoS'P(a[2)for each 0 < s < 1 and2  - • < p <_ 2 + •; 

vii. (n, curl So) : V ~  l'v --+ WoLP (Of2) for  each 2 - • <_ p < c~; 

viii. Div : L~Div(a[2)/L~°(Og2) ~ L~(a[2)for  each 1 < p < oo; 

(n, curl) : (n x L~nDiv(O[2)) / (n x L~n°(af2)) --+ L~(a~2)foreach l < p < o o ;  ix. 

x. div So : L~Div (of2)/L~n°(Of2) --* WLP(O[2)/C for  each 1 < p < 2 + •; 

xi. n x curl So : n (WI'P(O~2)/C) --~ L~Div(a~2)/L~n°(O~2)for each 1 < p < 2 + •; 

LP,Div ~ p,O L~n°(Of2)for each I < p < 2 + e; xii. No : t~ (0) /Lu~(O~2)  

xiii. Div : LV(Of2) /L~°(a[2)  --+ Wot 'V(a[2) foreach  1 < p < cx~; 

(n, curl) : L ~ ( a f 2 ) / ( n  x L~°(a f2) )  --+ WoLP(o[2) for  each 1 < p < oo; xiv. 
w 

xv. div SO : LP(O[2)/L~a°(O[2) --+ LP(af2) /C for  each 2 - • < p < o~; 

xvi. + ½ I  + Mo : Lt~°(a[2) --+ L~°(O[2)for each 1 < p < 2 + •  (and, in fact, on V~s'P(O[2) 
for  each O < s < 1, 1 < p < 2 + E ) ;  

p Ply L~nDi~(O[2)for each 1 < p < 2 + •; xvii. + ½ I + M 0 : L ~  O[2)--+ 

p p,O L~(O[2) /L~° (Of2 ) fo r  each 2 • <_ p < oo; xviii. + ½ I  + M0 : Lm(Of2) /L~n (0[2) ---> 

xix. + ½ I + MO : L~(Of2)  -*  L~(a[2)  for  each 2 - • < p < 2 + •; 

xx. +½I + Mo acting on {A E L~(O[2);  Div A ~ W-S'P(a[2)}for each 2 - • <_ p <_ 2 + • 
and O <_ s < 1 .  

In the class of  Lipschitz domains these results are sharp. I f  the domain [2 has in fact  a C I 
boundary, then the same results are valid for  1 < p < oo. 

An immediate corollary of  Theorem 5.1 regarding the LP-cohomology of the Lipschitz mani- 
fold Of 2 is the following (recall first the usual tangential gradient Vtan := - n  x (n x V)). 

Corol lary  5.2.  
Let [2 be a bounded Lipschitz domain in R 3 with g(a[2) = O. Then for  each 1 < p < oo, the 

sequences o f  boundary derivative operators 

o , c ' , w~,p(o[2 ) . , ,v  L,~r,~(O~ ) D~v, L'~(Of2) , 0  

and 

0 ) C ,> Wl,p(O[2 ) v~ .  n x Lt~Div(0[2) (n,curl) , L ~ ( a [ 2 )  .~ o 

are exact. 

Before we state our next result, let us recall that the application taking the tangential component 
of  the electric field E into the tangential component of  the magnetic field H,  for each pair (E, H)  
satisfying the Maxwell equations (with wave number k ~ C \ {0}, Im k > 0) in f2±, is called the 
voltage-to-current map and is denoted by A [ .  Also, recall the definition of  the Maxwell eigenvalues 
for a domain f2 in the first section. 

Theorem 5.3. 
Let [2 be a bounded Lipschitz domain in R 3 with g(Og2) = O. Then there exists • positive, 

depending only on Of 2 such t ha t , / f k  6 C \ {0}, I m k  > 0, is not a Maxwell  eigenvalue for  f2, then 
the following operators are isomorphisms between the indicated spaces. 
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p, Div p,Div 
i. ±½I  + Mk : L m (O~2) -* Lt~ (Of2)foreach l < p < 2 +E; 

p Div ii. Ark : L~.~l~v(O~2) --+ L ~  (a~2)for each 1 < p <_ 2 + ~; 

... p,Div L~nt~v (aE2) for  each 1 < p < 2 + E; Ill .  A~:  : Lta n (0f2) 

iv. -4-½1 + Mk : L~(O~2) ~ L ~ ( a f 2 )  for  each 2 - E < p < 2 + E; 

v. 4-½1 + Mk acting on {a ~ L~(0 f2 ) ;  DivA e W-S'P(af2)} for  each 2 - E < p <_ 2 + E 
and O < s < 1; 

p p,Div p p Div 
vi. -¢-½1+ Mk : Lm(a~2)/Lum (0~)--+ Ltan(aE2)/L ~ ( a ~ 2 ) f o r e a c h 2 - - E  < p < 2 + e ,  

and here we may take k ~ C arbitrary. 

For an arbitrary bounded Lipschitz domain f2 in R 3 (i.e., not necessarily having topological 
genus zero), the same operators are still invertible provided 2 - E < p < 2 + ~. Also, for  a general 
k ~ C, all the above operators (with the exception o f  that in iii, which may no longer be well defined) 
are Fredholm with index zero. 

I f  the domain ~2 has in fact  a C 1 boundary, then the same results are valid for  1 < p < oo. 

The rest of  this section is devoted to presenting the proofs of  Theorem 5.1 and Theorem 5.3. 
First, let us recall the corresponding results for the scalar-valued layer potential operators for the 
Laplacian. The various parts of  the following theorem are due to B. Dahlberg, C. Kenig, G. Verchota, 
E. Fabes, M. Jodeit and N. Rivi~re [20, 93, 28]. 

T h e o r e m  5.4. 
For any bounded Lipschitz domain E2 in R 3 there exists E > O, which depends only on 0~ ,  such 

that fo r  each 1 < p < 2 + e the operator So is an invertible mapping o f  LP(a~2) onto WI'P(aE2) 
and o f  L~(Of2) onto WLP(0f2)/C,  ½I + Ko is  an isomorphism o f  WLt'(af2),  and the operators 

4-½1 + K~ are isomorphisms o f  L~(Ofl). 

Furthermore,for each 2 - ~ < p < oo the operator ½I + Ko is an isomorphism o f  LP(af2), 

whereas -½1  + Ko is an isomorphism o f  L P ( a~2) /C.  
For general Lipschitz domains these ranges are sharp. If, however, 0 ~ E C 1, then the above 

invertibility results are valid in the ful l  range I < p < oo. 

Extensions of  this theorem to more general Sobolev-Besov spaces have been recently obtained 
in [60]. For the convenience of the reader, below we record a particular case of  the main result in 
[60] that suffices for the applications we have in mind. 

T h e o r e m  5.5, 
For any bounded Lipschitz domain ~2 in R 3 there exists E > O, which depends only on af2, 

1 i such that for  each ~ - E < p < 2 + E the operators 4-½1 + Ko are invertible on W -7 ' t ' (0 f2 ) /C ,  

and the operators 4-½1 + K~ are isomorphisms o f  Wo-" (aE2). 

In particular, for  each 3 _ ~ < p <_ 2 + E, the Poisson equation for  the Laplace operator with 
homogeneous Dirichlet boundary conditions 

u ~ w~'P(~),  (,) 
Au  = q ~ W-l 'e(~2) 

as well as the Poisson equation for  the Laplace operator with homogeneous Neumann boundary 
conditions 

U ¢ WI'P(~"~);  1 + 1 1; 
Au = q E (WL#(¢2)) *, ~ p'-v = (**) 
au = O, 

have unique solutions. Moreover, these solutions satisfies natural a priori estimates. 
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I f  0f2 E C 1, then the above invertibility results are valid for  the the full  range 1 < p < oo. 

For ( ,)  see [41] and especially [42] where a complete analysis of this problem can be found. 
A unified treatment of both ( .)  and (**) is contained in [60]. 

Let us also note that, since qbk (X) - q~0(X) = - ~  f l  eiktlxl dt, the operator Kk - K0 is only 4~r JO 
weakly singular and hence, compact (cf. [5]). Consequently, except for a discrete set of real values 
of k, similar results are valid for the operators 4- ½1 + Kk, as well as for q- ½1 + K~, Sk, for example 
(cf. also § 11). 

Another corollary of Theorem 5.5 (for a more complete statement see [60]) that is of interest 
for us is the following Hodge type decomposition result. 

T h e o r e m  5.6. 
Let f2 be a bounded Lipschitz domain f2 in R 3. Then there exists ~ > O, which depends only on 

0 g2 such that for 3 _ ~ < p < 2 + E each vectorfield u ~ L p (f2) can be decomposed as u = Vv + w, 
with v ~ Wl'P(f2), w ~ LP(f2), divw = 0, andeither 

i. y ( v )  = O, or  

i i .  n . w = O .  

I f  0f2 e C 1, then the above decomposition results are valid for the the full  range 1 < p < oo. 

A key ingredient employed by B. Dahlberg, C. Kenig, and G. Verchota in the proof of the 
Theorem 5.4 is a certain integral identity of Rellich [78] (see, e.g., [93] for more details and the 
history of this formula). This identity has been further refined in [64] (cf. also [63, 37] for some 
related material) where it has been shown that for any bounded Lipschitz domain f2 in R 3 and any 
vector fields E ~ C°°((2, C 3) and (9 = (Oj)~= 1 E Cc~ornp(R 3, R 3) one has 

f0. {½1el2 <(~' n) - Re(E' e)(5 '  n>} d~ 
(5.1) 

= Re(f/½1e,2div e -  e)div E -  (re)e) + (e × curl E)) 

Here (V®)E is the matrix {Oi@))}i,) acting on the vector E. By taking E) E C~mp(R 3, R 3) in (5.1) 
such that (n, ®) _> Jc > 0 on 0~2 (cf. the point vi in Lemma 2.2), it has been shown in [64] that 

fo IEI z < C m i n { f o  I n × E l ' , f o  [ ( n , E ) "  ] 

(5.2) 

+ C J J o  IEI2 + Icurl El 2 + Idiv El 2 

for some positive constant C depending exclusively on the Lipschitz character of f2. This was used 
in [64] to prove the following theorem. 

T h e o r e m  5. 7. 
Let f2 be a bounded Lipschitz domain in R 3. There exists E > 0 depending only on 0 f2 such 

that for each k E C with Imk > 0 and each 2 - ~ < p < 2 + ~, the operators 4-½1 + Mk are 

isomorphisms of  L~n Di~ (8 g2). 

Next, we prove some operator identities. In Lemmas 5.6-5.10 we assume that f2 is a fixed, 
arbitrary bounded Lipschitz domain in R 3. 

L e m m a  5.8. 
For each 1 < p < oo, we have that 

Mo(n × VS0) = (n x VS0)K~ (5.3) 
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and 

on LP(O~). 

' P roof .  

(n, curl SO)(n x VSo) = (½I + K ~ ) ( - ½ I  + K;) (5.4) 

For an arbitrary f ~ LP(Of2), Corollary 3.3 applied to the curlfree, divergence-free 
vector field u := VSof in fi gives 

curl SO(n x V S O f )=  VSo ((½I + K ; ) f )  

in f2. Going (nontangentially) to the boundary and then taking n x of both sides yields (5.3), whereas 
taking (n, .) of both sides yields (5.4). [ ]  

Lemraa 5.9. 
For each 1 < p < oo, we have that 

and 

K~((n, curl So)) = (n, curl So)M0 (5.5) 

(n x VSo)(n, curl So) = (½ I + Mo) (-½1 + Mo) (5.6) 

+ ik Nk (A-~ -- A~-) = ik (A[  - A k ) Nk = I (5.9) 

on L~°iv(0f2). Also,for any 1 < p < oo and any k ~ C, 

N~ =k2  (½1 + Mk) (--½l + Mk) (5.10) 

on L~v  (~ )  

Proof .  The first identity is an easy consequence of the fact that if (E, H) is a solution of the 
Maxwell system, then so is (H, - E ) .  

(A~) ~ = --I, (5.7) 

Nk = ik A~ (+½I + Mk) = ik (q:½I + Mk) A~, (5.8) 

and 

on L~° (a¢2). 

p,O Proof .  For A ~ Lta n (0f2), we use the identity (3.2) from Corollary 3.3 for the divergence- 
free vector field u := cuff S0A and arrive at 

curl So + M0) A) = VSo(<n, curl SoA>). 

Again going to the boundary and taking (n, "/, n × of both sides yields (5.5) and (5.6), respectively. 
[] 

Recall now the (interior and exterior) voltage-to-current mappings A~ taking n x E into n x H, 
where (E, H) are solutions of the interior and exterior, respectively, boundary value problem for the 

2 Div Maxwell system. From the results in [64], we know that A~: are well-defined mappings o f L ~  (0f2) 
whenever k is not a so-called Maxwell eigenvalue for £2 (in fact, as we shall see momentarily, the 
same holds for 1 < p < 2 + E). For the time being, we note the following lemma. 

Lemma 5.10. 
Assume that k is not a Maxwell eigenvalue for f2. Then we have that 
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1 To show the second identity, let A E L~nt~v(Of2) and set E := curlSkA, H := ~ cur lE in 

f2+. On 0f2+ we have that n x E = (:1:½1 + Mk)A so that 

+ 1 A k ( r k S I + M k ) A  = A~(n × E ) = n  × H  

= - - i k - l n  × curlcurlSgA = - i k - l N k A .  

Thus, the first equality in (5.8) follows. To complete the proof of (5.8) we note that by (5.7) it suffices 
to show that N k A ~  = - i k  (q:½1 + Mk), To this effect, keeping the notation previously inta'oduced, 
we have that 

N i A ~ ( n  x E)  = Ni(n  x H ) = k  2 Sk(n x H ) + i k n  xVSk( (n ,E) )  

= - i k ( q : ½ I  + M)(n  x E).  

The next-to-the-last equality comes from the definition of Nk and direct calculation, whereas the last 
equality is a consequence of the Green type formula described in Corollary 3.3. Hence, the proof of 
(5.8) is finished. 

Note that the identity (5.9) is an immediate consequence of (5.7) and (5.8). Finally, an easy 
way (for us here) to show (5.10) is once again to rely on (5.7), (5.8) and a density argument. [ ]  

L e m m a  5.11. 
For any f E WI'P(Of2), 1 < p < oo, we have that 

(n x V ) K k f  = k2n x Sk(nf )  + Mk(n x V f )  (5.11) 

so that, in particular, 

(n x V)Ko = Mo(n x V) (5.12) 

on wl'p(af2).  It fol lows that Mo is a well-defined, bounded mapping of  V~ans'P ( Of2 ) for  0 < s < 1, 
l < p < o o .  

Proof .  For f ~ W1,P(0f2), we have 

~7/Ckf = --Vdiv St(n  f )  = - ( A  + curl curl)Sk(nf) 

= k 2 S k ( n f ) + c u r l S ~ ( n  x Vf ) ,  

where the last equality uses Lemma 4.3, Going to the boundary and taking n × of both sides yield 
(5.11). Now (5.12) follows from this by making k = 0. [ ]  

L e m m a  5.12. 
For any A E LPtan(af2), 1 < p < oo, we have that 

div SaMoA = - K o  div SoA. 

Proof .  Using Lemma 4.2 and Lemma 4.4 we may write 

div So MoA = SoDiv MoA = -SoK~Div A = -KoSoDiv A = - K o  div SoA. [ ]  

Before we present the proof of the Theorem 5. I, we note two more basic results. 

L e m r a a  5.13. 
Assume that f2 is a bounded Lipschitz domain in R 3 with g(Of2) = O. Then for  each 1 < p < 

oo, the operators ± ½ I  + Mo : L~°(af2)  --+ L~°(a~2) are injective. 

Proof .  Assume that A ~ Lt~°(Of2) is such that ( - ½ I  + Mo)A = 0, and set E := curlSoA 
in R 3 \ Of 2. Clearly E is divergencefree, curlfree, n × Elan_ = 0, and moreover, E decays at infinity. 
Consequently, Green's formula for E gives 

+ E  = cuflS0(n x Elaf2±) - VSo((n, Elan~)) (5.13) 
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in f2+. In particular, going to the boundary in f2_, using n x Elan_ = 0 and taking (n, -) of  both 
sides yield ( - ½ I  + K~)((n,  Elan_)) = 0. Note that, since (n, E) does not jump across af2, the 
divergence theorem gives 

L (n'Elan-)dcr= fa (n'Elan+)da= ffn divEdV=O; 
n n + 

hence, (n, Elan_) ~ L~(O~2). By Theorem 5.4 it follows that (n, Elan_) = (n, Elan+) = 0. 
Returning to (5.13), we observe that this implies E = 0 in f2_. 

Next, we analyze E in f2+. We fix a point X0 ~ f2+ and define the potential 

u(X) :=  f (t, E) ds, X E f2+, 
Jc (Xo.X) 

where C(Xo, X) is a smooth curve inside f2+ joining X0 and X, t is the unit tangent vector to 
C(Xo, X), and ds is the arc-length measure on C(Xo, X). Since for an arbitrary smooth surface Y~ 
in f2+, with v standing for the "right-handed" normal to the surface E,  the classical Stokes formula 
(see, e.g., [48]) gives 

fox(t, E)ds = fx(v, curlE)dcr =O; 

and since g(Of2) = 0, we infer that u is a well-defined, smooth function in ~+ .  Furthermore, it is 
not difficult to check that Vu = E. In particular, (Vu)* 6 LP(O~2) and Au = div 7u  = div E = 0. 
Moreover, Ou/an = (Vu, n) = (n, E) = 0. Thus, u solves the interior homogeneous LP-Neumann 
problem for the Laplace operator in f2. Consequently, from the corresponding uniqueness theorem 
(cf. [20]), u must be a constant; hence, E vanishes identically in f2+, too. Finally, A = n x Elan+ - 

n x Elan_ = 0. This proves the injectivity of  the operator - ½ 1  + M0 on L~°(Of2). 
Now consider A 6 Lt~°(a f2) such that (½1 + Mo)A = 0 and, once again, set E := curl,SoA 

in R 3 \ O~. This time, using (5.13), n × Elan+ = 0, that the operator ½I + K~ is injective 
on LP(Of2) for each 1 < p < oo, and proceeding as before, we arrive at E = 0 in ~2+ and 
(n, Elan_) = (n, Elan+) = 0. To show that E also vanishes identically in f2_ for a fixed X0 ~ f2_, 
we study the potential 

u(X) :=  [ (t, E) ds + Lo, X ~ f2_. 
dc (Xo,X) 

Here C(Xo, X) is a smooth curve inside f2_ joining Xo with X and >,0 is a suitable complex number 
(yet to be fixed). Since g(Of2) = 0, as before, u is a well-defined harmonic function in f2_ with 
Vu = E. The idea is to choose L so that u becomes harmonic at infinity. Because E = (.9(IX1-2) at 
infinity, we may define 

~-o := f (t, E ) d s ,  
dc (Xo,oO) 

where C(Xo, oo) is a smooth curve inside ~2_ joining X0 with oo. For this choice, it is easy to check 
that u(X) = O(IX1-1) as IXI --+ c~, uniformly in all directions in R3; that is, u is harmonic at 
infinity. 

