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ABSTRACT. Beurling's algebra A* = {f  : )-~.~__0supk<lml I f (m)  I < O¢} is considered. A" 
arises quite naturally in problems of summability of the Fourier series at Lebesgue points, whereas 
Wiener' s algebra A of functions with absolutely convergent Fourier series arises when studying 
the norm convergence of linear means. Certainly, both algebras are used in some other areas. 
A" has many properties simila r to those of  A, but there are certain essential distinctions. A* is a 
regular Banach algebra, its space of maximal ideals coincides with [-rr ,  7r], and its dual space 
is indicated. Analogs of Herz' s and Wiener-Ditkin' s theorems hold. Quantitative parameters 
in an analog of the Beurling-Pollard theorem differ from those for A. Several inclusion results 
comparing the algebra A * with certain Banach spaces of  smooth functions are given. Some special 
properties of  the analogous space for Fourier transforms on the real axis are presented. The paper 
ends with a summary of some open problems. 

1. Introduction 

1.1. 

The algebra that we are going  to consider  is c losely  related to Wiener ' s  a lgebra A, which  is 

wel l  studied (see, e.g.,  Kahane ' s  book [K]). In what  fo l lows we  will  consider  cont inuous funct ions  

f on R = ( - ~ ,  c¢)  that are the (inverse) Fourier  t ransforms o f  integrable functions f : 

(2Jr) -1 / f ( u ) e  i ~  du. f ( x )  
, ¢  

R 

As is well known, not every continuous function is such. Frequently the (direct) Fourier transform 
f can be reconstructed from f as 

/ (U)  = f f ( x ) e  -iux dx .  
M 

R 

So in the case of R the Wiener algebra is defined by 
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In the case of  2zr-periodic continuous functions we have 

where T = [-zr, Jr) and 

/ ( m )  = (2zr) -1 f f ( u ) e  -imu du 

T 

is the mth Fourier coefficient of f .  This means that integrability of the Fourier transform and abso- 
lute convergence of  the sequence of  Fourier coefficients, respectively, define these spaces. Let us 
introduce the regularized integrability of  a function and the regularized absolute convergence of  a 
number  series as 

{ : / L * ( R )  = g : [IflIL'(R) = esssup I g ( u ) [ d x  < ~:~ , 
x<_lul<oo 

0 

I* = d = {dk} : Ildllt* = sup [dm[ < oo , 
k=O k<lml<~ 

and consider two spaces of  continuous functions 

/ : A*(R) = f : IIfIIA*(R) ---- II/IIL'(R) = esssup I f ( u ) l d x  < oo , (1) 
x_<lu[<~ 

0 

A*(T) = f : IlfllA.(W) = IIf(m)llt- = ~ sup If(m)l  < co (2) 
k=0 k-<lml<°° 

The norm II fIIA'(T) is equivalent to 

o o  

2 k sup If(m)l.  
k=O 2k<lm[ <2k+l 

(3) 

It will be very convenient to compare properties of  A* with the corresponding properties of  A. 
Evidently a function from A* belongs also to A. While  A arises naturally when studying the norm 
convergence of  linear means (see, e.g., [T2]), A* arises analogously in problems of  summabili ty at 
Lebesgue points. 

1.2. 

The spaces A* were introduced by Beurling for establishing contraction properties of functions, 
namely [Be, Theorem 5], L e t  

f ( t )  = Z aneint' ao = 0, 
t l ~ - - O 0  
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be an absolutely convergent Fourier series such that la+n I <- a~, n > 1, where {a~ } is a nonincreasing 
sequence of numbers with a finite sum. Then if 

g(t) ". ~ bne int, bo = O, 

is a contraction of f ( t)--that is.for any pair of arguments tl, t2 the inequality Ig(tl) - g(t2)l < 
If(t1) - f(t2)l holds---the Fourier series of  g(t) also converges absolutely, and, setting a*_, = a~, 
a 0 = O, we have 

o o  OO 

I2 Ibnl _5 F, a:. 

In [Be] an analogous result is established for A*(R) as well. 
It turned out that the consideration of summability of Fourier series by linear methods at 

Lebesgue points leads to the same spaces of functions (see, e.g., [SW, Chapter I]; [TI]). 
Let us mention two other papers where A* appeared in connection with certain problems 

of summability as well. These are the paper of D. Borwein [Bo] (some results from this paper 
were independently obtained in [BT1], but they were applied to other problems) and the paper of 
Telyakovskii [Te] (in this paper one condition of Sidon is given in the terms of A*). This space, even 
in the multidimensional case, appears in the paper by H. Feichtinger as E^(see [Fe, Theorem 3]). 

1.3. 

In this work properties of A* as an algebra of functions are studied, some necessary (and, sep- 
arately, sufficient) conditions of belonging to A* are found, and criteria of summability at Lebesgue 
points are given. 