As (Vu)* ~ LP(a~2) and u decays at infinity, it is not difficult to check that u* ~ LP(O~2) 
and that the usual Green's  formula for u holds in ~ _ .  In fact, since ~ = (n, EIn_) = 0, setting 
f :=  u 10n_ ~ LP(0~) ,  Green's  formula for the harmonic function u in f2_ reduces to - u  = / C 0 ( f ) .  
From this, going to the boundary, we immediately obtain that (½1 + Ko)f = 0 in LP(Of2). Next 
we observe that (n x V ) f  = (n x V)u = n x (Vu)lan_ E LP(O£2) as (Vu)* ~ LP(O~). Thus, 
f 6 WI'P(Of2) and Theorem 5.4 implies f = 0. Consequently, u and, hence, E vanish in f2_. 

Finally, A = 0 as before, and this proves the injectivity of  the operator ½1 + Mo on L~°(O f2). [ ]  
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Corollary 5.14. 
Let ~2 be a bounded Lipschitz domain in R 3 with g(a~) = o. Then,for each 1 < p < c~, the 

1 p Dtv ~ p Div • . • operators q-2I  + Mo : L ~  (0f2) Lt~ (af2) are mjecnve. 

p , D i v  
Proo f .  If  A E Lt~ (af2) is such that (+½I + Mo)A = 0, then by Lemma 4.4 we have 

(4-½1 + K~)(DivA) = 0. Since DivA ~ L~(Of2), Theorem 5.4 gives that DivA = 0 so that 

A ~ L~n°(O f2). Consequently, the conclusion follows from Lemma 5.13. [ ]  

We are now ready to present the proof of  the Theorem 5.1. 

P r o o f  o f  T h e o r e m  5.1. From (5.6) and Lemma 5.13 it follows that the operator (n, curl So) 
is injective on L~n°(Of2) for any 1 < p < oo. By Theorem 5.4, the operator in the fight-hand side 
of  (5.4) is an isomorphism of  L~(Of2) for 1 < p _< 2 + E. Thus, in particular, (n, curl SO) also maps 

L~°(Of2) onto LP(of2) for 1 < p < 2 + e. 

At this point we have shown that (n, curl So) is an isomorphism between L~°(af2) and L~(af2) 
for 1 < p < 2 + E. Based on this, (5.4), and Theorem 5.4 we readily obtain that n x VSo is an 

isomorphism between L~(af~) and L~°(Of2) for 1 < p _< 2 + e. 
Let us now consider iii. We first note that Div T(f, A) = (n, curl SOA) so that, by i and ii, T 

p Div  
is injective. To prove surjectivity, fix A ~ L ~  (0f2). Since Div A ~ LP(o~2) and assuming that 

1 < p _< 2 + E, we have from i that there exists B ~ L~°(Of2) such that (n, curl SOB) = Div A. 

po " L~(af2)withn VSOf Hence, by(4.5), wesee tha t  A - n  x SoB ~ L ~  (Of2),sothereexlsts f ~ x = 
A - n x SOB. This implies that T(f, B) = A, hence T is an isomorphism. Now, iv is readily seen 
from iii and i. 

To show v, we first restrict attention to the case 1 < p < 2. This is easily seen by using the 
fact that zr o SO is an isomorphism between L~(Of2) and WLP(Of2)/C for I < p _< 2 + ~ (Jr = the 

canonical projection) and ii. Next we consider the case 2 < p < oo. Fix A ~ L~°(af2). Then 
2 , 0  A ~ Ltan (af2) and, by the L2-case, there exists a unique (modulo constants) function f E WL2(0f2) 

such that (n x V ) f  = A. Poincar6's inequality then gives that f ~ LP(O~) so that, in fact, 
f ~ WLP(Of2). The proof of  v is finished. 

Next, the identity (5.4) in Lemma 5.8 together with v and Theorem 5.4 account for both vi and 
vii. Going further, for ! < p < 2, viii is immediate  from i and (4.5) (or iv). I f  2 < p < oo and 

2 ,0  f ~ LP(of2), then by the L2-theory for i, there exists A ~ Ltan(Of2) such that (n, curl SoA) = f .  

Now B := n x S0A belongs to Lt~Div(af2) by the Sobolev embedding theorem and has Div B = f .  

Clearly, such a B is a unique modulo vector field in L~°(Of2). This concludes the proof of  viii. Note 
that ix is immediate from this and (4.5). Also, the operator in x is the composition of that in viii with 
the isomorphism SO : LP(of2) --~ W1'P(Of2)/C, xi follows from v and iv, whereas the operator in 
xii is the composition of  those in xi and v. 

Coming now to the proof of  xiii, we debut with a basic remark, namely, that for any 1 < p,  q < 
oo with 1 + ± = 1 one has 

P q 

(Lt~°(Of2)) *= - Lqtan(Of2)/(nx L~°(Of2)). (5.14) 

To prove this, we introduce the linear mapping 

O:Lq(Of2)/(nxLq~(af2))---> (L:°(af2)) * 

by setting O(,~)(B):= f a , ( / ,  B)d t r  for each ,~ ~ Lq(O~2)/(n x Lq~(af2))  and B ~ L~°(af2) .  

Recall from v that Lt~°(Of2) = (n x V)WLP(Og2), thus the correctness of  this definition is seen by 
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checking that 

o ((n x g ) f , A ) d a  =O 

for any f ~ WI'P(Of2) and A E n x Lq~(of2). However, this is immediate from (4.4). We also 
introduce 

In order to explain how q* acts on function als, let I ~ (L~°  (0 f2))* and, by the Hahn-B anach theorem, 
p * 

extend l to an element in (Lm(Ofa))  = Lq(O~2). Thus, there exists A ~ Lq(O~2) such that 

l (a)  = foa(A, a> da for any B ~ L~°(Of2). Then we set ~ ( l )  :=  A ~ L q  (Of2)/(n × Lq~(o~2)). 
Invoking once again v and (4.4), it is not difficult to see that qJ is well defined, linear, and bounded. 
Now a routine calculation shows that • and • are inverse to each other so that (5.14) is proved. 

Next, dualizing v, we get that (n x V)* : (L~°(0f2))  * --+ Wol'q(Of2) is an isomorphism for 
1 any 1 < p,  q < oo with ~ + ~ = 1. I f  we now remark that, by (4.4), the diagram 

Lqan(Of2)/Lq~(of2) Di~ ) Wo_ 1,q (0 ~.2) 

Lqtan(Of2)/(n x Lq~(Of2)) • , (Lt~°(Of2)) * 

is commutative, then xiii follows. Furthermore, xiv is a direct consequence of  xiii and (4.5); while 
xv is seen from xiii, Lemma 4.2, and Theorem 5.4. 

We now turn our attention to the operators + ½1 + M0. First, the fact that -4-½1 + M0 are 

isomorphisms of  L~°(Of2) (and of  V~nS'P(O~2), 0 < s < 1) for 1 < p < 2 + ~ can be seen from v, 
(5.12), and Theorem 5.4 as the diagram 

+½t+K0 
Wl,p(of2)/C ~ WI,P(Of2)/C 

±½t+Mo 
, 

is commutative (alternatively, we may invoke i, ii, and (5.6)). 
Before going any further we digress and note a functional analytic result that will be relevant 

for us here (the second part of  it will be used later). 

L e m m a  5.15. 
Let X ,  y ,  Z be Banach spaces and consider the commutative diagram 

0 > X > y > Z ) 0 

0 > X ~ 3; ~ Z ~ 0 

where all arrows are linear and bounded and the horizontal sequences are exact. Then the following 
hold: 

a. I f  two vertical arrows are isomorphisms, then so is the third one. 

b. I f  two vertical arrows are Fredholm operators, then so is the third. Moreover, the index of 
the middle vertical arrow is the sum of the indexes of the other two vertical arrows. 



Vector Potential Theory on Nonsmooth Domains 155 

Now, Lemma 4.4 gives that the diagram 

+½1+Mo 
L~nDiv(O~)/L~nO(aff2) p Div a ~  p 0 , L~ ( ) /L~ (Of2) 

l~v I 1~v 
±½/-K~ 

L~(Of2) , L~(af2) 

(5.16) 

and, ultimately, that 

11(-½I + M0)AIb:(a~) ~ 11(½1 + M0)AIIz2(a~) 

IIAIIL2(a~) _ C11(4-½I + M0)AIb:(a~) 

uniformly for A E L 2 (0 f2). This gives that 4-½1 + Mo are injective with closed ranges on L 2 ( 0  f2), 
which is the "hardest" part in showing that they are actually isomorphisms of L2(O~). 

Turning now to the specific calculation, assume that f2 is an arbitrary, fixed, bounded Lipschitz 
domain in R 3, and let O E C~mp(R 3, R a) and U E C ~ ( ~ ,  C a) be such that A U  = 0 in f2. We 

is commutative; whereas if 1 < p < 2 + ~, then viii and Theorem 5.4 give that all arrows but the 
top are isomorphisms. Hence, we also obtain that 

p,Div p,0 p,Div p,0 =t=½1 + Mo : Lm (af2)/Lm (af2) ~ L m  ( a f 2 ) / L ~  (af2) (5.17) 

are isomorphisms for each 1 < p _< 2 + E. Based on this, xvi and the first part of  Lemma 5.15 
p,0 p Div p,Div p,0 

(with X :=  Ltan (0f2), y :=  L ~  (0~) ,  Z := Ltan (O~)/Lta n (0~) ,  and all vertical arrows 
manifestations of  the operators + ½ I  + Mo), xvii follows. Furthermore, using once again that Div 

intertwines -t-½I + M0 acting on LP(o~2) with -t-½I - K~ acting on Wol'P(O~) (cf. (4.6)), we see 
that xviii follows from Theorem 5.4 and xiii. Alternatively, one may equally use xv and Lemma 
5.12. 

Also, xix is seen from xvi, xviii, and the functional analytic result from above. Finally, xx 
follows from xix and Theorem 5.4. [ ]  

R e m a r k .  Perhaps the best way to understand the nature of  the range 2 - ~ < p < 2 + 
for which +½1 + Mo are isomorphism of  L ~ ( a [ 2 )  is via the points xviii, xvi in Theorem 5.1 and 
the point b in Lemma 5.15. [ ]  

Next we present a constructive proof of  the invertibility of  the operators 4- ½1 + Mo on L ~  ( a f2 ), 
2 - E < p < 2 + E, for arbitrary bounded Lipschitz domains in R 3 with g(Of2) = 0. This alternative 
approach is based on a new Rellich type identity for harmonic vector fields and has first been observed 
in connection with the work in [55]. 

A n  a l t e r n a t i v e  p r o o f  o f  x ix  in T h e o r e m  5.1. It suffices to treat the case p = 2 as the 
techniques in [9, 20, 22] may then be employed to boost the range to 2 - E < p < 2 + ~ for some 
small, positive E. 

The idea of proof is to derive an estimate of  the form 

faa IdivS°al2dcr+fa~ I(n, curlSoa)12do,~fa~ ,nxcurlSoAI2dtr (5.18) 

uniformly for A ~ L2(0~2). Since, for A tangential, the quantities divSoA and (n, curlSoA) do 
not jump across O [2, whereas (n x curl SoA)l a a± = (4- ½1 + Mo)A, the estimate (5.18) would imply 
that 
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claim that the following Rellich type identity is valid: 

kln x curl Ul2(n, ®) - El(n, curl U)12(n, 19) -½ldiv  Ul2(n, ®) 
f2 

+ fan Re (n x curl U, 19) div U - Re (n x curl 0 ,  n x 19) (n, curl U) 

(5.19) 

= ffa ½lcurl U[ 2 div 19 - Re (curl U, (V®)curl U) 

- f L  Re (curl U, curl 19) div U + ½Idly Ul2div 19. 

The departure point is to write the identity (5.1) for O and the divergencefree vector field E : = curl U 
in f2as 

fan { llcurl Ul2(n' 19) - Re (curl U, 19)(n, curl U)} da  

= Re ffa ½ Icurl UI 2 div (9 - (curl 0, (VO)curl U) (5.20) 

+ Ro f £  (o × curl u ,  curlcurl U). 

Next, we observe that curl curl U = ( - &  + Vdiv)U = Vdiv U and successively integrate by parts 
in the term containing two derivatives on U: 

Re fro (o × curl U, Vdiv U) 

=-Ref£OivUdiv(19 x curl 0 )  + Re fan (n, ® x curl U) div U 

= - R e  fff2 div U {curl U, curl O) + Re ff~ div U (69, curl curl U) 

- Re f0n (n x curl U, (9) div U 

=-RefLdivU(curlU, curlO)--fL½1divUl2divO 
fa l ldiv Ul2(n, (9) - Refan(n x curl U, (9) div U. + 

f~ 

If we now observe that the left-hand side of (5.20) can be rewritten in the form 

f0 ½ Icurl UI2(n, O) - Re (curl U, 19)(n, curl V)} d~r 
f~ 

then (5.19) follows. 

= - f a n  ½1(n, curl U)12(n, O) + kin x curl UI2(n, O) 

- fan Re (n x curl U, n x O) (n, curl U), 
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By choosing ® such that (n, (9) >_ x > 0 a.e. on 0f2 (cf. Lemma 2.2), simple inspection of 
(5.19) shows that for some positive C = C(Of2) one has 

11 (n, curl U)llL2(aa) + [[div UIIL2(of2) < C ([[nx curl UIIL2(Oa) + IIVUIIL=(~)), (5.21) 

and 

IIn x curl UIIL~(a~) ~ C (ll(n, curl U)IIL~(Ù~) + Ildiv UIIL~(a~) + [IVU[IL~(~)) • (5.22) 

Now let A~ L~(Of2) and set U := SoA and E := curlSoA in R 3 \ 0f2. Furthermore, let 

= f f ~  ½ IEl2div ® - Re (/~, (V®)E) - Re (/~, curl O) div SoA 
± 

/ ' f  

- J J a ±  ½1div SoAI2div ®. 

1 respectively, and then adding Multiplying the corresponding identities on 0f2~. by 4-3. + 3, 
them, we arrive after a straightforward calculation at 

fa l fo (l(n' E)12 + ldiv S°Al2) (n' ®)da ( 3 . 2  __ 1) a [Al2(n' ®) dcr + ~ 

= O( I1 (3. + Mo)A I1L~(an)II A l[ L~(0a)) + II Comp (A)II. 

1 Thus, the above estimate and (5.25) yield that for any 3. 6 R with 13.1 >_ ~ there exists some 
C = C ( 0 f 2 ,  3.) > 0 such that 

IIAIIL~ _< Cl[(3. + M0)AIIL~ + IlComp (A)II, (5.26) 

uniformly for A 6 L2(ag2).  This proves that 3. + M0 is semi-Fredholm on L~(0f2)  for any 
3. ~ R with 13.1 -> ½- Since the index of semi-Fredholm operators is homotopic invariant and since, 
obviously, 3. + Mo depends continuously on 3. and is invertible for a sufficiently large 3., it follows 

f2j 1" f2 and ® be as in Lemma 2.2. For each fixed j ,  we write the estimates (5.21) and (5.22) for 
f2j in place of f2 and, by letting j ~ ~ ,  obtain that 

[l(n, E)IIL2(a~) + Ildiv SoAIIL2(a~) < C (lln x EIIL2(a~) + IlComp (A)IIL2(a)) (5.23) 

and 

Iln × Ellt:(a~) < C (ll(n, E)ll/:(0~) + Ildiv SoAII/:<0~) + IIComp (A)IILz(~)), (5.24) 

where Comp stands for generic compact operators. Moreover, similar estimates are valid for E 
regarded as a vector field in the exterior domain ~2_. Note that these two estimates are the rigorous 
formulation of (5.18). They reduce precisely to (5.18) when f2 is the domain above the graph of a 
Lipschitz function, in which case ® can be chosen to be a constant vector field. 

Using the facts that n x Elaa± = (-4-½1 + Mo)A and that div SoA, (n, E) do not jump across 
the boundary, (5.23), (5.24), and the triangle inequality give us 

IlAllL2(an) _< Cll(+½l + M0)AIIL~(a~)+ IIComp (A)II. (5.25) 

Next we prove that, in the above estimate, 4-½ can in fact be replaced by any 3. ~ R with 
1 13.1 >_ 3" To this effect, fix a real 3. with 13.1 > ½ and let A ~ L~(0~2). Set E := curlSoA and write 

the identity (5.19) for U := SoA in f2±: 

f ½1nxEl2(n,®)_½1(n,E)12(n,O)_Re(nx~,nxO)(n,E) 
[2± 

+ f Re(n x J~, ® ) d i v S o A -  ½ldivSoA]2(n, O) 
Ja fZ± 
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that -t-51 + M0 are Fredholm with index zero on L~(812). Finally, by, for example, Lemma 4.4 

and Theorem 5.4, ± ½1 + M0 are also seen to be one-to-one, so they are in fact isomorphisms of 
L~(a[2). [] 

Proof of  T h e o r e m  5.3. We begin by observing that the fact that k ~ C, Im k > 0, is not 
a Maxwell eigenvalue for f2 implies that the operators +51 + Mk are injective on p,Div L m  (8[2) for 

each 1 < p < cx~. Indeed, this follows from the corresponding invertibility result for + 51 -t- M0 in 
p,Div F p+e,Div ( ~ ~..).~ 

Theorem 5.1; the fact that Mk - M0 maps Ltan (af2) boundedly into ~ m  ,~. . ,  for some fixed, 
positive ~; the corresponding L 2 result (cf. also § 11); and (successive applications of) the fractional 
integration theorem. 

With this at hand, Theorem 5.3 i follows. Furthermore, relying on Lemma 5.10, it is clear 
that ii and iii are direct corollaries of i. Also, iv has a similar proof. Furthermore, v is a direct 
consequence of iv, Lemma 4.4, and Theorem 5.4; whereas vi follows directly i and iv via Lemma 
5.15. 

Next we consider the corresponding invertibility statements for 2 -  < p < 2 + E but this time 
with the simple connectivity assumption dropped. First we deal will iv. To this end, let k ~ C be 
an arbitrary, fixed complex number and 2 - e < p < 2 -t- E. We claim that if A ~ L~(a f2 )  is such 

p,Div (__1[ + Mk)A ~ L ~ ( a [ 2 ) ,  then actually A belongs to that either (51 + M~)A ~ L m  (a~2) or 
p,Div L m  (8[2). Indeed, since for a fixed ko ~ C with Imk0 > 0 the operator Mk -- M~ maps L~(a [2 )  

boundedly into L~m~(a[2) for any 1 < p < ~ ,  it suffices to prove the claim for k = k0. In this 

latter case, we may use Theorem 5.4 and the fact that, by Lemma 4.4, Div A ~ Wol'P(8[2) has 

(+51 + K~)(Div A) = -k~(n,  StoA) - Div [(q:½1 + Mko)A] ~ LP(a[2) 

to infer that Div A e LP(a[2), so that A ~ L~Div(a[2). Thus, the claim is now seen from Theorem 

5.7. This also shows that the null spaces of the operators +½I  + Mk on L~(a [2)  and on Lt~Div (a[2) 
are the same. 

Assume now that k is not a Maxwell eigenvalue for [2 so that, by the above discussion, 
-I-½1 + Mk are injective on L~(a[2) .  If we now recall from the alternative proof of Theorem 5.1 
xix that these operators are also Fredholm with index zero (this proof did not require the domain to 
have topological genus zero), then iv follows. 

The reasoning for the remaining operators can be seen from iv and Theorem 5.7. The proof 
of Theorem 5.3 is therefore completed. [ ]  

An  a l t e rna t ive  proof of T h e o r e m  5.3 iv. Let [2 be an arbitrary, bounded Lipschitz 
domain in R 3 (not necessarily having g(af2) = 0). Here we indicate another proof of the fact that 
if 2 - ~ < p < 2 + ¢, then for any k ~ C \ {0} that is not a Maxwell eigenvalue for [2, the operators 
+ ½1 + Mk are isomorphisms of L ~  (a [2). This alternative approach employs a localization lemma 
observed in [59] (compare with [30]). To state it, first recall that a boundary integral operator on 
a ~  c R 3 is singular if its kernel K(X,  Y) satisfies K(X,  Y) = 0 (IX - Y] 2) on a[2. Also, if X 
denotes a Banach space and T : X --+ X is a bounded, linear operator, we let a~(T; X) stand for the 
collection of all complex 3. so that 3. - T does not have a closed range or a finite-dimensional kernel. 

Lemma 5.16. 
Let [2 be a bounded Lipschitz domain in R 3, and let { [27; 1 < j < N}, be a family of  bounded 

Lipschitz domains in R 3 such that {012 N a[2j}j is an open jinite covering of a[2. Assume that lC, 
{ICj}j are some given singular integral operators on 012 and a[2j, respectively, with the property 
that, for each j ,  the kernels of  lC and IC j coincide when restricted to 8[2 A 812j. 
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Then,for each 1 < p < oo, 
N 

o'u(~; LP(OQ)) C U °'t~(K~J ; LP(OQJ))" 
j=l 

Using the above lemma for an arbitrary bounded Lipschitz domain f2 and {f2j}j bounded 
Lipschitz domains with g(Of2j) = 0 for each j ,  we deduce from Theorem 5.1 xix that +½1 + Mk 
have closed ranges on L ~ ( 0 f 2 )  for each 2 - ~ _< p _< 2 + e. Moreover, recall that from the claim 
made in the last part of  the proof of  Theorem 5.3, they are also one-to-one on L~(O~2). Now, this 
and the readily verified identity 

fa((½1+Mk)A1,Az>dcr x (--½I+Mk)(n x A2)) d~r, (5.27) = fa~(al,n 
~2 

forany A1 ~ LP(0 f2 ) ,  A2 ~ Lqm(0f2), with ~.~_~l 1 = 1,alsogive that + ½ l + M k  have dense ranges 

on L~(Of2) for each 2 - E < p < 2 + ~. The conclusion then follows. [ ]  

Before we conclude this section, we remark that our results can also be used to obtain infor- 
mation about the spectrum of the operator M0. For instance, it follows directly from (5.3) (or (5.5)) 
and Theorem 5.1 that 

a(Mo;  Lt~° (Of2) ) = a( K~; L~ (Of2) ) 

for 1 < p < 2 + E. It is also possible to show that a(Mo; LPm(af2)) _c a(K~; L~(Of2)) for 
2 - ¢ < p < 2 + e. Hence, the spectral radius of  K~ on L~(0f2) is the same as that of  Mo on 

Lt~°(af2) and the same as that of  Mo on LPm(0f2) for each 2 - E < p < 2 + E. In particular, by the 
2,0 on L 2 ( 0 f 2 )  are < results in [30] and [25] we have that the spectral radii of  M0 on Lta n (0~)  and 1 

for any bounded convex or polyhedral domain ~2 in R 3. In fact, the same conclusion remains valid 
if Mo is regarded as an operator on L~Di~(0f2). We also refer to [38] for various related results. 

6 .  L P - T h e o r y  f o r  t h e  M a x w e l l  E q u a t i o n s  a n d  R e l a t e d  S y s t e m s  

Fix k ~ C \ {0} with Im k > 0, and let E be a vector field E defined in a neighborhood of  
infinity in R 3 such that (A + kZ)E = 0. We shall call E radiating if 

X X 
(curl E)(X) x ~ + (div E)(X)-~I - ikE(X) = o([Sl-1) ,  (6.1) 

as tXI ~ oo, uniformly for all directions X/IXI in R 3. It is possible to prove that (6.1) is actually 
equivalent to the requirement that the individual components of E satisfy the classical Sommerfeld 
radiation condition 

Ou 
- -  - iku = o(r -1) as r :=  IXI ~ oo (6.2) 
ar  

(cf. also [14, Corollary 4.14, p. 120]). It is also known that (6.2) can be relaxed to 

f x  lu[ 2 dtr = O(1) as R ~ oo. (6.3) 
I=R 

To understand the delicate balance of radiating conditions, we recall that by the famous Rellich 
lemma, if k 6 R \ {0], then any (scalar-valued) radiating metaharmonic function u defined in a 
neighborhood of infinity such that 

XI=R [u[2 dtr  = o(1) as R ~ oo (6.4) 

must vanish identically in its domain (this is in fact true for any k ~ C \ {0}). 
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We single out several properties of radiating metaharmonic vector fields that are going to be 
of importance for us. To this end, assume that f2 is a bounded Lipschitz domain in R 3. First, the 
operators Sk, div Sk, and curl Sk map LP(af2) boundary densities into radiating vector fields. 

Second, if E is a smooth vector field in R 3 \ ~ such that E*, (div E)*, (cud E)* ~ Lt'(0f2) 
for some 1 < p < oo, (A + k2)E = 0 in R 3 \ ~ ;  and E has (6.1), then the following Green type 
representation formula holds in R 3 \ ~ :  

- E  = curlSk(n x E) - VSk({n, E}) +Sk(n x curiE) - S k ( n d i v E ) .  (6.5) 

Third, using this integral representation formula and elementary asymptotics it is not difficult to 
show that any metaharmonic radiating vector field E has the behavior 

E(X)  = ~KX)Eo~(X/IXI)  + O(IX1-2) as IXI ~ oo. (6.6) 

The vector field Eoo : S z --* C 3 is called the far fieM pattern of E. Note that, by the Rellich lemma, 
the correspondence E ~-* E ~  is one-to-one (this should be contrasted with the fact that the first term 
in the asymptotic expansion of a harmonic vector field at infinity does not determine it uniquely). 

Fourth, if (E, H)  is a pair of vector fields satisfying the Maxwell equations in R 3 \ ~ ,  then 
the same integral representation formula may be employed tO show that E or H are radiating if and 
only if both E and H are radiating. In this case, (6.1) reduces to the more familiar Silver-Miiller 
radiation condition 

or, equivalently, 

H(X)  x ( X / I X I ) -  IXIE(X) = o(1) 

E(X)  × (X/lX[) + [X[H(X) = o(1) 

as I XI ~ 0o, uniformly in all directions in R 3. 
Next we briefly analyze the case in which k = O. For a vector field E satisfying the Laplace 

equation A E = 0 in a neighborhood of infinity, the radiation condition is 

E(X)  = o(1) as IXl ~ oo. (6.7) 

Once again, E admits a Green type integral representation formula and, as a corollary, (6.7) can be 
improved in the form 

E(X) ,  IXldivE(X), IXlcurl E(X)  = O(]X1-1) as IXI ~ ~ .  

We also note that if the harmonic vector field E satisfies div E = 0, curl E = 0 in a neighborhood 
of infinity, and is radiating, then actually E(X)  = O(IX1-2) as IXI ~ oo. 

The main result of this section is the following theorem, which extends the results in [64] 
and [66]. To state it, recall the interior and the exterior Maxwell boundary value problems (.h4i.e) 
formulated in the introductory section. 

Theorem 6,1. 
Assume that f2 is a bounded Lipschitz domain in R 3 with g(O~2) = O. Then there exists E > 0 

depending only on 0~2 such that for each k ~ C \ {0} with Im k > 0 and each 1 < p < 2 + E 
the exterior Maxwell boundary value problem (Me)  is solvable if and only if A ~ L~I~v (Of2) and 
Div A = - i k  f . Moreover, the solution is unique, depends on k analytically in R 2 and continuously 

on R2+ \ {0} (the principle of  limiting absorption), and satisfies 

E* H* II IlL,(a~) + II IlL,(a~) < CIIAIIL~m,(a~) (6.8) 

for some positive constant C depending only on k, p, and f2. 
Furthermore, if k is not a Maxwell eigenvalue for f2, then a similar result is valid for the 

interior Maxwell boundary value problem (.Mi). In the case in which k is a Maxwell eigenvalue for 
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p Div 
f2, then (.ADO is solvable if and only if  A E L ~  (Og2), DivA = - i k  f ,  and A, f satisfyfinitely 
many linear conditions (in which case the solution is unique modulo a finite-dimensional space). 

Also, if ~f2 ~ C l, then one may take 1 < p < oo. 

As we shall see in §7, the above result is sharp. The case when k = 0 is also examined 
later in this section. We also note that, as an immediate corollary of this theorem, the exterior 

voltage-to-current map A~ is well defined on (and in fact is an isomorphism of) Lt~Div(a ~)  for any 
1 < p < 2 + e and any k ~ C \ {0}, Im k > 0 (compare with iii in Theorem 5.3). 

P r o o f  of  T h e o r e m  6.1. Let us first deal with the exterior boundary value problem (Ade). 
p Div 

The necessity of the membership of A to L ~  (Of2) together with the compatibility condition 
Div A = - i k f  follow from, for example, (4.5), so we turn to the sufficiency part. 

To show existence, we first remark that if k is not a Maxwell eigenvalue for g2, then we may 

take E := curlS~B, H := ~ curl E for some B ~ Lt~Div(~) and, based on the jump relations for 
the derivatives of the single-layer potential operator, Theorem 5.1 xi may be used to conclude. 

The treatment of the general case (i.e., when Im k > 0, k ~ 0) requires an appropriate 
modification of this approach that is inspired from [15] and which we now describe. The new 
difficulty is that the previous boundary integral equations may no longer be uniquely solvable, and 
the idea is to add further source terms in order to correct this deficiency. More specifically, set r / :=  0 
i f l m k  ~ 0 and 17 := 1 otherwise. For B ~ Lt~Div(a~) we consider 

E := curlSkB 4- irlcurlcurlSk(n × S2B) 

and 
1 

H := ~ curlE 

in R 3 \ ~ .  Then, by the discussion at the beginning of this section, (E, H)  is a radiating solution of the 
Maxwell systemin R3 \ ~ .  Moreover, E*, H* ~ L P ( O f2 ) and n x E = ( -½ l + M k + i o Nk ( n x Sg ) ) B. 

Hence, matters are reduced to proving the invertibility of ( -  ½1 + Mk + i 17Ark (n x S0Z)) on L~, Div (8 f2) 
f o r l  < p < 2 + E .  

To this end, we note that Theorem 5.1 xiii gives that for any k ~ C the operator - ½1 + Mk is 
p Div p,Div 

Fredholm with index zero on L ~  " (0~2) for 1 < p < 2+E. Since, by (4.5), n x S g maps Lt~ (Of2) 
compactly into itself, it follows that -½1  + Mk + it/Nk (n x S g) is also Fredholm with index zero. 

Consequently, we are left with showing that this operator is injective o n  Lt~Div(0~). For p = 2 this 
has been proved in [15] (there it is assumed that 0f2 ~ C 2, but for this particular passage essentially 
the same reasoning applies to the Lipschitz case equally). Consider now B ~ Lt~Div(0~2) such that 
( - ½ I  + Mk + irlNk(n × S2o))B = 0 and fix/co E C with Imk0 > 0. It follows that 

B = - ( - ½ I  4- Mko)-1[(Mko - Mk)B 4- irlNk(n x S~)B]. 

The fractional integration theorem (see [85]) yields that B 6 LPtPtPt~+$'Div(0~) for some ~ > 0. Iterating 
this sufficiently many times we finally arrive at B 6 Lt~nDiV(0~2), therefore, by the LZ-theory, B = 0. 
Thus, the existence part is proved. 

Next we address the uniqueness issue. We first assume that p > 2. The case Im k > 0 has 
been considered in [64], so we restrict attention to k ~ R \ {0}. From the radiation condition we have 

0 =  lim f [H x n - EI2 da  
R ~  JIXI=R 

(6.9) 

= lim ; (IH x nl z + IEI 2 - 2Re (n × E, H))  dcr. 
R-~oo JIXI=R 
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Since n x E = 0 on 0~2 and k ~ R, integrating by parts it follows that 

R e f l  x I n x E ,  f I ) d a = R e ( i k f f  x , H I 2 -  IEI2) = 0, 
I=R EBR(O)\'~ 

and we see from (6.9) that flXl=R [El2 dtr = o(1) as R ~ o~. The Rellich lemma then yields that 

E and, hence, also H vanish in R 3 \ ~ .  
We consider now the remaining case I < p < 2. First, from the Green formula (3.2) for E in 

R 3 \ ~ ,  we have that 

E = XTSk((n, E ) )  - i k S k ( n  x H), (6.10) 

which, by taking the curl of both sides gives 

H = --curlSk(n x H). (6.11) 

In particular, going to the boundary and applying n x  to both sides yield (½I + Mk)(n × H) = O. 
Since, pretty much as before, 

r p+t~,Div - 
n x H = - ( - ½ I  + Mko)-l[(Mk -- Mko)(n x n ) ]  E ~tan (/9f2) 

2,Div for some positive/~, iterating it follows that n x H ~ Lta n (af2). Consequently, using (6.11), we 
see that H* ~ L2(~2). Finally, since In, E) = - A D i v  (n x H)  e L2(af2), it follows from (6.10) 

that E* E L2(Of2). At this point, the conclusion follows from the case p = 2. 
For the interior boundary value problem (.A4i), the case when k is not a Maxwell eigenvalue is 

immediate from Theorem 5.1 xiv. Assume now that k is a Maxwell eigenvalue for f2, and set Uk for 
the collection of all vector fields of the form n x E where (E, H)  satisfies the Maxwell equation with 
wave number k in ~ and E*, H* ~ LP(Of2). Since Uk contains (½1 + Mk)L~nDiv(o~), it follows 

of L p Div(~o. that Uk is a finite codimensional (hence closed) subspace ~ ,v. . ) .  Clearly, the problem (.A4i) 
L p Div {;q O"  is solvable for the boundary data A, f if and only if A E ~ ,v. . ) ,  Div A = - i k f ,  and in fact 

A ~ Uk. The proof of the theorem is therefore finished. [ ]  

R e m a r k .  Assume that 2 - E _< p _< 2 + E and recall the definition of Uk from above. 
We want to point out that if k is a Maxwell eigenvalue for f2, then Uk is a proper subspace of 

p,Div 
Lt~ (0~2). In fact, a more explicit description of Uk is available. Below we show that Uk = 
(½I + Mk)L~inDiv (of2) ~ Lt~Div(0~ '2)  a n d  t h a t  A E Uk if and only if 

fa (A, H) dtr = 0 (6.12) 
f~ 

I 1 _ for any pair of vector fields (E, H)  solving the L q homogeneous version of the (.A,4i), where 7 + - _ 
I. In particular, the condition (6.12) is actually necessary and sufficient for the solvability of (J~i)  
with boundary data A ( f  := - t D i v  A). 

The necessity of (6.12) is a simple consequence of the readily verified identity 

fa (n x El, H2) dtr = fa (n x E2, H1) dtr 

valid for any two pairs of vector fields (Ej, Hi), j = 1, 2, solving the Maxwell equations in f2. 