We will concentrate on A* (T) and, after detailed study of it, give a certain comparison with 
A.*(R) as well as some special properties of the latter. 

The same letter, say C, will be used to denote different universal constants in different parts 
of the text. 

We give the proofs both of unpublished results and of some results already published but not 
in the accessible literature. 

2. Properties of A*(T) as an Algebra 

2.1. 

We begin with the following proposition. Recall that the local property means that a space can 
be characterized by local membership to this class; that is, for each point there exists a neighborhood 
on which the given function coincides with a function from this space. The definitions of the main 
notions and facts from the theory of the Banach algebras can be found, for example, in [GRS]; for 
instance, the radical can be identified with the intersection of all maximal ideals. 

Proposition 1. 
The following statements hold. 

i. A* is a Banach algebra with the local property. 

ii. The space of maximal ideals of A* coincides with T. 

iii. A* is a regular Banach algebra with trivial radical. 

iv. I f  f E A* and F(z) is defined and analytic on a neighborhood of the set of values of the 
function f ,  then F o f E A* (in particular, if f does not vanish anywhere, then 1 / f  E A*). 
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Proof. i. It is obvious that A* is a normed linear space over the field of complex numbers. 
Completeness may be proved by the usual argument. Let us prove that A* is an algebra. It suffices 
to prove the numerical inequality 

la~llb~-kl 
N N 

k=-N 
(4) 

< (  ~'~ lakl ~ sup Ibn[+ ~-'~ Ibnl ~ sup lakl) .  
Ikl<N/2 O<m<_(N+l)/2 ra<tnl<3N/2 I n l<2N O<m<(N+l)/2 m<tkl<N 

Let us decompose the inner sum on the left-hand side of (4) into two summands corresponding to 
[kl < m/2 and to Ikl _> (m + 1)/2, respectively. We have 

N N 

E sup E ]akllbn-kl < E sup Ibnl E [akl 
m=Om-lnl <N I k l < r n / 2  m=Om/2<ln l<-3N/2  Ikl<ra/2 

N 

<_ sup Ib~ I 
]kl<N/2 m=O m/2<lnl<-3N/2 

<2 E lakl ~ sup Ibnl- 
Ikl<_N/2 O<m<(N+l)/2 m<ln[<3N/2 

The remaining part is estimated analogously. 
Passing to the limit as N ~ oo in (4), we obtain for each f ,  g e A* 

IlfgllA*~) < 2 (llfllAo')llgllA'03 + IlgllA03 IlfllA*o')) --< 411flIA*~T)IIgIIA*o')- (5) 

Hence, A*(T) is an algebra with respect to the usual product of functions. 
The local property may be proved by repeating the argument for the analogous Wiener's 

theorem for A (see, e.g., [K, Chapter HI). 
ii. This statement can be proved by standard argument (see, e.g., [GRS]) taking into account 

that 

Ilein~l[A*~r) = Inl + 1, n ---- + l ,  4-2 . . . . .  

iii. Since every maximal ideal in A* is the set of functions f ~ A* that are vanishing at some 
xo ~ T, the radical of A* is trivial. 

The regularity of A* follows trivially from the fact that all the functions with two continuous 
derivatives are in A*. 

iv. This statement is a direct analog of the Wiener-Levy theorem for A. It follows imme- 
diately from ii, but Wiener's proof may be repeated to the letter as well (see, e.g., [K, Chapters I 
and V]). []  

2.2. 

Let us describe the dual space of A* (T). 

Proposition 2. 
A space PM* of all the sequences d = {dk}k~-oo with thefinite norm 

Ildlh, M, = sup ~ Idkl 
n>0 n + 1 -- k~---n 

is the dual space of A* (T). 
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P r o o f .  The proof of  this result is based on the following lemma. 

Lemma 1. 
For any two sequences x = {xk}k>_l, y = {Yk}k~l the inequality 

[~=l XkYk <-Ilxllt.llyllpMo 

holds. Moreover, 

sup 
IIxllt*_<l 

sup 
IlYlIr~. <1 

oo 

k~_lXkYk = IlYlll, M*, 

k~=l XkYk = IIx[It*- 

Proof ,  Define x~ = SUPm__.k [Xm I. Then 

oo oo 

Z <_  =,Zx;IY I 
Applying Abel's transformation, we obtain, for each N, 

N N - I  k N 

Z x~lyk[ = Z kAx;~ Z [Ym[ + Nx~t 1 Z lYre[ 
k = l  k = l  m = l  m = l  

(Z x.. < [[YlIPM" kAx~ + Nx = [[YIIpM" k 
\ k = l  

(6) 

(7) 

(8) 

The last equality follows from the monotonicity of  x; .  It remains now to pass to the limit as N ~ oo, 
and (6) is proved. 