Conversely, any vector field A in L~t~(0~2), 2 - E _ p _< 2 + ~, that satisfies (6.12) belongs 

to (½I + Mk)L~nr~(O~2)(c_ Uk). To see this, we claim that {n x H; (E, H)  as in (6.12)} coincides 

with the null space of the operator -½1 + Mk acting on L~a°i~(of2). First, we indicate how this can 
be used to conclude. Indeed, this claim, (5.27), and elementary functional analysis imply that A must 
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belong to Lt~Div(a~) N (11 4- Mk)L~(Of2). Now, by Theorem 5.3 vi, this latter space coincides 

precisely with (½I 4- M k ) L ~  (Of2). 
Finally, we present the proof of the claim. The left-to-right inclusion is readily seen by taking 

the curl of both sides in the Green formula (3.2) for E, going to the boundary, and, finally, taking n × 
q,Div  of both sides. As for the right-to-left inclusion, let A ~ Lta n (0f2) be such that ( - ½ I  + Mk)A = 0 

and define H := curlS~A, E := - ~ c u r l H  in R 3 \ 3~.  Then n x Hlan_ = 0, and by the 
uniqueness in the exterior Maxwell boundary value problem, we obtain that E, H vanish identically 
in [2_. In particular, n x Elan÷ = n x Elan_ = 0; thus, (E, H) are as in (6.12). Since A = 
n x H[a~+ - n  x Hla~_ = n x H l a ~ ,  the claim follows. [ ]  

In the sequel, the following boundary value problem (related to (M~)) will also be of impor- 
tance for us. 

Theorem 6.2. 
Let f2 be a bounded Lipschitz domain in R 3, k ~ C \ {0}, Imk > 0, and 1 < p < 2 + E. Then 

the boundary value problem 

U E C°~(R 3 \ ~),  
( A + k 2 ) U = 0  in R 3 \ ~ ,  
U*, (Vdiv U)*, (curl U)* ~ LP(0fl), 
(div U)laa = h ~ Wl'P(afl), (BVP1) 

L P,Div ( ~ f'~. . n x U I a ~ = A  ~ tan , - - - ) ,  
U satisfies the radiation condition, 

has a unique solution. This solution also satisfies 

IIU*II~<o~) + II(Vdiv U)*llt.,(a~) 4- II(curl U)*IIL~<o~) 

<_ C(llhllw~.,(a~) 4-IIAIILL~v(o~)), 

for some C = C(p, k, f2) > O. 
p Div 1 curl U Furthermore,forany A ~ L ~  (0~2), 1 < p < 2+~,thevectorfields E := U, H := 

solve (.A4e) with boundary datum A if and only if U solves (BVP1) for A and h = O. 

Proof.  Set r / :=  0 if Im k ~- 0 and r / :=  1 otherwise, and recall from the proof of Theorem 
p Div 

6.1 that -½1 + M~ + ioNk(n x S~) is an invertible operator on L ~  (0f2) for 1 < p < 2 + e. 

Next, we claim that - ½ I  + Kk -- i~SkS~ is also an invertible operator on WI'P(O~2) for 
1 < p < 2 + e and any k ~ C \ {0} with Im k > 0. Assuming the claim for a moment, the 
existence part in our lemma follows immediately from the above invertibility results and the usual 
jump relations by taking 

U :=  curl Sk B + in curl curl S(n x S2B) + Sk (n g) -- ik-2~VSk S2g, 

- -  p,Div in R 3 \ f2, for some appropriate B ~ Lm (0f2) and g e Wl'P(f2). The uniqueness part in this 
lemma is a consequence of the uniqueness part for the exterior Maxwell boundary value problem 
discussed in Theorem 6.1. 

Returning to the proof of the claim, first we note that, by Theorem 5.4 and the fact that 
Kk -- K0 is compact, the operator -½1 4- Kk -- i~SkS 2 is Fredholm with index zero on WI,P(0~2) 
for 1 < p < 2 + ~ and any k ~ C. Also, much in the spirit of what we did in, for example, the 
proof of Theorem 6.1, its null space is actually included in Wl'2(092). Hence, to show invertibility, 
it suffices to prove that if f E WL2(a~) has (-½1 + Kk + iT SkS2)f = O, then necessarily f = 0. 

To this end, introducing u := ICkf -- i17,-qkS2f in f2+, we have that (Vu)*, u* ~ L2(0~2), 
(A 4- k2)u = 0 in [2±, u[aa_ = 0, and u radiates at infinity. Hence, u = 0 in f2_ (see the 
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discussion in §6) so that, in particular, (Ou/On)lon_ = 0. Also, ulan÷ = ulan. - ulan_ = f and 
(Ou/On)lan+ = (Ou/On)lan÷ - (Ou/On)lan_ = -irlS2 f . Consequently, Green's formula gives 

f fn÷ ([Vul2 - k21u12) d V  = - i o  fan 'S°f '2 d~r. 

We now remark that 17 is chosen so that the above forces f = 0. The proof of the first part of the 
theorem is now completed. 

The last part in the statement of the theorem follows from the fact that div U = 0 in R 3 \ ~ . i f  
and only if h = 0 by the uniquness part in the Regularity problem for the Helmholtz operator. [ ]  

In the second part of this section we deal with the LP-theory of boundary value problems for 
harmonic vector fields in Lipschitz domains in R 3. This extends the corresponding L2-results first 
obtained in [61 ]. However, it should be noted that while we are restricting ourselves to R 3, the results 
in [61 ] are valid in arbitrary space dimensions. 

Theorem 6.3. 
Let [2 be a bounded Lipschitz domain in R 3 with g(af2) = 0. Then there exists E > O, 

depending only on af2, such that for each 1 < p < 2 + 6 the boundary value problem 

divE = 0 inf2,  
c u r i E = 0  in ~2, 
E* E LP(0~),  (BVP2) 

n x E = A E Lt~°(af2) 

has a unique solution. This solution satisfies 

IIg*llL,(an) _< CIIAllL,(an). 

Moreover, a similar statement holds for the exterior problem 

d i v E = 0  i n R  3 \ ~ ,  
c u r i E = 0  i n R  3 \ ~ ,  
E* E Le(0f~), 
E satisfies the radiation condition, (BVPa) 

p,0 
n x E = A E Ltan (0f2), 
fan(n, E) dtr = ( e C. 

Also, if the domain [2 has a C 1 boundary, then we may take 1 < p < oo. 

Proof .  For the interior problem, setting E := curl SoB, B E L~°(O~2), existence is readily 
seen from the jump relations for the derivatives of So and Theorem 5.1 xvi. Uniqueness follows 
from the Green formula (3.2) and Theorem 5.4. 

To deal with the exterior problem, let f E LP(af2) be the unique solution of S0f  = I 
WLP(~£2) (cf. Theorem 5.4). This time we look for E in the form E := curl,SoB + ~ V S o f  for 

p,0 some B ~ Ltan (0f2), ~ ~ C, and we proceed as before. The reason this works is that f ~ L~(af2) 
(recall that rr oSo : L~(O~2) WLP(Of2)/C l L~(8~)  ---> is an isomorphism) implies that ( ~ I + K~) f 
and, consequently, that fon (n, VSof) dry ~ 0. [ ]  

Theorem 6.4. 
Let f2 be a bounded Lipschitz domain in R 3 with g(Of2) = O. Then there exists E > O, 

depending only on 0 ~2, such that for each 1 < p < 2 + E the boundary value problem 

AE = 0  in f2, 
d i v E = 0  in ~2, 
E*, (curl E)* ~ L P ( O ~ ) ,  (BVP4) 

n × E = A E L~Div(o~) 
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has a unique solution. This solution satisfies 

II E* IlL,can) + II (curl E)* [ILp(an) _< CIIA IIL~,(an), 

and curl E = 0 i f  and only/ fDiv A = 0. 
Moreover, a similar statement holds for the exterior problem, provided E is radiating and the 

charge integral fan (n, E) dcr is a priori prescribed (in C), that is,for 

A E = 0  i n R 3 \ ~ ,  
div E = 0 i n R 3 \ - ~ ,  
E*, (curl E)* ~ Lv(O~2), 
E satisfies the radiation condition, (BVPs) 

L P , D i v  t';q O - n x E = A E tan w . . ) ,  
fan(n, E) da = ( ~ C. 

Furthermore, i f  the domain [2 has a C 1 boundary, then we may take 1 < p < oo. 

P r o o f .  This is quite similar to the proof of  Theorem 6.3, except that we now take B 
p,Div 

Lu~ (0[2) and use Theorem 5.1 xvii. [ ]  

Theorem 6.5. 
Let [2 be a bounded Lipschitz domain in R 3 with g(Of2) = O. Then there exists E > O, 

depending only on 0[2, such that for each 1 < p <_ 2 + e the boundary value problem 

A E = 0  in[2,  
d i v E = 0  in [2, 
E*, (curl E)* ~ LP(O[2), (BVP6) 
(n, curl E) = f ~ LOP(0[2), 
(n, E) = g ~ L~ (O[2) 

has a unique solution. This solution satisfies 

llf*llLp(an) + If(curl E)*llL,(an) < C(llfllL,(an)+ llgllL,(an)). 

Also, if the domain f2 has a C I boundary, then we may take I < p < oo. 

Proof. Existence is seen by taking E := SoA + VSoh, with A ~ L~°(Of2), h ~ LP(0[2), 
by using the usual jump relations and Theorem 5. I i together with Theorem 5.4. Uniqueness follows 
from (6.5) written for curl E first and then for E. [ ]  

Next we present a result about the behavior of  the solutions of the problems (.bali.e) as the wave 
number k e C \ {0} approaches zero, under the additional hypothesis that the topological genus of  
~ is zero (note that this is the only case not covered by Theorem 6.1). 

Theorem 6.6. 
R with g(O[2) = O, and let E > 0 be as in Theorem Let [2 be a bounded Li~.schitz domain in 3 

< p tnv 
6.1, 1 < p _ 2 + E, A ~ L ~  (0[2). For each k ~ C \ {0} with Im k > O, let (Ek, Hk) be the unique 
solution of the exterior Maxwell boundary value problem (A4e) with wave number k and boundary 
data A (and f :=  - A D i v  A). 

Then, as k ~ O, the electric field Ek converges uniformly on compact subsets o f R  3 \ -~ to Eo, 
the unique solution of(BVPs)  with boundary data A, and ( = O. 

I f  0 [2 E C 1, then we may take 1 < p < ~ .  

P r o o f .  Since g(O [2) = 0, it follows that - ½ 1  + M0 is invertible on L ~  ~v (0 [2) (cf. Theorem 
5.1). Furthermore, since 

Ilg0 - g k  [[or~ato, = O(k 2) 
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ask ~ 0, we also have that --½I+Mk is invertible on L~V(O~2) for small k and that ( - 4 1  +Mk) -1 

converges to (--½ 1 + Mo)-1 in the operator norm. Consequently, 

Ek(X) := n(X) x curl f ~k(X -- Y)[(-½1 +Mk) - IA] (Y )da (Y )  
Ja f2 

converges uniformly on compact subsets of R 3 \ ~ to 

Eo(X) := n(X) x curl f qb0(X - Y)[(-½I + Mo)-1A](Y)da(Y).  
JO f2 

To see that E0 solves (BVPs) we only need to check that fan (n, Eo)da = 0. However, 

f~- ~+ + 

and the conclusion follows. [ ]  

Our last result in this section deals with another physically relevant case, which is related to 
the so-called magnetic (Neumann) screen problem for electromagnetic waves (compare with, e.g., 
[86]). 

Theorem 6.7. 
Let f2 be an arbitrary, fixed, bounded Lipschitz domain in R 3. Then there exists E = ~(~2) > 0 

such that for each 2 - E < p < 2 + E and each k E C \ {0}, Im k > O, the boundary value problem 

(A q- k2)H = 0 i n R 3 \ ~ ,  
H*, (div H)*, (curl H)* e L P ( O ~ ) ,  

n x curl H = A E LPm(O~2), (BVP7) 
(n, H) = f E LP(Of2), 
H satisfies the radiation condition 

has a unique solution. This solution depends continuously on k in the range {k ~ C \ {0}; Im k > 0} 
and satisfies 

IIH*IIL, + II(div H)*IILp + II(curl H)*lb:  _< C (113111., + IlfllL,) 
p, Div for some C = C(f2, p, k) > O. Also, (curl curl H)* ~ L P(Of2) if and only if A ~ Lm (Of2). 

Furthermore, if  also g(O~2) = O, then this solution converges uniformly on compact subsets 
o fR  3 \ "~, as k ~ O, to the unique solution of the problem 

A H 0 = 0  i n R 3 \ ~ ,  
n~, (div no)*, (curl no)* e LP(~f2), 
n × curl Ho = A E L ~ ( ~ 2 ) ,  (BVP8) 
(n, Ho) = f e LP(Of2), 
Ho satisfies the radiation condition. 

Ifaf2 ~ C l, then we may take I < p < oo. 

Proof. 
consider 

For r/~ R \ {0} as in the proof of Theorem 6.1 and for B ~ LPtan(O~2), g ~ LV(Of2), 

H := SkB -kD?cudSk(n x S~B) -k VSkg 

+ ik2~Sk(nS2g)+ iocurlSk(n x VSo(Sog)) 

in R 3 \ ~ .  Thus, existence in (BVP7) rests on the invertibility of the boundary integral operators 

- ½ I  + Mk +ik2•n x Sk(n X S 2) -ik277n x VSk((n, curl So)So) 
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and 

1 . E1 + K; + ik2rl (n, Sk(nS2)) + irl (n, curl Sk)(n × VSo)S0 

on LP(of2) and on LP(O~), respectively. Assuming now that e > 0 is as in Theorem 5.3 and since 
2 - E < p _< 2 + e, both cases can be handled by the results in Theorem 5.3, Theorem 5.4, and 
Fredholm theory, much in the spirit of  the approach in the proof of  the Theorem 6.1. 

For Im k > 0, uniqueness in (BVP7) is seen from the Green formula (6.5) and the invertibility 
results in Theorem 5.3; whereas i fk  6 R \  {0}, uniqueness is seen from energy estimates and Rellich's 
lemma. 

The reasoning for (BVPs) is similar (here one uses Theorem 5.1), and the convergence statement 
is proved pretty much as in Theorem 6.6. We omit the details. [ ]  

7 .  S o m e  C o u n t e r e x a m p l e s  

Here we shall construct counterexamples that show our L p results on the invertibility of  the 
boundary integral operators and on the solvability of  the boundary value problems discussed in the 
previous sections are sharp. 

Theorem 7.1. 
For each 2 < p < cx~ there exist a simply connected, bounded Lipschitz domain f2 in R 3 and 

p , D i v  
a vectorfield A E Ltan (0fl)(_C L~Div(0~)) such that i f f  :=  - ~ D i v  A E LP(O~2), then for any 
k E C \ {0} the (unique) L2-solution (E,  H) of the boundary value problem (.Me) corresponding to 
p = 2 and the boundary data A, f is not a LP-solution (in the sense that the estimate (6.8)fails). In 
particular, for such a domain f2 and such boundary data A, f ,  the boundary value problem (A4e) 
has no solution. 

A similar statement is valid for the interiorprobtem (.A/[i) as well. 

Proof. We first consider the case of  the interior problem (.A4i) which is somewhat easier to 
present. The departure point is to recall the LP-counterexamples for the solvability of  the Neumann 
problem from [45]. That is, for ot ~ (0, 9)  we let Dr  denote a bounded simply connected Lipschitz 
domain in R 2 such that 

Dr C_. {rei°; r > 0, 101 < or/2}, 

ODr M {X 2 -Jr- y2 < 1} = {reiO; r > 0, 101 < ct/2} M {X 2 -I- y2 < 1} 

and with the property that ODr \ {0} is smooth. Taking v(x, y) :=  Re (x + iy) ~/r, (x, y) E Dr,  one 
can show that Av = 0 in D,,, a~ ~ L~(ODr) and, i f s  denotes the arc-length parametrization of  

* ,~  l+~r / r  ~r ODr, (Vv) (s) -.- s -  (see [45]). In particular, for any p > 2 it is possible to choose a ~ (0, ~)  
, p 3 such that (Vv) ~ L (0D~). This two dimensional counterexample can be immediately lifted to R 

in a wedge-like domain. Specifically, we consider the simply connected, bounded Lipschitz domain 
f2r :=  Dr  x ( - 1 ,  1) _c R 3 and the harmonic function u(x, y, z) :=  u(x, y), (x, y, z) ~ ~2r. Clearly, 
u is smooth in f2---~ \ {(0, 0, z); z E [--1, 1]} and ~ E L~(Of2r). Also, (Vu)* E L 2 ( 0 ~ )  for any or, 
but for each fixed p > 2 one can choose ot such that (Vu)* ~ LP(Of2~). 

Now fix k E C \ {0} and p > 2 and select ot E (0, 9) such that f2r and u are as above. Then 
the idea is to set 

E := ikSk(n x Vu) 

and 

H :=  Vu - k2Lk(Vu) - VSk(Ou/On) 
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in f2~. Straightforward calculation shows that E and H are divergencefree solutions of  the vector 
Helmholtz equation in f2~. In fact, as E = - A c u r l  H,  it follows that (E, H)  is a solution of 
the Maxwell system in £2~. Also, since by the Sobolev embedding theorem Lt (Vu)  is (H~lder) 
continuous up to and including the boundary of £2, we have that E*, H* ~ L2(aQ~). Thus (E,  H)  
is a solution of  the interior problem (.Mi) for p = 2 and boundary data 

2,Div 
A : = i k n x S k ( n X V u ) ~ L m  (0£2), 

1 
f :=  - - :7 (n ,  curl Sk(n x Vu)) ~ L2(af2). 

t/¢ 

Furthermore, since Sk maps L2(0£2~) boundedly irtto wI.2(a£2~), using the Sobolev embedding 
au 

theorem we see that actually A ~ L ~ ( a f 2 ) .  Recall that ~ ~ LP(Of2~) so that f = (n, H)  
LP(Of2a). If we combine this with the fact that Div A = - i k  f ~ LP(a£2), we may also conclude 

p,Div 
that A ~ Lt~ (af2). However, the estimate (6.8) falls because (Vu)* q~ LV(af2~) also forces 
H* ~ LP(af2~). This concludes the reasoning for the interior boundary value problem. 

The reasoning for the exterior boundary value problem (.Me) is an adaptation of  the above 
argument and is only slightly more involved. For some fixed k ~ C \ {0} and p > 2 one departs from 
a bounded, simply connected Lipschitz domain £2 in R 3 and u ~ C °o (R 3 \ ~ )  such that Au = 0 in 
R 3 \ ~ ,  (Vu)* E L2(aE2), (Vu)* ¢ LP(aE2), au ~ LP(af2), and u decays at infinity. Next, we take 

~o E C~mp(R 3) such that ~o - 1 in a neighborhood of af2 and set v :=  V(A + k2)(~ou) in R 3 \ ~ .  

Clearly, v is curl-free, vanishes at infinity, and equals k2~7u near 0£2. Then we set 

E :=  ik-lSk(n x v), 

H := V((ou) - L~(v) -- k-2VSk((n, v)) 

in R 3 \ ~ .  Successive integrations by parts then give 

div H = A (~ou) - div Lk(V(A + k2)(gu))  - k2Sk(au/an) 

= A (~ou) - ALk((A + k2)(cpu)) - div Sk (n(A + k2)(~ou)) - k2Sk(Ou/an) 

= - k  2 (~ou) + k 2 Lk((A + k2)(~ou)) - k2K~k(ulan) - k2Sk(au/On) 

= 0 .  

With this at hand, and observing that (A + k2)H = 0, E = - ~ c u r l  H,  we may proceed as before. 
[ ]  

Theorem 7.2. 
The Theorems 6.3, 6.4, and 6.5 are sharp (in the sense of Theorem 7.1). 

P r o o f .  Here we adapt an argument first used in [19]. For 0 < ~. < 1 recall the generalized 
Legendre function Px of degree 3.. In particular, Px satisfies 

2- d2 px "t" d Px 
(1 - t ) - -~ - -  ( ) - 2t--~-- (/) + ~.(~. + 1)Px(t) = 0 

for - 1  < t < 1, and we assume that Px is normalized such that Px(1) = 1. Following [19], we set 
ax := sup {t E ( - 1 ,  1); Px(t) = 0}, - 1  < ax < 1, and denote by £2x a bounded, simply connected 
Lipschitz domain in R 3 such that af2x \ {0} is smooth and 

fZx n {X; IXI < E} = {X; Sl  > axlXl} n {X; IXl < E} 
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for some fixed, small, positive e. Next, set vx(X) := IX} Ph(ix I) for X ~ f2h so that, by direct 
calculation, 

IXI-h+2Avh(X) = (1 - X2 ~ d2Ph _ X1 dPh 

Thus oh is harmonic in f2h. Also, it is easy to check that vh s C~(f2h \ {0}), VtanVh ~ L~(0f2x), 
and (VoD*(X) ~ IXt ~-1 for X ~ 0~h. In particular, (Vvx)* ~ L2(Of2h) and (Vvx)* ~ LP(O~h) if 

2 
P > T2"2- 

Then, clearly, for any p > 2 it is possible to select ;~ ~ (0, 1) such that E := Vvx in f2x is a 

counterexample to the LP-solvability of(BVPz) with boundary datum A := n x Vvx ~ L~°(af2). A 
similar argument (as in the second part of the proof of Theorem 7.1) is valid for the exterior problem 
as well. Hence, Theorem 6.3 is sharp. 

Finally, the sharpness of Theorems 6.4 and 6.5 is immediate from the sharpness of the results 
for the Neumann problem for the Laplace operator in [20] and the sharpness of Theorem 6.3. [ ]  

Theorem 7.3. 
For any p 5~ 2, there exists a bounded, simply connected Lipschitz domain f2 in R 3 such that 

the operators -4-½1 + Mk (where k = 0 or k E C with Im k > 0, say) are not isomorphisms of 
L ~ ( O a ) .  

Proof .  Fix k ~ C with Im k > 0 (essentially the same reasoning applies to the case k = 0 
too). Assume now that 2 < p < cx~, and recall the Lipschitz domain f2h and the harmonic function 
oh introduced in the proof of Theorem 7.2, where ~. ~ (0, l) is chosen such that ~ < p. If we now 
set 

in f2h, where 

E := Vvh - -  k2Lk(VVh) -t- Sk(n f )  

f := (I1 q- Kk)-l[sk(oVx/On)], 

on 0 f2x, then clearly (A + k 2) E = 0 and div E = 0 in f2x. Also, n x E ~ L~n (0 f2) but E* ¢ L P (0 f2) 
since (VvD* ¢ LP(O~2). If the operator ½1 + Mk would be invertible on LP(of2),  then by the 
uniqueness part of Theorem 9.1 (stated and proved in §9) for the L2-case it would follow that 

E = curlSk(½l + Mk)-l(n x E) in f2 

and, consequently, that E* ~ LP(0f2). This contradiction shows that the operator ½1 + Mk cannot 
be invertible on L~(0f2) .  

A similar construction works for the exterior electric boundary value problem (cf. also the last 
part in Theorem 7.1) and gives that - t I + Mk is not invertible on LP(Of2). Finally, since, by (5.27), 
i l l  + Mk are invertible on some LP(Of2) if and only if ~½1 + Mk are invertible on Lq(0f2) ,  for 

1 1 1 < p, q < oo with ~ + ~ = 1, the conclusion follows. [ ]  

8. Atomic Theory for the Maxwell Equations and Related 
Systems 

In this section our aim is to present the endpoint case p = 1 for the the boundary value problem 
formulated in the previous sections. 
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Throughout this section we assume that f2 is a fixed, bounded Lipschitz domain in R 3 with 
g(Of2) = 0. Recall that a scalar-valued atom a is a function supported in a surface ball B := 
B(P, r) A 0~2 (for some P ~ 0f2 and r > 0) such that IlallL~ < a(B) and fa~ a da = O. The 
atomic Hardy space Halt(Of2) (cf. [13]) is then defined as the subspace of Ll(Of2) consisting of 
elements of the form f = ~-~q L/a j, where aj's are atoms and ~"~j [~.21 < +cx~. This space is 
endowed with the natural norm 

[[fllH~(o~) := inf { y~lXi l ;  f = ~ - ' ~  a / a t o m s } .  

By slightly abusing notation, we shall also denote by Halt(0~2) the space of all vector fields with 
components in H~(O~2). In particular, following [20], we set 

Halt:(0f2) := { f  e L2(~f2) : (n × V ) f  E H~(0~)}. 

Next we introduce the atomic spaces that are relevant for the Maxwell system. Specifically, 
we shall work with 

and 

H~°(Of2) := {A e Halt(0f2); (n, A) = 0, Div A = 0} c Halt(0f2) 

Ht~Div(~):={A1 q-A2; AI E H~n°(Of2), A2E L~(a~2), DivA2 e H~(a~)}. 

The latter space is equipped with the norm 

II A [1 n~,(aa)  :=  inf ([I A t [l H',<o~> + 11 A2 [1L z(a~) -1- [lDiv A2 II ~t1<o~>) 

where the infimum is taken over all decompositions A = AI + A2 with Al and A2 as in the definition 
of  Ht~ Div (~ f2). 

At the level of boundary operators, we have the following result. 

Theorem 8.1. 
The following operators are isomorphisms between the indicated spaces. 

i. (n, curl So) : H~°(Of2) - -~  Halt(0~); 
i i .  n x VS0 : H~(Of2) ~ Ht~°(0f2); 

i i i .  n x V : H)t'1(0f2)/C ~ H~(0f2); 

H 1 Div fZ 1 0 H2t(0f2); iv. Div : t~ ( 0 ) / H ~  (Og2)--+ 
1 , 0  v. +½I + Mo : H~°(Of2) ---> H ~  (0f2); 

vi. ±½I + Moactingon {A e L2(0f2) ;  DivA e H~(0f2)}; 
1 , D i v  v i i .  =t:½I + M0 : Ht~Div(0f2) --+ Ht~ (0Q); 

• - • l , D i v  vm. +½I  + Mk : Ht~oiv(af2) --+ Ht~ (0f2), provided k ~ C, Imk > 0, is not a Maxwell 
eigenvalue for ~2; 

ix. Nk : H~Div(0f2) 

eigenvalue for f2; 
x. A~ : g~Div(of2) 

eigenvalue for f2. 

1 Div ---> H ~  (Of2), provided k E C \ {0}, Imk > O, is not a Maxwell 

1 D i v  --~ H ~  (a~), provided k E C \ {0}, Imk >_ O, is not a Maxwell 



Vector Potential Theory on Nonsmooth Domains 171 

Note that, as a direct corollary, we obtain that the sequence of boundary derivative operators 

0 ~ C , )  H : t , l ( 0 f  ) nxV Div ) Ht~Div(0f )  > Hal t (0f)  , 0 

is exact. 
Before we proceed to the proof of this theorem we note some facts of importance for us 

here. First recall that the closure of compactly supported continuous functions on 0 f  in the B M O  
"norm" is V M O ( a f ) ,  the space of functions of vanishing mean oscillations. It is well known 
that H i ( O f  ) = (VMO(Ofl))* (cf. [I3]). Furthermore, recall the Fabes-Kenig [27] form of the 
Varopoulos extension theorem [91 ], which asserts that each b ~ V M O (0 f ) has an extension B in 
f such that I VB I dV is a Carleson measure in f with norm < CIlblt vMo(a~), where C > 0 depends 
only on the Lipschitz character of 0 f .  

Now if E is a curlfree vector field in f such that E* ~ L 1 (0 f )  and E la~ exists, then for each 
b ~ V M O ( O f )  one has 

fo (n x b) = ff<E, curlB) < CllE*llL,(a~)llbllvMo(a~) E, da  dV 

by the usual Carleson estimate. Hence, n x E belongs to H2t(0 g2) and, furthermore, [In x EIIH~,(a~) < 
CIIE*IIL,(O~). 

Similarly, if E is a divergencefree vector field in f with E* ~ L i (8 f )  and such that E la~ exists, 
then (n, E) ~ Hi t (0f )  and II (n, E)II~/.',(o~) -< C[IE*IIL,(a~). In particular, if E is both curlfree and 

divergencefree, has E* ~ L 1 (0 f ) ,  and EI0a exists, thenn x E belongs to H~°(0 f ) .  Also, Theorems 
1,o ~ ~ ) _  ~ ( ~ f ) ,  5.1 and 5.4 and the above reasoning show that L ~ ( 0 f )  _c H ~  (Off), L2'Di*c0f ~ C H 1Di~-- 

and L2(Of) c H2,(Of ). 

Finally, from [20] it is known that So maps H2t(~f) isomorphically onto H2t'l(0f) and that 
:t=½I + K~ are invertible operators from H2t(0f) onto itself. 

We are now ready to present the proof of Theorem 8.1. 

P r o o f  o f  T h e o r e m  8.1. Note that, by the results in [13, 12] and §4, these operators are 
well defined and bounded on the indicated spaces (cf. also the above discussion). The proof of the 
points i-v is the same as in the L p case, using the above preliminary remarks and we omit it (all 
operator identities contained in Lemmas 5.8-5.10 have natural analogs in the atomic setting as well). 
Part vi follows from Theorem 5.1 xix and (the atomic version of) Lemma 4.4. 

Next we prove that Mk maps  H ~ D i v ( 0 f )  boundedly into itself for any k e C. Note that for 
k = 0 this follows from points v and vi, which were already proved. For a general k, we decompose 

2 Div Mk = M0 + (Mk -- M0) and, since Mk -- M0 maps Lt(0fl)  into L ~  (Of),  the conclusion follows. 
With this at hand, vii is easily seen from v and vi, whereas v i i i  follows from vii and Fredholm theory. 

The proof of the remaining part of the theorem then proceeds as in the L p case. [ ]  

Next we analyze the endpoint case p = 1 for boundary value problems for harmonic fields. 

Theorem 8.2. 
The necessary and sufficient condition for (BVP2) to be solvable in the case p = 1 is that the 

boundary datum A belongs to H~° (Of). In this case, the solution is unique and satisfies 

IIE*IIL,(0~) < CIIAIIH.,,(a~) 

for some C = C ( f )  > O. 
A similar result is valid for the exterior version (BVP3) as well. 

Proof.  The necessity of the membership of A to H ~ ° ( 0 f )  is immediate from the remarks 
preceding Theorem 8.1. Existence and uniqueness follow from Theorem 8.1 v. [ ]  
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Theorem 8.3. 
The necessary and sufficient condition for (BVP4) to be solvable in the case p = 1 is that the 

boundary datum A belongs to Ht~Div(0[2). In this case, the solution is unique and satisfies 

IIE*IIL,(a~) + II(curl E)*IIL,(O~) --< CIIAII~=,(0~) 

for some C = C([2) > O. 
A similar result is valid for the exterior version (BVPs) as well. 

1 Div Proof .  Assume that (BVP4) is solvable in the case p = 1. Clearly, A 6 L ~  (af2) and in 
fact Div A = - ( n ,  curl E) ~ Halt(a[2). Next, using Theorem 8.1, let B ~ H~°(a[2) be such that 
(n, curl SoB) = Div A 6 Halt(0[2). Using the simple connectivity of f2 it is possible to construct a 
scalar-valued u such that Zku = 0, Vu = curl E - curl S0B in [2. It follows that (Vu)* ~ L~(af2) 
and Ou/an = 0, so from the uniqueness part in the Neumann problem with atomic data [20] we infer 
that u is constant in [2. 

Consequently, E - SoB is curlfree, divergencefree and, by Theorem 8.2, we have that n × 
(E - SoB) ~ Ht~°(O~2). Since n × SoB ~ L~(af2)  has Div (n × SoB) ~ Halt(a[2), this implies 
that A necessarily belongs to Ht~Div(0[2). 

Existence and uniqueness in (BVP4) with p = 1 for A ~ Ht~Div(o[2) is seen from vii in 
Theorem 8.1 and Green's formula. [ ]  

We also remark that there is an analogous statement in the limiting case p = 1 for Theorem 
6.5, in which situation the boundary data should belong to Htt(a[2). 

We are now in a position to state and prove the main result of this section describing the atomic 
theory for the Maxwell boundary value problem on Lipschitz domains. 

Theorem 8.4. 
For each fixed k ~ C \ {0} with Imk > O, the exterior Maxwell boundary value problem (.Me) 

is solvable for p = 1 if and only if A E Ht~n °iv ( 012 ) , f ~ Halt(a[2), and Div A = - i  k f . The solution 

is unique, depends on k analytically in RZ+ and continuously on RZ+ \ {0}, and satisfies 

II E*IIL ,(Oe) + Iln*llzt(af~) _< CIIA II H~D~,(a~) (8.1) 

for some positive constant C depending only on k and [2. 
A similar result is valid for the interior Maxwell boundary value problem (.Mi) provided k is 

not a Maxwell eigenvalue for [2. In this latter case, A, f must also satisfy finitely many necessary 
linear conditions and the solution to (.Mi) is unique modulo a finite-dimensional space. 

Proof .  First we address the necessity part of the theorem and, for simplicity, assume that we 
deal with the interior problem. To this end, we claim that if a divergencefree vector field E satisfies 
(A + k2)E = 0 in [2 and has E*, (curl E)* ~ Ll(O[2), then n × E 6 Hr'°iv(0 f2). 

To see the claim, we note that it is possible to select f ~ H~'l(a[2) such that the vector field 

u := E + k2LoE + k2So(nf) 

is divergencefree in [2. Indeed, divu = k2So((n, E)) - k2Eof  and, since (n, E) ~ H2t(0~2), the 
results in [20] may be used to conclude. Since u is harmonic and has u*, (curlu)* ~ Ll(O[2), 
Theorem 8.3 gives that n x u ~ H~h°iv(af2). In particular, this shows that n x E ~ Ht~Div(af2), and 
this completes the proof of the necessity part in the theorem. 

The proof of the sufficiency follows the lines of the proof of Theorem 6.1; therefore, we shall 
2 I D i v  2 Div be brief. Since the smoothing operator n x Sd maps Ht~ ' (0[2) compactly into L ~ "  (a[2), using 

Theorem 8.1 viii and proceeding as before, it follows that - ½1 +Mk +i 11 Nk (n x S 2) is an isomorphism 

of Ht~Di~(a[2). This gives the existence part in (.Me) with boundary data A ~ H~I~(a[2) (and 
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1 H2t(0f2)). Uniqueness follows from the above claim, Green's formula, and f := - i D i v A  e 
Theorem 8.1. []  

Without further proof, as a corollary of the previous theorem, we also note the following result. 

T h e o r e m  8.5. 
For each fixed k e C \ {0} with Imk  > O, boundary value problem (BVP1) is solvable for  

p = 1 if  and only i fh  e Halt'l(0f2) and A e Ht~Div(af2). The solution is unique, depends on k 

analytically in R2+ and continuously on RZ+ \ {0}, and satisfies naturally accompanying estimates. 

R e m a r k .  Using the results in [4] and proceeding analogously as in this section, it is possible 
to extend the results presented here to Hardy-based spaces of order less than one (depending on the 
Lipschitz character of the domain). [ ]  

9 .  L p T h e o r y  f o r  t h e  N o n r e g u l a r i t y  B o u n d a r y  V a l u e  P r o b l e m  

for the Maxwell System 

In this section we study the electric boundary value problems (~i.e) stated in §1. In fact, we 
take the opportunity to deal with the somewhat more general problems that we formulate below. 
This extends a similar result proved by Calder6n in [8] in which case the domain has a C 3 boundary. 

Theorem  9.1. 
Let f2 be a bounded Lipschitz domain in R 3, and let k e C \ {0} with Irnk > O. 

I. Then there exists E = E(~2) > 0 such that for each 2 - • < p < 2 + • the boundary value 
problem 

E e C°°(R 3 \ ~) ,  
( A + k : ) E = 0  i n R  3 \ ~ ,  
E*, (div E)* E LP(Off2), (BVP9) 
(div E)lof~ = f e LP(Of2), 
n x E I ~  = a e L~(Of2),  
E satisfies the radiation condition 

is solvable. 

II. The solution is unique, depends continuously on k in the indicated range (the principle of  
limiting absorption), and satisfies 

IIE*IIL,~oa) + [[(div E)*llLp(aa) < C(llfllLp(a~) + IIAIIL~(aa)) (9.1) 

for  some C = C(p,  k, f2) > O. 