Let us go on to (7). For the rest of the proof we can restrict, without loss of  generality, to 
nonnegative sequences. By considering the particular sequence xk = 1/n for 1 < k < n and xk = 0 
for k > n, we obtain 

sup 
Ilxllt*_<l 

and (7) holds because of  arbitrarity of  n. 

k~___l x~yk >-Zyk'nk__l 

If  )--~=1 xk = ~x~, then (8) is obvious with Yk = 1 for all k. Otherwise we build an extremal 
sequence as follows. Let nl be the largest number for which xn = x~, np (p > 2) is the largest 
number for which xn = x~p_t+1. Put Yn~ = nl, Ynp = np - np-i (p > 2), Yk = 0 when k # np, 
p = i, 2 . . . . .  Then IlYlh, M" = 1 for this sequence and 

oo oo oo 

Z Xkyk = xrnl + Z x*e_,+l(np- np-l)= Z x;, 
k = l  p = 2  k = l  

and the proof is complete. [ ]  

Since the vectors ey = {0 . . . . .  0, 1, 0 . . . . .  0} form the basis in the space A*, every functional 
f can be represented in the form 

(f, x) = y~Xkyk 

for a sequence {Yk}. Proposition 2 follows from this and Lemma I immediately. [ ]  
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R e m a r k  1. The space PM* is not separable. The following argument was suggested to 
the authors by M. Dveirin. 

Let ~ be a real number, 1 < ot < 2. Consider, for all such t~, the set of  sequences c ('° = {c~ '~)} 
with 

[2  k~, j = [2k'~], (,~) 
cj = /[O, otherwise. 

The sequence {c~ ~)} ~ PM* for each ~. When o~' ~ c~", then [[c ¢~') - c (~') IIPM* > 1/2. Therefore we 
have continuum different elements in PM* distant more than 1/2 one from another. This just means 
that the space PM* is not separable. [ ]  

-(~) 1 for j = [2 k`~] and 0 otherwise, also gives a R e m a r k  2. This idea, namely, take cj = 
proof, different from the common one, of  nonseparability of  the classical space m of all bounded 
sequences. [ ]  

R e m a r k  3. We have that the space A* is not reflexive as well as A. Indeed, it is known (see, 
e.g., [Ro, Theorem 2.5.13]) that if the dual space to a normed space X is separable, then X itself is 
separable. [ ]  

R e m a r k  4. D. Borwein [Bo, Theorem 1 ] proved that A* is dual of  the separable subspace 
of  PM* defined as follows. For each sequence d = {dk} there is a n u m b e r / =  ld such that 

N 

E Idk - II = o(N). [] 
k=-N 

2.3. 

Let us now give some spectral properties of  A*. 
The following result on approximation by piecewise linear functions in the A*-norm is an 

A*-analogue of  Herz 's  theorem [K, Chapter V]. 
Let fN be a function, coinciding with f at each 27rk/N point, where k, N > 0 are integers, 

k < N, and fN is linear on intervals. 

Proposition 3. 
Let f ~ A*(T). Then 

lim I l f  - fNIIA-(T) = 0. 
N - - - ~  

Proo f .  Let us calculate the mth Fourier coefficient of  fN. Integrating by parts the piecewise 
linear function fN we obtain 

fN(m) = (2n)  - l  f fN(t)e -irat dt 
t l  

T 

(2n'im) -1 f f:z(t)e -imt dt 
T 

= (27rm2)-1~ (~-~-~) ( f  (27r(k'F1)) -- f (~--~)) (e-2rri(k+l)m/N--e-2"rikm/N). 
k=0 

Taking into account that 

N-1 { N, k is integer, E e2rrik/N = 

k--0 0, otherwise, 
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we get 

f N ( m )  - 
sin2(zrm/N) o ~  

(zrm/N)2 Z f (m + kN). 
k=-oo 

Then 

oo sup f(m) sin2Orm/N) £ [ 
[If - fNIIA*(T) = ~ f(m + kN) 

n=0 n_<lml<o¢ ] ( z r m / N ) 2  k=-oo 

( sin2(rrm/N)~ 
sup I:(m J ] 

n - 0  n_<lml<oo 

sin2(zrm/N) [ , ,, 
+ y ~  sup Zf(m+kN) = I N + I  N . 

~=o n<lml<~ (zrm/N) 2 I - k#0 

Let us show that I~, I X ~ 0 as N ~ oo. Let M be a positive integer. 