I lL  The following regularity results are true: div E = 0 in R 3 \ -~ if and only if  f = 0 in which 
situation (BVP9) reduces to (ge) (stated in §1); also, (curl E)* e LP(Of2) if  and only i f  

LP,Div(~ A E tan . . . . . .  and (curlcurlE)* e LP(Of2)i fandonly  i f f  e WLP(af2). Moreover, 
there are natural accompanying estimates in each case. 

IV. I f  the boundary Of 2 has topological genus zero, then the unique solution E = Ek of(BVP9) 
converges uniformly on compact subsets in R 3 \ ~ to Eo, the unique solution of the boundary 
value problem 

A E 0 = 0  i n R 3 \ ~ ,  
E~, (div E0)* E LP(af2), 
(div E0)laa = f E LP(O~), 
n x E01a~ = A e L~(Of2),  
f~ .  (n, Eo)do" = 0, 
Eo satisfies the radiation condition. 

(BVPlo) 
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V. Similar results hold true for the interior version of the above boundary value problem 
(when, of course, the radiation condition is dropped). More specifically, one has existence, 
uniqueness and the estimate (9.1) as long as k is neither a Maxwell eigenvalue nor a Laplace 
eigenvalue with homogeneous Dirichlet boundary condition for g'2 (e.g., k ~ C with Im k > 0 
will do). In this latter situation, existence holds if and only if the boundary data satisfy finitely 
many linear conditions, whereas uniqueness holds only modulo a finite-dimensional linear 
space. 

VI. Finally, in the class of Lipschitz domains this theorem is sharp. If, however, the domain f2 
has a C 1 boundary, then the same results are in fact valid for each 1 < p < o¢. 

Compared with Theorem 6.1, the new difficulties in proving this result arise from the fact 
that no assumptions on the behavior of  curl E (i.e., the equivalent of  the magnetic field H)  to the 
boundary are made. The main idea in the proof of  the uniqueness part is to use the well-posedness 
of  the regular Maxwell boundary value problem together with the continuous dependence of  the 
solution on the boundary of the domain. In this regard, we shall first prove two lemmas that are of  
importance for us. 

Consider first f2 an arbitrary, fixed Lipschitz domain and introduce 

fa  (Vq~0)(X - Y) f (Y)do t (Y) ,  X ~ Of 2. (9.2) T f ( X )  p.v. 

Recall the approximating sequence f2j 1" ~2 described in Lemma 2.2 and set Tj for the operator 
similar to (9.2) corresponding to Üf2j. 

Lemma 9.2. 
With the above notation,for each 1 < p < cx~ and each f ~ LP(Of2) one has 

lim II[Tj(f o A f t ) ]  o Aj -- TfllLpOft) : O. 
j --.). oo 

P r o o f .  Since sup{lITjll}j < + c ~  and V ~  0 = -~n n - - n  × (n × VdP0) on 0f2, it actually 
suffices to show that 

lim II(TJh) o Aj  - TthllL,,(aa) = 0, l = 1, 2, (9.3) 
j.-+oo 

for any Lipschitz continuous function h in R 3, where {Tt}t=t,2 are the operators corresponding to 
the kernels a~o and n × Vq~o, respectively. an 

The case of  T 1 was treated in [93, p. 586]. The idea to handle T 2 is to integrate by parts, i.e., 
to use (2.2) to write that 

~ (nj x V ) d P o h d t r j = - f a  Cbo(nj xV)hd~rj 
~j ~j 

= - - I x  d P ° ( n J × V ) h d t y J - - / x  ~ o ( n j x g r ) h d c r j = : l  + I I .  
~-rjl>_8 j-Yjl<_~ 

Now the singularity in I has been eliminated, whereas I111 <_ CSFIVhlIL~O. With this at hand, the 
conclusion easily follows. [ ]  

L e m m a  9.3. 
Let f2 be a bounded Lipschitz domain in R 3 and recall the mappings A j introduced in Lemma 

2.2. Assume that the kernel K(X, Y) is continuous and such that IK(X, Y)I < C[X - YI -l for 
X ~ Y , X , Y  ~ R  3. 
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Then, if { f j } j is a sequence of functions in L P ( O~ ) that converges to zero weakly in L P ( O £2 ), 
for some 1 < p < oo we have that 

fo K ( A j ( X ) ,  A j ( Y ) ) f j ( Y ) d ~ ( Y )  --+ 0 in LP(O~). 
~2 

P r o o f .  Fix ~ > 0 and for each X ~ 0 f2 decompose the domain of  integration into {Y 
0~;  IX - Y} > ~} and {Y ~ 092; IX - YI __ ~}- The first resulting term is easily seen to converge to 
zero in L p (0 £2 ) by Lebesgue 's  dominated convergence theorem. Also, for the second term, Schur's 
test (or interpolation between L I and L °~) yields 

K(Aj(X), aj(r))fj(r)xj _rl<  

( f ix d~--(Y--) ~ supi [ [ ' I I  L"(an)" < C SUpx -rl_<~ I X -  Y I /  

The L p norm of the left-hand side is < C~, and since ~ is arbitrary, the lemma follows. [ ]  

We now turn to the proof of  Theorem 9.1. 

P r o o f  o f  T h e o r e m  9.1. Consider first the exterior problem. As in the proof  of  Theorem 
6.2, we look for a solution E expressed in the form 

E := curl Stc B + i r/curl curl S(n x S 2 B) + Sk (n g) - ik-2~VSk S~g, 

in R 3 \ ~ ,  but this time for some B ~ LP(o f2)  and g ~ LP(Of2). Based on the usual jump 
relations, this choice leads to the question of inverting the operators - ½ 1  + Mk + i r/Nk (n x S g) and 

- ½ I  + Kk -- ioSkS~ on L~(Of2) and LP(0~) ,  respectively. The fact that they are Fredholm with 
zero index on the indicated spaces follows from Theorems 5.3 and 5.4, whereas injectivity is seen 
from vi in Theorem 5.3. The existence part follows. Also, the estimate (9.1) is a direct consequence 
of  the explicit integral representation formula of  the solution and the results in [12]. 

To prove uniqueness, we first claim that if f2j -1. £2 is a sequence of  smooth approximating 
domains (as in Lemma 2.2), then there exists Co > 0, independent of j ,  such that 

1l(-½I + Mk,j + illNk,j(nj × S2,j))-~ BIIL,<oQj) < CoIIBIIL,la~j) (9.4) 

for each j and any B ~ LPt~(O£2j) and such that 

1l(-½I + Kk,j -- ioSk,y S~,j)-l gllt,Ca~j) < C0llg[lL,onj) (9.5) 

for each j and any g ~ LP(af2j)  (recall that we are assuming 2 - ~ < p < 2 + E). 
Let us accept the claim for the moment  and assume that E is a solution of the homogeneous 

version of (BVP9). Also, fix P ~ R 3 \ ~ .  Then, it follows from Theorem 6.2 that 

tE(P)[  < C( P, p, k, Of 2, C0)(lldiv EIILpOfzi) + [[n j x E}IL.ofzj)). (9.6) 

On account of Lebesgue's  dominated convergence theorem that the right-hand side of  the above 
estimate tends to zero as j --.. o0, E(P)  = 0, and since P was arbitrary, this concludes the proof  of  
the uniqueness (modulo the claim). 

Returning to the proof of  the claim, we only give a brief outline of  the proof  of  (9.4), as 
( 9 . 5 )  is similar and somewhat easier. Furthermore, to lighten the exposition we assume that p = 2. 

Reasoning by contradiction, let us suppose that the uniform invertibility claim is violated. Then there 
exists a sequence { A j } j  with A j  E L2um(O~j) and such that IlAj IlI.:(a~j) = 1 for each j ,  whereas 

11(-½1 + Mk,j -4- illNk,j(n) x S2,j))AjIIL~ta~,) ~ 0 

as j ~ cx~. To obtain a contradiction, we proceed in a sequence of steps. 
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First, it is not difficult to show that there exists A ~ L2(Of2)  such that Aj o A j  ~ A, weakly 
in L2(0f2) as j --> ~ .  

Second, we claim that ( - ½ I  + Mk + irlNk(n x S2))A = 0. To prove the claim we shall need 
that M~*,j(nj x Flanj) o Aj -+ M~(n x Finn) in L2(0Q) for any vector-valued Lipschitz function 

F in R 3. This is readily seen by using Lemma 9.2. Then an argument based on this, duality, and 
density yields the claim. 

Finally, using (5.25), for some C = C(Of2) > 0 independent of j we may write 

1 = llAjllt.2<a~) _< CII(-½1 + Mk,j "4" DTNk.j(nj x $2 j))Ajl L2<an~) + IIRjAjIIL2<a~j) 
=:  1 + I I ,  

where { Rj  } are some weakly singular integral operators (with kernels as in Lemma 9.3). Now I ~ 0 
by hypothesis, while I I --+ 0 by (repeated) applications of Lemma 9.3. This leads to an obvious 
contradiction, hence the uniform invertibility claim follows. 

In the case in which f = 0, we infer from the uniqueness part in (BVP9) applied to the field 
E - curlSk[(--½l + Mk + irlNk(n x S~))-IA] that div E should necessarily vanish identically in 

R 3 \ ~ .  Also, the fact that A ~ L~n~(Of2) implies (curl E)* q LP(O~2) is immediate from Theorem 
6.1 and the uniqueness part for (BVP9). Other regularity claims may be seen from Theorem 6.2. 

The proof of the limiting absorption principle (point IV in the theorem) is similar to the proof 
of Theorem 6.6, but of course this time one needs to use xix in Theorem 5.1. 

The discussion of the interior boundary value problem is similar (cf. also the proof of Theorem 
6.1) and we omit it. [ ]  

R e m a r k .  Other versions of the results presented in this section are possible. For instance, 
there is an analogous form of Theorem 9.1 in which the boundary condition n x E = A ~ L p (Of2) 
is replaced by (n, E) = f ~ L~(Of2) (cf. vii in Theorem 5.3). [ ]  

10. Nonhomogeneous Boundary Value Problems for the  
Decoupled Maxwell Equations 

Here we consider nonhomogeneous boundary value problems for the the equations of static 
electromagnetism, i.e., the two problems in which the Maxwell problem decouples for k = 0 (see, 
for instance, [24, Vol. I, pp. 87-91; 80]). 

Our first theorem deals with the system of electrostatics. 

T h e o r e m  10.1. 
Let ~2 be a bounded Lipschitz domain in R 3 with g ( O g2 ) = O. Then there exists a small, positive 

= E(~2) such that if  ~ - ~ < p < 2 + ~, then a necessary and sufficient set o f  conditions for  the 
boundary value problem 

u ~ LP(f2), 
div u = q E W-I'P(f2), 
curlu = j e LP(~2), (BVPll) 

n A u = A ~ LP(Of2) 

to be solvable is 

{ d i v j = O i n ~ ,  
A ~ L~OfO, 

I 

DivA = - n  • j q W-~'P(Of2). 

In addition, the solution is unique and satisfies 

llullw<~) _< C (llqllw-*,,<~) + IIJlIL,<~) + llAllwon)) 

for some C = C(p, f~) > O. 

(*) 

(10.1) 
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Moreover, i f  actually q E LP( f t ) ,  then the unique solution of  (BVPII)  also satisfies n • u E 
L P ( Oft ) and the estimate 

IlulIL,<~) + IIn-UlIL,cO~> ~ C (llqltL,¢~)+ IIJlIL,¢~)+ IIAIIL,<~>) (lO.2) 

for  some C = C(p,  ft) > O. 
If, however, Oft E C 1, then all the above are valid for  1 < p < oo. 

As it will be apparent from the proof of  this theorem, if the conditions ( . )  are fulfilled and 
if q E LP(ft) ,  then for each 1 < p < 2 + ~ there exists a solution u of (BVPI1) for which 

IlullL,(~) < C(llqllL,(~) + IlJllL,(m + IIAIIL,(o~)). 

P r o o f  o f  T h e o r e m  10.1.  Clearly div j = div curl u = 0. Also, by Lemma 4.1, we have 
that A belongs to L P ( 0 f t )  and 

1 

DivA = Div (n A u) = --n • cur lu  = --n • j ~ W-7'P(Of2). 

This shows the necessity of  the conditions ( . )  (in fact for any 1 < p < cx0. 
Conversely, assume that the conditions ( . )  hold and let E = E(ft) > 0 be as in Theorem 

5.1. First we consider the case when q e LP(f t )  for which we shall prove existence in the range 
1 < p < 2 + E. We look for u expressed in the form 

u : =  - c u r l  Lo j  + VLoq + cur lSoA + cur lSoB,  (10.3) 

for some B ~ Lt~°(Oft) to be specified later. Clearly, u ~ LP(f t) ,  divu  = q, and cur lu  = 
j + VSo(n • j )  + VSo(Div A) = j by (*). Also, the boundary condition n A u = A amounts to 

- n  A curl L0 j  + n  A VLoq + (½I + Mo)B + (½1 + Mo)A = A. 

p,O Thus, based on xii in Theorem 5.1, this boundary integral equation is solvable for B e L m  (Oft), 
1 < p _ < 2 + E ,  if  and only if 

p,0 
- n  A curl Loj  + n A VLoq + ( - ½ I  + Mo)A E L m  (Oft). (10.4) 

Indeed, by Lemma 4.1, we see that n A VLoq ~ L~°(Oft) .  Furthermore, curlcurl  L0j  = ( - A  + 
Vdiv )Loj  = - j  - VSo(n • j ) ;  hence, we may infer that 

Div ( - n  A curl Loj )  = --(½I + K~)(n . j )  = (½I + K~)(Div A) 

= - Div [ ( - ½ I  + Mo)A] 

in W-~'P(Oft) .  Thus (10.4) follows and the proof  of  the existence part for q ~ L P ( f t )  is therefore 
complete. Also, the fact that the solution u constructed above has n • u ~ LP(Of t )  and satisfies the 
estimate (10.2) is seen from the integral representation (10.3) of  u. 

In the proof  of uniqueness, let us assume that u solves (BVPI1) for q = 0, j = 0, A = 0. By 
Theorem 3.2 we have that u = Vv, where v : =  - S o ( n  • u) e Wl'P(f t) .  Hence, (n x V)F(v  ) = 
n A Vv = n A u = 0. Consequently, eventually after subtracting a suitable constant from v, we may  

assume that v E wl 'P( f t )  and the conclusion follows from Theorem 5.5. 
Finally, in the case when q ~ W - I ' P ( ~ ) ,  we apply the above considerations to the vector field 

u - Vu', where u' ~ w~'P(ft)  is the (unique) solution of  Au '  = q (cf. the Theorem 5.5). [ ]  

Next, we treat the nonhomogeneous boundary value problem for the system of magnetostatics. 
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Theorem 10.2. 
Let ~2 be a bounded Lipschitz domain in R 3 with g(0£2) = O. Then there exists E = E(f~) > 0 

such that, for  each ~ - E < p < 2 + ~, a necessary and sufficient set o f  conditions for  the boundary 
value problem 

U E L P ( ~ 2 ) ,  
-1 -1- 1 = 1, divu = q ~ (WLP'(f2)) *, p p-7 

curlu = j 6 LP(f2), (BVPI2) 
I 

n .  u = f E W-7"P(O[2), 

to be solvable is that 

d i v j = 0  in f2, 

(q, I) = (f, i) .  (**) 

Also, the solution is unique and satisfies 

C (llqll(w,.,'(a))- + Iljllz,(a) + Ilfllw-L,(oa) ) (10.5) IlullLp(.) _< 

f o r  some positive constant C = C(p,  f2). 
Moreover, i f  f ~ LP(O~) and q E LP(f2), then the unique solution u of(BVPI2)  also has 

n /x  u ~ L~(O~2) and 

IIn ^ ullL,(an) < C (llqllL,(~) + Iljl[zp(n) + IlfllL,(an)) • (10.6) 

I f  in fact, af2 ~ C 1, then we may take 1 < p < cx~. 

P r o o f .  The necessity of  (**) is easily checked, so we assume that e = e(f2) > 0 is as in 
Theorem 5.1 and discuss sufficiency. To begin with, uniqueness follows from the simple connectivity 

3 of the domain g2 and the uniqueness for the Laplace equation Av  = O, v ~ WI'P(f2), ~ - e < p < 
2 + e, with homogeneous Neumann boundary conditions. 

To prove existence, we first treat the case when q ~ LP(f2) and look for u expressed in the 
form 

u := - c u r l  Lo j  + ffLoq - curl L0(curl SoA) - VL0(div SoA) + SoA + VSog, (10.7) 

1 I 

where the scalar-valued function g ~ Wo~'P(Of2) and the vector field A E W - ~ " ( O f 2 )  are to be 
chosen later. Note that, by Lemma 3.1, u ~ Le(f2) and that divu = q. 

First, we recall from vi in Theorem 5.1 that (n, curl So) is one-to-one from V~s'P(O~) onto 
WoS'P(Of2) for each 2 - e < p _< 2 + e and 0 < s < 1. In particular, for s = ~, there exists 

1 I 1 

A E V~anT"P(Of2) C W-7'P(Of2) such that n • curl SOA = - n  • j E WoT'P(of2) and 

IlAII , < CIIJlILp(~) (10.8) 
W-~.p (O~2) --  

for some C = C (p,  [2) > 0. With this choice of  A, straightforward calculation based on integrations 

by parts gives that curl u = j for any g ~ W-~'P(0f2) .  
Therefore, we are left with checking the boundary condition for u. This leads to the following 

boundary integral equation for g E W - ~ a ' ( a ~ ) :  

( - ½ I  + K~)g = f + n • curl Loj  - n • VLoq + n . curl Lo(curl SoA)  
(10.9) 

+ n • VL0(div SoA)  - n • SoA. 

It is not difficult to verify that the second compatibility condition in (**) is equivalent to the fact that 
the distribution in the right-hand side of  (10.9) actually annihilates constants so that it actually belongs 
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to --W0~'P(of2). Thus, the solvability of (10.9) is a consequence of Theorem 5.4. Furthermore, the 
estimate (10.5) follows from the corresponding estimate for g, (10.8), and (10.7). 