' ( sin2(zrm/N)~(zrm/N)2] -[- n>Mn<lm[<o sup If(m)l. I ,~< ~ sup If(m)[ 1 
O<n<M n<[m{<~ 

In view of the inequality 

sin2(zrm/N) 7r2m 2 

(~rm/N)Z - 3N 2 

we have (M < N) 

( Z  m2 
1,~ _< C sup If(m)l + 

\O<n<_M n<_lml<_M 
E sup 

O<n<M M<_lm[<~ 
I f ( r e ) I+  ~ sup I f ( r e ) l ) .  

n>M n-<lml <a° 

The second sum is equal to 

2 ~ sup If(m)l 
M/2<n<M M<lm[<o¢ 

and does not exceed 

2 ~ sup If(m)l. 
n>M/2n<lml<~ 

Therefore 

YN ~ c ( MIIflIA.(T) + ~ sup 
n> M/2 n<lml <oo 

If(re)l). 
For M large the second sum is small as a remainder of the convergent series. Then choosing N > M 
sufficiently large we get that I~ is small. 

Let us pass to the estimation of I X. Without loss of generality we may consider m > 0. Any 
m > 1 can be written in the form m = rN + j ,  r = 0, 1, 2 . . . . .  j = 1 . . . . .  N - 1. Taking into 
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account that sinUrm/N) = 0 for j = 0 we obtain 

E sup sin2(~m/N) f ( m  + k N )  
n=O n-<m<~ (rrm/N)2 keO, r-1 

sin2(Tr j / N) 
< :rr-2 n~0 sup E [f((r + p)N + j)[ 
-- r:n<Nr+j (r + j / N )  2 = k # O , - r , - r -  1 

j = I , . . . , N -  1 

N¢q+l)  sin2(rrj/N) ~_~ 
- < z r - 2 E  E sup ~ sup [f(p)[ 

q = 0  n=Nq r:n<Nr+j (r + j / N )  2 k=l Nk<Ipl <°° 
j = I , . . . , N - 1  

oo oo 

<Jr  -'''~2N E q - 2  E sup If(P)[ _ < C E sup [f(p)[, 
q = l  k = l  Nk<]pl<oo k>N k_<lpl<oo 

and so this value is as small as we please, provided N is sufficiently large. It remains to consider 
k = - r ,  - r  - 1. In this case we have to estimate 

sin2(rrj/N ) 
sup (If(J)l + I f(J  - N)D 

n=0 r:n<Nr+j (r + j / N )  2 
j = I , . . . , N -  1 

(p+I)N-1 sin2 ( rr j / N ) 
= E E sup (If(j)[ + [ f ( j - N ) [ ) .  

p = 0  n=pN r:n<Nr+j (r + j / N )  2 
j = I , . . . , N -  I 

It is obvious enough to prove estimates for only one case, j~(j) or f ( j  - N); the other is analogous. 

( p + l ) N - 1  sin2(zrj / N) 
E E sup I f ( J -  N)I 
prO n=pN r:n<Nr+j (r + j / N )  2 

j = I , . . . , N -  1 

N sin2(yrj/N) 
<- E sup I f ( j  - N)I 

n = 0  r:n<Nr+j (r + j / N )  2 
j = I , . . . , N - - 1  

oo sin2 (jr j / N) 
+ N ~  sup sup I f ( J -  N)I 

p=l p_<~<oo/=l,...,N-1 (r + j / N )  2 

2zr 2 
< 2N sup sin2(zrj/N) I f ( - J ) l  < - -  sup j21f( j ) l  
- -  0 < j < N  - -  N 0 < I j I < N  

2zr 2 
< sup 2j ~ sup If(m)l 
- N 0 < j < N  j /2<n<j n<lml<oo  

< 4 z r 2 ( s u p  + sup / J  ~ sup ,f(m)l 
- N \ 0 < j < g  M<j<N,]  n>j/2n<_[m[<oo 

M ~ sup lf(m)l, < 47r2[lfllA*(T) N + 4n'2 n>M n<lm[<~ 

and the right-hand side is small by the argument like above. [] 

Let AE(t) = (1--1tl/e)+ fort e T andt e (0, rr/2), AE(t+2rr) = AE(t), and V, = 2A2~-Ae. 
Ae is a so-called triangular function, and the graph of V, on T is a trapezoid with the unit height. 
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Proposition 4. 
Let f ~ A*(T) and f(O) = O. Then 

lim llfV, lla.(r) = 0 .  
~---~0 

Proof.  This result is a direct A* analogue of the Wiener-Ditkin theorem for A [K, Chapter 
V] and means that f is a limit in A* of the functions f(1 - V,), which are vanishing in the e- 
neighborhood of the origin. It is not difficult to calculate that 

r~e(m) = cosine -- cos2me 
rrem 2 , m :~ 0, 

and 1~ (0) = 3e/(2:r). Thus, I~2, (m)l _< 3e/(2zr) for each m. Let us estimate II V~ IIA-(T)- We have 

II V, IIA-(i) < E sup 2 sin(mt/2)~sin(3me/2) 
O<k<l/e k<ra<oo 

2 3e 1 2 7 
+ E sup < - - - + - - e = - - .  

k>l/ek<ra<oo ~ r e m  2 - -  2rr e 7re 2rr 

Further, let N < zr/e < N + 1 for some integer N. We have 

IIfV~IIA.o') -- II(f -- fN)V~IIA.(X) + IIfNV~IIA.(T) 

_< 411V~IIA.(X)IIf -- fNIIA.o') + IIfNV~IIA*cr), 

where f s  is the same as in Proposition 3. Proposition 3 gives the estimate needed for the first 

summand on the right-hand side. Let us now estimate the numbers Cm = fN V,(m). Since f(0) = 0, 
on the interval (-2e,  2e) the function fN consists of two lines connecting the origin and the points 
(27r/N, f (2rr /N) )  and ( -2rr /N,  f ( - 2 r r / N ) ) ,  respectively. Estimates for positive and negative 
parts are similar. Thus, 

N ( 2 -  X e_im x f xe -imx dx + x 3 )  dx 

E 

N [ ( _ ~ )  { 5 : 1  2e_2im~+e_i,~l + < -  f min , I 1 -  
- 2:rr m 2 

<"-- I :  °/ min 5 3 m2 
- 2 z r  ' " 

2 le_2ime _ e_im~l [ 
Em 3 I 

Therefore, 

oo N N 

sup ICml~ ~-~ sup [Cm['+-~-'~ sup [Cra[+ ~ sup ICml 
k----0 k<lml<°°- k=0  k<lml<N k=0  N<lml<oo_ k>N k<lml<oo 

< m a x  4- t5- -~- -  + ~--~ + t>~N f~-~  , 

and max [f(+2zr/N)l  ~ 0 as N ~ oo while the expression in parantheses is bounded. []  
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Remark 5. 
two propositions. Indeed, the following quantitative estimates hold: 

IIf  - fNIIA*(T) < inf / g Z sup O<M<N "N + If(m)l / n>M n<lral<oo 

[[VEfl[A'ff) < Clf(q-2e)l + inf { Me + Zn>M n<[ml<o~sup [f(m)[} . 

It is not difficult to see that something more was obtained when proving these 

(9) 

[ ]  (10) 

2.4. 

Let us go on to some problems of synthesis for A*(T). For the classical case of synthesis in A 
we can refer a reader to several well-known books [Bd, Part 3.2]; [GM, Chapter 3]; [K, Chapter V]; 
[Kz, Chapter VIII]. We introduce several definitions similar to those for A. 

Defini t ion 1. A function f ~ A* admits synthesis, denoted f ~ S, if it is limit in A* of a 
sequence of functions that are vanishing in a neighborhood of the set N ( f )  of zeros of f .  [ ]  

Definition 2. A closed subset of T, say E, is a set of synthesis if the closed ideal consisting 
of functions that vanish on E is equal to the closed ideal generated by functions that vanish on a 
neighborhood of E. [ ]  

The so-called Ditldn sets may be defined in just the same way as for A (see, e.g., [K, Chapter 
V], and every such set will be a set of synthesis in A*. Let us define another type of sets. 

Def ini t ion 3. We say that a closed set E satisfies Herz's condition if there exists a sequence 
of integers N~ ~ oo such that for each v every point of type 2zrk/N~ is either in E or is distant less 
than 2zr/N~ from E. [ ]  

Proposition 3 has the consequence that a set E satisfying Herz's condition is a set of synthesis. 
Let EE be the set of points distant less than e from E and V be the space of functions of bounded 

variation. 

Proposition 5. 
I f  f ~ A*, then the following statements hold. 

i. I f  f E Lip l, then f ~ S. 

ii. I f  f ~ VNLipol  (a > 1~2),then f ~ S. 

iii. l f  f ~ Lipa ,  ~ > 2/3, then f ( t )  - x ~ S for almost all x. 

iv. lfsuptee ~ [f( t) l  = O(e) (E = N ( f ) ) ,  then f ~ S. 

v. l f l ims-,o((1/e) supteE ~ [f(t)[~/meas(Ee\E)) = 0 (E = N ( f ) ) ,  then f E S. 

R e m a r k  6. Proposition 5 is an A*-analogue of the Beurling-Pollard theorem for A. Let 
us compare the conditions in the two theorems. We have: 

i. Lip( l /2)  for A and Lip 1 for A*; 

ii. V for A and V M Lip a ,  (a > 1/2) for A*; 

iii. ol > 1/3 for A and o~ > 2 /3  for A*; 

iv. OGle)  f o r A a n d  O(~) forA*; 

v. 1/v/e for A and 1/e for A*. [ ]  
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Proof. We will give a part of the proof (cf. [K, Chapter V]) that differs from that for A. A 
complete proof of ii will be given because such argument, different from Katznelson's proof, may 
be applied to A as well. 