In the case in which the boundary datum f actually belongs to LP(O~), then (10.9) is in fact 
solvable for g in L~(Of2). Everything then follows from (10.7). 

Finally, for a general q ~ (WI'P'( f2))  *, we apply the same pattern of reasoning to the field 
u - Vu', where u' ~ WI,P(f2) is the unique solution to the Poisson equation with data q and 
homogeneous Neumann boundary conditions (cf. Theorem 5.5). [ ]  

Remark. Relying on the results of [42] and using the explicit integral representation for- 
mulas for the solutions of (BVPll), (BVP12), it is possible to obtain sharp Sobolev-Besov interior 
estimates for these solutions (the case p = 2 is treated in detail later). [ ]  

Next we present a useful corollary of Theorems 10.1 and 10.2. For p = 2 and f2 simply 
connected, this has also been observed in [ 16] with a different proof. Recall first the Sobolev-Besov 
type spaces (cf., e.g., [1]) 

BPa'q(~) := [LP(~), Wl'P(~"2)]ct,q, 

obtained by real interpolation for 1 < p, q < cx~, 0 < ~ < 1, and 

L0P(fl) := [LP(f2), Wl'P(f2)]0, 

obtained by complex interpolation for 1 < p < oo and 0 < 0 < 1. 

C o r o l l a r y  10 .3 .  

Le t  f2 be an arbitrary bounded Lipschitz domain in R 3, and consider a vector f ie ld u E L P ( ~ ) 

s u c h t h a t d i v u  ~ L P ( ~ 2 ) a n d c u d u  E L P ( f 2 ) f o r s o m e  1 < p < oo. Thenthereex is t s~  = ~(Og2) > 0 

such that the fo l lowing hold. 

a. I f  3 - • <_ p <_ 2 + • and n A u ~ L P ( O f2 ) , then also n • u ~ L P ( O g2 ) and 

IIn" ulILP(O~) _< C (lln/x ullLP(a~) + [lulILP(~) + Ildiv ulll.p(~) + IlcuflulIL~(~)) 

f o r  some C = C(af2 ,  p)  > O. 

b. I f  3 - • < p < 2 + • and n • u ~ L P ( O f2 ), then also n A u ~ L P ( O g2 ) and 

IIn ^ UliLp(af2) < C (lln" ullL,(a,) + ]lUlfL~(~) + Ildiv ullLp(~) + Ilcurl ullL~(~)) 

f o r  some C = C(0f2, p) > 0. 
p,2  

c. I f  both n .  u E LP(af2)  and n m u E LP(af2) ,  then f o r  1 < p < 2 we have that u E B1/p(~) ,  

whereas f o r  2 < p < oo we have u E LP/p(~2). In particular, f o r  p = 2 we have that 
t 2 

u E W ~" (f2). Furthermore,  there are accompanying estimates in each case. 

d. In the case when ~ f2 ~ C 1, we may take 1 < p < oo in a and b. 

Proof. If the topological genus of 0 fl were zero, then the points a and b would immediately 
follow from Theorem 10.1 and Theorem 10.2. However, the general case can be readily reduced to 
the one above by using a partition of unity subordinated to an open, finite cover {Uj }j of f2 such 
that, for each j ,  Uj (q f2 is a starlike bounded Lipschitz domain. 

Finally, the last point is seen from the integral representation formula in Theorem 3.2 and the 
results in [42]. [ ]  

1 1 .  M a x w e l l  E i g e n v a l u e s  a n d  P o l e s  

Let f2 be a fixed domain in R 3. The new phenomenon which occurs when the wave number k is 
real is that the interior Maxwell boundary value problem may not be solvable or that the solution may 
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not be unique (see [68] for such an example when the domain is a ball). In this section we consider 
the problem of characterizing the the collection of all wave numbers having this property. We also 

2 Div study the (larger) set of k's for which the operators 4-½1 + Mk are not invertible on L ~  (0f2) or 
L2(0f2) .  Our central result in this respect is the following theorem. 

T h e o r e m  11.1. 
Let f2 be a bounded, Lipschitz domain in R3; and let ~ > 0 be as in Theorem 5.7. For k ~ C 

consider the following assertions. 

1 L ~  (Of2) for  p = 2 or, more generally, for  some 2 - E < i .  - ~ I + Mk is not injective on p ply 
p < cx~. 
1 . . . .  p Div ii. ~ I + M ~ l s n o t m j e c t l v e o n L ~  (Of2)forp = 2or, moregenerally, forsome2--E 5. p < ~ .  

i i i .  - -  ½1 + Mk is not injective on L ~  ( ~ f2 ) for p = 2 or, more generally, for  some 2 - E  < p < ~ .  

iv. ½1 + Mk is not injective on L ~  (0 f2) for  p = 2 or, more generally, for  some 2 -  E <_ p < ~ .  

v. There exists a pair o f  divergencefree vector fields ( E, H)  that are smooth and not identically 
zero in f2 and such that 

c u r l E - i k H = 0  in f2, 
c u r l H + i k E = 0  in f2 ,  
E*, H* ~ LP(Of2), 
n x E = 0  on O~2, 
(n ,H)  = 0  onOf2 

for  p = 2 or, more generally, for  some 2 - E < p < ~ .  

vi. There exist two divergencefree vector fields E, H ~ L P (f2), not identically zero in f2 and 
such that 

c u r l E - i k H = 0  in f2, 
c u r l H + i k E = 0  in f2, 
n A E = 0  on Of2, 
n .  H = O  on Of2 

for  p = 2 or, more generally, for  some 2 - ~ < p < cx~. 

Then i-iv are equivalent and so are v-vi. Also, the last two assertions imply the first four  and, 
in fact, for  Im k > 0 all six assertions are equivalent. 

The set o f  values {(j}j  o f  k's belonging to the lower half plane Imk < 0 for  which the 
assertions i-iv are fulfilled is discrete and symmetric about the imaginary axis. Also, the mappings 
k ~-~ (-4-½1 + Mk) -1 have meromorphic continuations to the lower half plane and the numbers {~j }j 
coincide precisely their poles in I m k  < O. 

The set o f  all k E C for  which the conditions v and vi are satisfied is o f  the form {-4-kj }~= l , 
where kj E R, kj >__ 0 for  each j ,  and limj {k j{ = oo. Furthermore, for  each j ,  the pairs o f  
vector fields (E,  H)  as in v or as vi corresponding to k = kj form a finite-dimensional subspace of  

I 2 W½,2(f2) x W~, (~).  

IfOf2 ~ Cl, t h e n w e m a y t a k e  1 < p < oo. 

The numbers {~j}j c {k E C; Imk < 0} (for p = 2) will be referred to as Maxwel lpoles  for 
~2, whereas the numbers [-t-kj}j are called Maxwell  eigenvalues for ~2. Note that zero is a Maxwell 
eigenvalue for f2 if and only if f2 ismultiply connected. Also, the pairs of vector fields (E, H) as 
in vi for p = 2 are called Maxwell eigenfields corresponding to the eigenvalue k (cf. also [24, Vol. 
III, p. 265], where such eigenvalues are called eigenpulsations, and the corresponding eigenfields 
eigenmodes). 
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First we record an important consequence of the above theorem. 

Corollary 11.2. 
The points i, ii, iv, and v in Theorem 5.3 are also valid for any k in the lower half plane that 

is not a Maxwell pole for f2. 

Before we present the proof of  Theorem 11.1, recall the Corollary 10.3. In fact, its converse 
is also true and is contained in our next theorem. For the convenience of  the exposition we state it 
and prove it for p -- 2, as we shall actually use it later, although appropriate versions are valid for 
p near 2 (cf. the results in [42]). 

Theorem 11.3. 
Let f2 be an arbitrary bounded, Lipschitz domain in R3; and let u ~ W½'2(~'2) be a vector field 

such that div u • L2( f2 )andcur lu  • L2(f2). Then n.  u • L2(0f2 )andn  A u • L2(0f2). Moreover, 
there holds the estimate 

llUllw½.2~ ) 5 Cmin{l ln A ullL2~a~>, IIn" ullL2~a~>} 

+ C II curl u II L=~) + C II div u 11L 2(n), 
(11.1) 

where the constant C depends exclusively on the Lipschitz character of f2. 
l fu  • L2(f2) has div u • L2(f2), curl u • L2(f2), and Au • LZ(f2), then u* • LZ(Of2) if and 

only if n . u • L2(0~)  or n A u • L 2 ( a ~ 2 ) .  

If f2 is actually convex or 0~2 • C 2, then we can replace W½.2(~2) by W1'2(~"2) (cf. [80, 24]), 
but as simple examples show, in general this is not true for arbitrary Lipschitz domains. Thus, one 
may think of  (11. l) as the natural version of (1.3) for arbitrary Lipschitz domains. We also remark 
that this estimate leads to an improvement in (5.2). 

Perhaps the main difficulty in proving the above theorem is the lack of a trace theorem from 
I 2 

w½'E(f2) into L2(0~)  (since, in fact, Cco~mp(f2) is densely embedded into W~' (f2)). Instead, we 
shall rely on a basic result due to Fabes, Jodeit, Lewis and Jerison, Kenig, which we now recall. 

Theorem 11,4. 
Let ~ be a bounded Lipschitz domain in R n and u a harmonic function in f2. Then u* • L 2 (0 f2 ) 

if and only if  u • W½'2(f2). 

Proofs of  this theorem based on the area theorem of Dahlberg [18] can be found in [26, 42] 
(cf. also [40]). However, we would like to take this opportunity to fill in a gap that occurs in [26, pp. 
68--69], when estimating the term 

fo ~ f fR Iv(x, t) - v(y, t)12dx I :=  t dy dt 
.-1 xR.- Inl lx_yl>•t}  IX - -  y i  n+l  

(we want to thank Fabes and Brown for also calling this to our attention). This is because, unfortu- 
nately, the Besov-Sobolev type estimate 

f R f R  I v ( x ' t ) - v ( y ' t ) I 2  fR ,-, ,-, I x - - y l  (n-1)+2~ d x d y  < Cs ,-~ IVSv(x,t)12dx 

breaks down for the critical exponent s = 1. To circumvent this, using a trace theorem and a change 
of variables we may write 
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Iv(x, t) - v(y, t)12dx dy dt I < C 
- ,-~ ,-~ I x - y l  n 

_< C IIv(-, t)ll ½.2(s~_,)dt _< C [Iv(., t + .)l[wl.~(s~+)dt 

< C {Iv(x, t + ~.)12 + I(Vv)(x, t + ~.)12 } dx dt d~. 

- c1 f,._l < {Iv(x, r)l 2 + I(Vv)(x, r)l 2 } dx dr. 

With this at hand, the proof proceeds as in [26]. 
An essentially well-known corollary of this theorem and the results in [93] is that the single- 

3 2 layer potential operator So maps L2(0f2) boundedly into W~" (f2). 

P r o o f  of  T h e o r e m  11.3. Since u 6 W½'Z(f2), we have by Theorem 3.2 that u can be 
written in the form u = v + w, where v 6 W 1,2 (f2) and w is a harmonic vector-valued function in ~2. 
It follows that w 6 W½'2(f2) and, by Theorem 11.4, w* ~ L2(0f2). Together with the results in [19], 
this implies that both n- u and n A u belong to L2(O~). The estimate (11.1) follows directly from the 
integral representation formula in Theorem 3.2 and the corresponding estimates in Corollary 10.3 

To see the last statement of the theorem, we observe that the right-to-left implication is an 
immediate consequence of Theorem 11.4 (applied to u - Lou) as soon as we have proved that 

u ~ W½'2(~2). However, this easily follows from Corollary 10.3, the integral representation formula 
in Theorem 3.2, and the regularity of the operators L0, So. The left-to-right implication is essentially 
well known, and this completes the proof of the theorem. [ ]  

We are now ready to present the proof of Theorem 1 i. 1. 

P r o o f  of  T h e o r e m  11.1. To start, we remark that it suffices to consider only the case 
p,Div p ----- 2. Indeed, since +½1 + Mk is invertible on L m  (0f2) i f 2 -  E < p < 2 + E  and Imk > 0, 

for i and ii this follows from an argument based on the fractional integration theorem and iteration 
(which has been used in, for example, the proof of Theorem 6.1), whereas for iii and iv the second 
part of Theorem 5.3 may be invoked. Finally, for v and vi this follows from Green's formula (3.2), 
Theorem 10.1, Theorem 10.2, and, once again, repeated applications of the fractional integration 
theorem. 

Now vi in Theorem 5.3 gives that, in fact, iii and iv are equivalent to i and ii, respectively. 
Also, (5.27) together with Theorem 5.3 readily imply that iii and iv are equivalent. Hence, at this 
point we have proved that the conditions i-iv are equivalent. 

Next, obviously, v implies vi. To see the opposite implication we note that if (E, H)  are as in 
vi (for p = 2), then Theorem 11.3 gives that E*, H* ~ L2(0~2); in other words, (E, H)  are as in v 
(for p = 2). To show that v implies i we reason by contradiction. Suppose that E and H are as in 
vi (with p = 2) and write the Green formula (3.2) for E in f2. Applying curl to both sides, going 
to the boundary, and taking n x ,  we finally arrive at ( -½1 + Mk)(n x H) = 0. Since we assume 

that - ½ I  + Mk is injective on Lt~°i'(0~2), this yields n × H = 0. Thus, i l k  5~ 0 we may write 

(n, E) = ~Div (n x H)  = 0, and from Green's formula we see that E and H vanish identically 
in f2. The same conclusion is reached in the case in which k = 0. This contradiction yields the 
implication v ~ i. Thus, the last two conditions are equivalent and imply any of the first four. 

2 Div Assume now that I m k  > 0 and that ii holds, i.e., ½I + Mk is not injective on L ~  (0f2). Let 
2 Div A ~ L ~  (0f2), A # 0, such that (½I + Mk)A = 0; and set E := SkA, H := ~curl E in R 3 \ 0f2. 

We claim that E and H cannot vanish identically in ~2. Indeed, since n x H does not jump across 
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3f2, the opposite assumption would lead to the conclusion that ( - H ,  E) is a radiating solution of the 
homogeneous Maxwell exterior boundary value problem and, by Theorem 6.1, we infer that E, H 
vanish identically in the exterior of f2 as well. Now A = n x Eba+ - n x Elaa_ = 0, contradicting 
the initial assumption. Consequently, the claim follows, so that ii implies v. Thus, for Im k > 0 all 
six conditions are equivalent. 

Let us now turn our attention to the second part of the theorem and deal first with the Maxwell 
eigenvalues of f2. It has been proved in [64] that there are no Maxwell eigenvalues in the upper 
haft plane Im k > 0, and combining this with the observation that if (E, H) satisfies v for some 
k e C then (E, - H )  satisfies v for - k ,  we infer that the collection of all Maxwell eigenvalues is a 
subset of the real axis. Symmetry with respect to the origin also follows from the above observation. 
Furthermore, the fact that all eigenfields belong to W ½,2 ( f  a) also follows from the above discussion 
and Theorem 11.3 (cf. also Corollary 10.3). 

To see that these eigenvalues form a discrete subset of R, we fix a complex number ko with a 
strictly positive imaginary part and for each k ~ C write 

½I + Mk = (½I + Mko)[I -- (½I + Mk0)-'(M~ - Mko)l. 

The important thing is that C ~ k ~ el(k) := ( ½ I + Mko)-l(Mk - M~) is an analytic application 

into the Banach space of all bounded operators on L t ~  iv (3 f2) and takes on values compact operators 
2.Div on Lt~ n (0~2). Also, .A(0) = 0. By the analytic Fredholm theorem (cf., e.g., [44]) we infer that 

I - A(k) has a bounded inverse on Lt~Div(0f2) except at isolated poles in C, which, in fact, are the 
poles of the meromorphic function (I  - .A[(k)) -1  . T h u s ,  the conclusion follows. 

We now prove the finite dimensionality of the space of Maxwell eigenfields corresponding to 
a fixed Maxwell eigenvalue k for f2. To this effect, let Vk := span {(E, H); (E, H) as in v}, so we 
need to show that 

dim Vk < oc. (I 1.2) 

This can be accomplished in several ways. For instance, we may use Theorem 6.1 or (I 1.1) and 
Rellich's selection theorem to infer (11.2). Another solution, which actually gives more, can be 
observed as follows. Recall from the remark at the end of the proof of Theorem 6.1 that {n x 
H; (E, H) ~ Vt, } coincides with the null space of the operator -½1 + Mk acting o n  L t2,~n Div (0  ~'2). The 

idea is that, by Theorem 5.3, the operator - ½1 + Mk is Fredholm and, hence, has a finite-dimensional 
null space. Since, using Green's formula (3.2), it is easy to check that Vk 9 (E, H)  t-+ n x H 

2.Div Lt~ (O~) is injective, (11.2) follows. 
Finally, we discuss the structure of the set of Maxwell poles of f2. Discreteness follows 

from the analytic Fredholm theorem mentioned above and so does the meromorphic continuation 
of (+½1 + Mk) -1 to the lower half plane. We are left with showing symmetry about the imaginary 
axis. However, this is a simple consequence of the fact that MkA = M_~-X for any k E C and 
A E L~nDiv(of2). [ ]  

Let f2 be an arbitrary bounded Lipschitz domain in R 3. Because ofvi  in Theorem 11.1, perhaps 
a more illuminating way of looking at the Maxwell eigenvalues of f2 is via the Maxwell operator 

( 0 
- i  curl 0 " 

For 1 < p < oo we consider the closed subspace 

7-/p := {(E, H) ~ LP(f2) x LP(f2); div E = div H = 0, n • H = 0} 

ofLP(f2) x LP(f2). Set 

D(.Mp) := {(E, H) ~ 7"(p; curl E, curl H ~ LP(f2), n A E = 0}. 
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Then 79(Mp)  is densely included into ~ p  and .Alp : 79(.A4p) ---> 7-/p defined by M p ( E ,  H)  :=  
( - i  curl H, i curl E) becomes a closed, unbounded operator on 7-(p with domain 7D(.A4p) for any 
1 <  p < cx~. 