Let f(x) = 0 for all x e E. Let T 6 PM*, and supp T C E. The property f 6 S is equivalent 
to the fact that 

We have 

( r ,  i )  = = o. 
n 

(T, f ) =  lim(TE, f ) =  lim P l"(n)f(--n)Sin2(en/_ 2) . "  
~-- -~0- - -  e--.o ~ (en/2) z 

The function T~(x) = Y~. T(n)(sin2(en/2)/(en/2)Z)e i"x is supported on E~. Therefore, 

lim ](T~, f)[ = lim f f(x)T~(x)dx[ 
~--+0 ~ 0  J 

EE\E 

< lim sup - , - - ,0/x~,  If(x)[ [TE(x)12dx v/meas(EE \ E) 

< lira sup - ~ 0  [ ~ e ,  If(x)l fT,(x)12dx x/meas(E, \ E) 

Let us estimate IIT~ItE. Applying Parseval's equality, the evident inequality 17~(n)l _< Inl, and (6), 
we obtain 

( ~  sin'(en/2)~ 1/2 
17~(n)12 ~ ,] IIT~IIz 

Iz I sin4(en/2) < IlTllern. sup m /k=lk_<,.-~ (6n/2)4 I 

The second multiplier on the right-hand side may be estimated by 

{ ( ~  m +  e- 'rn-3 + )  ~ t~-4m -3 }1/2 
_ _  sup sup _ _  sup 

\k<m<l/e I/e<_m<oo l<k<I/e k>l/e k<m<OO 

_<1 z l<_k<l/e ; "[- ~ - -  k>l/e j 8 

Now the rest of the proof, say, given in [K, Chapter V, 5], may be repeated, but we will prove ii in 
another way. 

Let f e V. The set EE \ E is open. It may be represented as a union of at most a countable 
number of intervals (ak, bk). Each interval has a length not greater than 2e, and there exists at least 
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one point from E in the closure of  each interval. We can consider the end points ak of these intervals 
as those points from E. Then 

bk bk 

/ 5f I f (x) l  dx = I f (x) l  dx = I f (x )  - f(ak)l dx 
k = l  

Et \ E ak ak 

=~______i/ ~ d r ( t ) d x <  _ ,df(t)lt dx 

bk 

<_ ~ (bk --ak)ldf(t)l <_ 2eV I. 
k = l  ak 

Now ii follows from the above estimates. [ ]  

Observe that as in the case of  A, Proposition 5 v yields all the others. 

3. Comparison of A* with Spaces of Smooth Functions 

3.1. 

The following statements describe structural properties of  functions in A*(T). Let us recall 
some well-known notions. 

= A k tok(g;h)p sup II xgllLP(r), 
Ixl_<h 

where A~g = Axg = g(- + x) - g(.), A~g = Ax(A~-lg)  is the kth difference, with step x, of  the 
function g, 0 < h < 7r, defines the modulus of  smoothness of  order k = 1, 2, 3 . . . .  of  the function 
g in the LP-space (g is considered to be 2rr-periodic). We call to1 = to the modulus of  continuity. 

r We say that g ~ Be, o, 1 < p < oo, r > 0 (the Besov space, see, e.g., [N]), if g ~ L p and 

o o  

f t-l-°rtotr+l](g; t)°p < oo, < < oO, dt 1 0 
0 (11) 

supt--r totr+l](g; t)p < O0, 0 = O0. 
t>0  

Theorem 1. 

i. 

ii .  

i i i .  

B 1 A *  R l / 2  1,1 C C ~2,1 a n d  the embeddings are bo th  cont inuous .  

If f is absolutely continuous and 

1 

f ( t o ( f  ; t )  e In t - l d t  < 

0 

for some p E [1, 2], p '  = p/(p  -- 1), then f E A*. 
There exists a continuously differentiable function f • A* for which 

t o ( f ' ; t ) ~  = 0 In 

(12) 
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Proof.  i. We have (cf. (3)) 

, : , , . ~ , ,  >_ E2~ sup l:<m)l-> ~ " ~  E I:<m~l ~ 
k=0 2k<lml <2k+1 k=O 2k<lm[<2k+l 

( 1 ) £  (l) 
> E2k/2co f;~'~ > k-l/2w f ; ~  

k=0 2 k = l  2 

1/k 1 

a~.f ( ~) f > _ k_3/209 f ;  1 dx >_ x-3/2:.o(f; x)2dx, 
- 2  2 

k=l 1/(k+l)  0 

and the fight embedding is proved. For the left embedding, it is enough to take into account that 

t: / If(k)]" (87r) -l If (x + k) -2f(x).q- f (x - k)]e -ikxdx ~ (87r)-Io92 f; I-~-T i 

and to estimate from above the usual norm (2) as it was done for the fight embedding. 