First we claim that f o r 2 - E  _< p,  q _< 2 + ~ ,  ~ + ~  = 1, one has that 7-/p = 7-/q and.A4p = .A4q. 
This follows from the Hahn-Banach extension theorem and Theorem 5.6. In particular, M 2  is a 
selfadjoint operator on the Hilbert space ~'~2 (cf. also [24, Vol. III, p. 267]). Consequently cr (.A42; 7-/2), 
the spectrum of  the operator A42 on 7-/2, is real. Note that -)~2 is not lower semibounded and that 
cr (.A42; 7-/2) accumulates both at + o o  and --oo. In fact, it is a simple corollary of  the block structure 
of  the operator -/~2 that its spectrum is symmetric with respect to the origin. Note that if g(O f2) = 0, 
then we also have that 0 ~ cr (.A//2; 7-/2). 

Next, we note that 79(.M2) equipped with the usual graph norm is compactly embedded into 7-/2. 
This follows immediately from Corollary 10.3 and the classical Rellich selection theorem (but also 
from more familiar compactness results as in, e.g., [53, 95, 94, 72]). It follows that M2 has a compact  
resolvent, i.e., 0, - .ME) -1 is a compact  operator on ~'~2 for each 3~ ¢ tr(.A42; 7-/2). In particular (cf., 
e.g., [24, Vol. III, Theorem 6, p. 38]), we see that cr (.M2; 7~2) is nonempty, discrete, and accumulates 
only at infinity. Also, cr (.A42; 7-/2) contains only eigenvalues of  ME; the corresponding eigenspaces 
are finite dimensional, pairwise orthogonal, and span 7-/2. 

Furthermore, proceeding as in the proof of  the Theorem 11.1, it is not difficult to check that 
much of  the above analysis remains true for the operator ./Dip for 2 - ~ < p _< 2 + ~. In fact, one 
has that tr(.A4p; 7-(p) = tr(.M2; 7-/2) for each 2 - ~ _< p _< 2 + E. Our final remark is that (E,  H)  is 
as in vi of  Theorem 11.1 if and only if (E, H )  ~ l ) ( M p )  and A4p(E ,  H)  = k (E, H) .  

Summarizing, we have proved the following theorem. 

T h e o r e m  11.5.  
Let  f2 be an arbitrary bounded Lipschitz domain in R 3. Then there exists E = E(O~) > 0 

such that, f o r  each 2 - ~ < p < 2 + ~, the spectrum cr (.A4p; 7-[p) consists precisely o f  all Maxwel l  
eigenvalues o f  f2. I f  0 £2 E C 1, then we may take 1 < p < oo. 

In particular, we remark that this theorem shows that there are actually Maxwell  eigenvalues. 
We conclude this section by discussing the nonhomogeneous boundary value problem for the 

Maxwell  system in C 1 and Lipschitz domains in R 3. 

T h e o r e m  11.6 .  
Let  f2 be a bounded, Lipschitz domain in R 3; and assume that k E C \ {0} with Im k >_ 0 is not 

a Maxwel l  eigenvalue fo r  f2. Then there exists ¢ = e( Of2) > O such that , for each 2 - E  < p <_ 2 + E ,  
a necessary and sufficient condition f o r  the boundary value problem 

E, H E LP(~ ) ,  
cu r iE  - i k H  = K ~ LP(~'2), 
curl H + i k E  = J E LP(~), (BVP13) 
n m E = A ~ LP(O~'2) 

to be solvable is that A E LPtan(Of2) has Div A E W-~ 'P  (Of2). Moreover, the solution is unique and 
there exists C = C(p ,  k, f2) > 0 such that 

IIEIIL,<~) + IIHllt,(~) _< C(IIKIIL,(~) + IIJIIL,(~) + IIAIIL,(a~) + IlDiv AIIw_b.,(a~)). 

I f  Of 2 E C l we may take 1 < p < c~. 

Our result generalizes the problem that was considered in [24] (cf. the problem (4.98), p. 92 in 
Vol. I and Remark 4, p. 259 in Vol. III) where variational methods are used to obtain a similar result 
in the case in which the domain f2 is smooth, p = 2, K = 0, and A = 0. See also [95]. 
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P r o o f o f T h e o r e m l l . 6 .  The necessity of A ~ LPtan(Of2)andDivA ~ W-~'P(Of2)follows 
directly from Lemma 4.1. To show that this is also sufficient for the solvability of (BVPI3), we use 
the Hodge-type decompositions for vector fields in g2 discussed in Theorem 5.6. More concretely, 
we may write 

K = - i k - l V v  + w, J = - i k - l V v  ' + w', 

where v, uJ and v', w' are as ii and i of Theorem 5.6, repectively. Then, working with E - Vv' 
and H - Vv in place of E and H, respectively, it follows that it suffices to prove the solvability of 
(BVP13) for K and J replaced by w and w', respectively. Note that the pair (w', w) belongs to the 
space 7-/p (introduced before the statement of Theorem I 1.5). Thus, by Theorem 11.5 and the fact 
that k is not a Maxwell eigenvalue for f2, it follows that we can further reduce the problem to that 
of solving (BVPI3) for K = O, J = O, and A E L P ( Of2 ). Consequently, introducing E := curlSkB 

and H := k2SkB + VS~(Div B), for some B ~ LP(Of2) with Div B ~ W-~'P(Of2), everything 
follows from v in Theorem 5.3 with s = ± and from Lemma 3.1. 

Uniqueness is immediate from the react that k is not a Maxwell eigenvalue for f2 and Theorem 
11.1. [ ]  

1 2 .  A n  A p p l i c a t i o n  t o  I n v e r s e  E l e c t r o m a g n e t i c  S c a t t e r i n g  

Let k ~ C \ {0} be a fixed wave number, and consider the incident electromagnetic plane waves 

E~c(X; d, p) := ik-lcurlcurl (p eiklX'dl), X ~ R3; 

Hkmc(x; d, p) := curl (p ei*lx'a)), X ~ R 3. 

Here d ~ S 2 _ R 3 describes the direction of propagation, and p ~ R 3 gives the polarization. 
Let f2 be a fixed, bounded Lipschitz obstacle in R 3. For each d, p we have the incident wave 

(E~n°(-; d, p), i.c H~ (-, d, p)) and, by the theory for the (say, L 2) direct problem (developed in §6), 
we have a unique radiating solution (E, H) corresponding to the exterior Maxwell boundary value 
problem for ~ (see also the discussion in the first section). Going further, to the first component of 
this radiating solution (E, H) there corresponds the electric far-field pattern Eoo (cf. §6). 

In fact, a similar set-up is valid for the exterior electric boundary value problem (Ee) (cf. §9). 
The inverse obstacle problem in inverse electromagnetic scattering is concerned with the de- 

termination of the shape of the scatterer f2 from the knowledge of the electric far-field patterns. 
Excellent surveys of recent progress in inverse problems can be found in, for example, [89, 90, 36]. 
In this section we shall address the uniqueness part of this inverse obstacle problem. Specifically, 
we shall prove the following (compare with the main result in [49] where 0f2 ~ C2). 

Theorem 12.1. 
Assume that f21 and f22 are two bounded scatterers with Lipschitz boundaries in R 3 such that, 

for a fixed wave number k ~ C \ {0}, Im k > O, the electric far-Jield patterns of the solutions for the 
corresponding exterior Maxwell boundary value problems coincide for a countable set Idj }j c_ S 2 
of distinct incident directions and for three linearly independent polarizations. Then ~21 = f22. 

In fact, a similar statement is valid considering the electric far-field panerns of the solutions 
for the corresponding exterior electric boundary value problems. 

Proof .  We first consider the case of the exterior electric boundary value problems. As in 
[49] (which builds on some earlier work in [35]), the idea is to reason by contradiction and then to 
construct an incident field (or, rather, a sequence of incident fields) diffracted by f21, f22 in the same 
way but giving rise to boundary data on 0f21 and 0f22 of disproportionate size. This and our results 
on the well-posedness of the direct problem in the context of Lipschitz domains and rough boundary 
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data then yield a contradiction (note that what one prescribes on the boundary is - n  x E~ c, which 
has no smoothness as n • L°°(O~2) only). 

Since the far-field pattern depends linearly on the polarization p and analytically on the direc- 
tion d, we may assume that the electric far-field patterns corresponding to ~21 and ~22 coincide for 
each p • R 3 and each d ~ S 2. 

Let G denote the unbounded component of R 3 \ (~2x U ~22) and fix an arbitrary point Xo e G. 
Also, fix Po • R 3 \ {0} and let £j be the (unique) solution of the exterior electric boundary value 
problem in R 3 \ ~ with boundary data nj  × curl curl ( P O O k (  " - -  XO) ) on a~j ,  j = 1, 2. We claim 
that 

£t = £2 in G. (12.1) 

To see this, we note that by the well-posedness of the direct problem (Theorem 9.1) and the fact 
that the boundary data depend analytically on X0 in G, it follows that E l and £2 depend analytically 
on Xo in G. Hence, it suffices to show that they coincide in G for Xo e G with [Xol very large. 
To this effect, let D be a bounded, Lipschitz domain in R 3 with ~21 U r2  _c D, Xo ~ D, and such 
that k is not a Maxwell eigenvalue for D nor is k 2 an eigenvalue for the Laplace operator on D with 
homogeneous Dirichlet boundary condition. It is then essentially well known that 

V, :=span {curlcurl (peik{"d)); p ~ R 3, d e S 2} 

is such that n x Vk is densely included into L 2 ( S D ) .  Let  V t e  Vk be such that 

n x Vl ~ n x i k - l c u r l c u r l ( p o O k (  . -- Xo)) as I --~ oo 

in L 2 ( O D ) .  Hence, by Theorem 9.1, 

"l;l --~ ik- lcur lcud (Po Ok(" -- Xo)) as l --~ oo (12.2) 

uniformly on compact subsets of D. Let );~j be the corresponding scattered electric fields for the 

incident electric fields "l;l in the exterior domains R 3 \ ~jj, j ---- 1, 2. Note that, in particular, for each 
l 

nj  xVT, j = n j  xVt o n a ~ j ,  j = l , 2 .  (12.3) 

Since each ))t is a superposition of plane waves, the hypotheses of the theorem, the classical Rellich 
lemma, and unique continuation results allow us to infer that 

"W = V ~ in G. (12.4) 1,1 1,2 

Now, using (12.3) and (12.2) it follows that 

n j x  V~j ~ nj x ik-tcurlcurl (Po qb~(.- Xo)) = nj x ~j, (12.5) 

as l ~ oo, for j ----- 1, 2. Thus, once again by the well-posedness of the electric exterior boundary 
3 value problem, we have that V:,j converges to £y as l ~ oo, uniformly on compact subsets of R \~-7, 

j = 1, 2. Then the claim (12.1) is provided by this observation and (12.4). 
Next, reasoning by contradiction and assuming that f21 ~ f22, there is no loss of generality 

to assume that ~21 \ f22 is not empty. Pick now X0 e 0G :3 af21, 8 > 0 such that B2~(X0) does 
not intersect f22; and select a sequence Xj e G with Xt --~ X0 as l goes to infinity. Finally, let 
~l j ,  j = 1, 2, be the two solutions to the exterior electric boundary value problems in R 3 \ ~2j with 
boundary data n j x  curl curl (P0 Ok(. -- Xt)) ,  j = 1, 2. 

From the first part of the proof we know that £l,1 = £/,2 in G. In particular, this implies 

Ilnl x £/,1 IIL~(B~,(Xo)na~,) _< 11£1.211L~(B=(Xo)) 

< Clln2 x curlcurl ( p o O k ( . -  X0))IIL~,(on~) 

< C < +oo. 
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If we now recall that nl x £t,l = nl x curl curl (p0q~k(. - Xt)) we see, by letting l ~ oo, that the 
above estimate implies 

IIn~ × curlcufl (p0~k(" -  X0))IIL~(B~(X0)n~,) -5 < C < +oo, 

which is a contradiction. 
Finally, the case of the Maxwell exterior boundary value problem follows from the above 

discussion and Theorem 9.1 as the all incident electromagnetic plane waves induce sufficiently 
regular boundary data. This concludes the proof of the Theorem 12.1. [ ]  

1 3 .  S o m e  O p e n  P r o b l e m s  a n d  Q u e s t i o n s  

Here we present some possible directions for further research on related topics. 
1. Although we have confined our attention only to the three-dimensional case, part of the 

results presented here is valid in the higher dimensional case as well. In fact, a L 2 theory for the 
Maxwell equations in arbitrary Lipschitz domains in R" has been developed in [39] (cf. also [61]). 
A natural question is to consider the optimal L p theory in the higher dimensional case too. 

2. For numerical purposes, it is important to have estimates for the spectral radius of the 
• 2. Dsv 2 0 2 3 operator M0 on the spaces L ~  (Of2), L ~  (~f2), Lt~(af2 ), where f2 is a Lipschitz domain in R . It 

2 Div 1 has been shown in [64] that the spectral radius of M0 acting on L ~  (0f2) is < ~ if the domain f2 is 

convex; so, in particular, (+½I + M0) -1 can be expanded in a strongly convergent Neumann series. 
More progress in the location of the spectrum of the operator Mo for a general Lipschitz domain has 
also been made in [59] (cf. also the remark at the end of §5 and the results in [84] for the Laplacian). 
However, the general question as to whether the spectral radius of M0 on any of the above mentioned 

1 for an arbitrary Lipschitz domain remains open. The situation is even less clear for spaces is < 
the operator Mk with k # 0. 

3. An important direction is that of extending the techniques devised here to the case of 
nonhomogeneous, imperfectly conducting, and anisotropic media as well as to other types of bound- 
ary conditions like, for instance, for impedance, conductive, resistive, interface, or transmission 
problems. 

4. One may expect a finer analysis of the Maxwell system (Iike, for instance, asymptotics 
near singularities, spectral radius and eigenvalue estimates, and semi-Fredholmness) if more specific 
information about the geometry of the Lipschitz domain is available. For practical purposes it is 
particularly important to carry out such an analysis for, for example, polyhedral domains or domains 
with conical singularities (cf. [58]). 

5. Shortly after settling a famous problem raised by Hilbert at the turn of the century regarding 
the asymptotics of the spectrum of the Laplacian [96], Weyl also established [97] the principal term 
of the asymptotic expansion for the distribution function of the eigenvalues of the Maxwell operator 
.h4 (cf. §10). Specifically, introducing 

N(X) := ~ 1, 
O<kj<X 

then if ~f2 ~ C ~ Weyl showed that 

N(X) = (3zr2)-lvol (f2) k 3 (1 + o(1)) as Z ~ +oo. (13.1) 

As alluded to in the introductory section, a major ingredient in Weyl's proof was the fact that for a 
smooth domain the inequality (1.3) is valid. However, we have seen that for an arbitrary Lipschitz 
domain W1'2 (f2) needs to be replaced by W ½.2 (f2); and, in general, this is best possible. Nonetheless, 
this difficulty has been overcome in [6] (cf. also [7]; we are indebted to W. Littman for pointing out 
these papers to us), where it has been proved that (13.1) continues to hold for arbitrary Lipschitz 
domains as well. 
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The next natural step is to try to the determine a more precise form of the residue in (13.1), 
i.e., the second term of the asymptotic expansion of N(k). If the domain f2 is smooth, it has been 
shown in [79] that o(1) can be replaced by O(L-1), but the situation for general Lipschitz domains 
remains wide open. 

6. A problem that is interesting both in its own right and for its potential applications (to, 
for example, inverse scattering) is that of establishing estimates for the first (positive) Maxwell 
eigenvalue of a Lipschitz domain f2 in R 3. A solution has been announced in [43], but unfortunately 
it is flawed; hence, the problem is still open. The error occurs because of the failure of the estimate 

f fR lvul2 dv > f £ )vulZ dv (13.2) 3\fi 

for arbitrary Lipschitz domains f2 in R 3 and u := So f ,  with arbitrary f E L2(0~). Indeed, (13.2) 
would imply 

I /f, --2 rz S o f K ~ f  dtr = 3\~ 

and, since - f0a f So f  da  = f f s '  IVul 2 d V  >_ 0, it would follow that all eigerlvalues of the operator 
Kg on L2(af2) are positive. However, this can be checked to be false on certain (even smooth) 
domains f2. 

7. A natural conjecture is that of the existence of infinitely many Maxwell poles for each 
bounded Lipschitz domain in R 3 (cf. the case of acoustic scattering). 

8. Consider the inverse spectral problem for the Maxwell operator. Can two nonisometric 
obstacles in R 3 be isospectral with respect to the Maxwell operator .M? More concretely, if two 
bounded (say, Lipschitz) domains fal, f22 in R 3 are such that their associated sequences of Maxwell 
eigenvalues coincide, decide what metric characteristics should coincide. 

9. A longstanding open problem is to determine if only one incoming plane wave for one single 
direction and one fixed wave number determines the scattering obstacles completely (compare with 
Theorem 12. I). Let us point out that in the electromagnetic scattering theory this is not known even 
if some additional a priori information is available (cf. [15, Theorem 5.2, p. 107]). 

10. It is likely that the techniques we have developed so far are useful for dealing with other 
systems of equations on Lipschitz domains (M. Taylor, personal communication). For instance, the 
results in §10 could be used in connection with the variational treatment of the linearized Navier- 
Stokes system as in [33] or [88]. 

Another important problem is to extend these results to the higher dimensional setting (e.g., 
to produce I-lodge type decompositions for L p differential forms on nonsmooth domains). 

11. Recall that we have always assumed that our domains have connected boundary and that 
for a number of results, this assumption was of crucial importance. However, it is interesting both 
from a theoretical and from a practical points of view to fully develop the corresponding theory for 
domains with disconnected boundaries as well. In fact, it is reasonable to expect that a substantial 
part of our analysis can be extended to this situation (for the case of the Laplacian on smooth domains 
see, e.g., [32]). 

12. The behavior of the electromagnetic fields (E, H) solving (.Me) as the wave number k 
(k ~ C, Imk > 0) approaches zero was established under the additional hypothesis that the Lipschitz 
domain f2 has g(Ofa) = O. Nonetheless, it would be quite desirable to clarify this issue in the case 
of Lipschitz domains with arbitrary genus as well. 
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