ii. Let us use the equivalent norm (3). We have 

IlfllA.(a') < c E 2 k  sup If(m)l 
k-----'O 2k<lml <2k+l 

_< C E sup [:'(m)[ <_ C E [-f'(m)[P' 
k=O 2k-<[m[ <2k+l k=O 2*_<lm]<2k+l 

l/p'  

= C E E E I . f ' ( m ) l  ' '  
k------O 2,~<n <2k+l 2., <lml <2,'.+1 /,-, 

< C E 2k/p E E [J~'(m)lP' 
k=O 2k_<n<2k+~ 2n_<lml<2*+l 

<_ c E 2 . ,  E i?(m:' . 
k=0 2 2'~ __.lm[<~ 

It follows from the Hausdorff-Young inequality and usual estimate of the remainder of a series that 
the fight-hand sum does not exceed 

E2k/Po9 f ';  <_ C k-|/Yo9 f ';  
k=O P k= 1 P 

o~ 

f ' ( :  < C t -1/p 09 '; dt 
P 1 

1 

f <_ C o)(f';t)p In t - ld t .  

0 

The statement is proved. 
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iii. Let us use the following result of Banach (see, e.g., [Ba, Chapter IV, §16). I f  {nk} is an 
arbitrary lacunary sequence, and numbers otk and ~k are arbitrary, satisfying only ~ (ct 2 + 1~ 2) < oo, 
then it is always possible to find a continuous function f (x) ~ ~f~_-o Ck eikx for which ~ c ~  = ak, 
~c~ = jSk. 

oo 2 Set nk = 2 k, and flk = 0, Ctk > 0 such that )-']~k=I Ctk = O0. Thus, we have a continuous function 
f with c±2 k = ~k. Let co = 0. Then F(x)  = ~'~k#o(Ck/ik)e ikx is continuously differentiable, and 
as above 

IIFIIA'<T) = ~ sup >_ ~ ~ sup Ickl 
m=0 m<lkl <o0 ~ m=02"<lk[ <2"+1 

1 oo 

=--m~__0 2 - m 4  ~ "  sup Ickl 
2" _< Ikl <2 "+12" _< Ikl <2 ''+l 

lm~02- -m ~ IC2"+1[ ~ m~..lO~m ~(X)" g 
= 2',,_.<lkl <2m+l = 

Therefore, F ¢ A*. Now consider the function 

oo 
~0(x) "- ~-"]~(ln k) -I/2 cos kx. 

k=2 

Let us find its modulus of continuity in L 1. The series converges everywhere except 0 (see, e.g., [Ba, 
Chapter I]). So, we obtain, after applying Abel's transformation twice, that 

lifo(x) - ~o(x 4- h)lll _< / g=2 kA2(( lnk)- l /2)[~k(x)  - ¢bk(x 4- h)] dx, 

T 

where ~ k ( x )  = sin2(kx/2)/(2rrk sin2(x/2)) is the Fejer kernel. The right-hand side is not less than 

k-2(lnk)-312k2h + ~ 2k- I ( lnk)  -3/2, 
2<k<l/h k>l /h  

where the first term was obtained by using Bemstein's inequality in L l for the Fejer kernel. It is 
easy to see now that to(~0; h)l = O((ln(1/h))-I /2) .  Consider the convolution H = f • ~0. We have 

(/1t-:) oJ(H'; h)oo < llf'llc~o(~P; h)t = O In 

Taking ot~ = k- t /2( lnk)  -1/2-~, with 0 < e _< 1/2, one can see that H ~ A*. Indeed, /-I(2 ~) = 
k-  l (In k)-1/2-~, and the proof is complete. [ ]  

3.2. 

The following examples show that the second inclusion in Theorem 1 i is sharp and that A*(T) 
does not imply bounded total variation. 

nl/2+~ such that f ~ A*(T). R e m a r k  7. For each e > 0 there exists a function f ~ ~2,oo 
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For this, consider the function f ( x )  = x ~ sin(zr2/x) when 0 < x < zr and 1/2 < ot < 1, odd 
and defined at zero by continuity. Integration by parts yields 

f ( u ) = 2  x ~ s i n - s i n u x d x  
X 

0 

rr f 71.2 = - u  -] cos(ux)x ~ sin zr2 + u -]  otx "-1 sin - -  cos ux dx 
X 0 X 

0 

_ ~r2u - 1 x " -z  cos - -  cos ux dx 
X 

0 

= O/U- 1 XOt- 1 sin - -  c o s  u x  dx 
X 

0 
oo 

- z r 2 u  -I  x ~ - 2 c o s - - c o s u x d x  + O(u-2) .  
X 

0 

The values of integrals are calculated explicitly via Bessel functions in [BE, Chapter I]. It is enough 
for us that f ( u )  -.. u-3/4-~/2 for large u. Hence, f E A* for the range of  ct claimed. In view of  
Parseval's equality 

1 N I 1/2 ~ k 2 k  -2-a+1/2 1/2 
o9 f ; - N  2 >- N-2)--~k21f(k)12k=t >- N-2  k=l >-CN-=/2-1/a" 

The statement follows now from (l 1). [ ]  

R e m a r k  8. There exists a function f ~ A*(T) that is not a function of  bounded variation. 
Indeed, the example from Remark 7 gives such a function even for ct = I: 

7g 2 
f (x) = x sin - - .  

X 

This example shows that a summability method (generated by f )  may be regular at every Lebesgue 
point, but not regular in Toeplitz sense. [ ]  

3.3. 

The following theorem says that ii is sharp for p = 1. 
We call o9 a modulus of  continuity if it satisfies all the usual properties sufficient for to to be 

the modulus of  continuity of  a continuous function (see, e.g., [L, Chapter 3]): It must be a positive, 
nondecreasing, subadditive function, which is approaching zero at the origin. 

T h e o r e m  2. 
Let o9 be a concave modulus of  continuity. I f  

1 

f t-log(t) ----" oo, dt  (13) 

0 

then there exists a function f such that og(f ' ;  t)l < og(t) and f ~. A*(T). 
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Proof. Consider the function/z(t) = a)(t -2)  and build the convex function 

(t -- x)Iz(y) + (y -- t)Ix(x) 
/z*(t) = inf 

l<x<t<y y - x 

which is a minimal convex majorant of the modulus of continuity w (such a construction may be 
found, e.g., in [L, Chapter 3]). It is evident that/z*(t) _< tt(t). On the other hand, 

(t - x)og(t-z(t2 /y2)) + (y - t)w(t-2(t2 /x  2) 
/z*(t) = inf 

l< x< t< y  y - x 

> inf ( t - x ) t 2 / ( y  2 + t  2 ) + ( y - t ) t 2 / ( x  2 + t  2) w(t_2) 
- -  l<x<t<y  y -- x 

= inf { 1 ( t - - x ) ( y + x ) } t 2 o g ( t - 2 )  
l_<x<t<y X 2 + t  2 (y2+t2)(X 2_t_t 2) 

>tZog(t_2) inf { 1 ( t - x ) ( y + x )  } 
-- l<x<t X 2 ]r t 2 sup t<y<oo (y2 + t2)(X 2 + t 2) 

The expression under the sign of the least upper bound decreases as a function of y. Therefore, we 
obtain 

iz,(t) > tzw(t_2) inf { 1 _ t - x t + x } 
-- l<x<_t X 2 + t 2 X 2 + t 2 2t 2 

= t20)(t -2) inf 1 t -  2 1 /z(t) 
l<_x<_t 2 = 2 tO(t-2) = 2 

Consider a function 
oo 

Z #*(k) cos kx. 
k = l  

Since {/z*(k)} is convex and monotone decreasing to zero, ~0 is a function whose Fourier series is 
integrable and converges to the function everywhere except zero (see, e.g., [Ba, Chapter I]). Let us 
estimate its modulus of continuity in L 1. As in iii of Theorem 1 we have 

[Ro(x) - ~o(x + h)ll~ < Z k A 2 / z * ( k )  I~k(X + h) ~k(x)l dx,  
k = l  T 

where ~k(x) is the Fejer kernel. Thus, denoting I + [1/hi = M, we obtain 

h 

--~o(x + h)][l < Z k A 2 / ~ * ( k ) / d x  ] ,¢~'k(X + tko(x) u) l du 
l<k<_M T J 0 J 

+ Z kAZ/z*(k) f(l~k(X + h)l + I~k(x)l) dx 
k>_M T J 

1 S~ 
< - -  Z k2A21z*(k) + 2 Z kA2/z*(k) = ~ + 2S2. 
- M l<k<M k>_M 

Let us estimate firstly the second sum as- 

$2 = ~ k(A/z*(k) - Alz*(k + 1)) = /z*(M + 1) + MA/z*(M). 
k>M 
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Because of convexity, 

MA/z*(M) < 2 
M/2<k<M 

So the final estimate for $2 is 

M/2<k<M 

The proof is complete. 

_ _ < 3co(4h2). 

Let us go on to the estimation of &: 

l<k<M l<k<M l<_k<M 

M + I  

= ~ k2A/z*(k) - ~ ( k  - 1)2A/z*(k) 
l<k<_M k=2  

M 

= ~ ( 2 k  - 1)A/~*(k) + A/~*(1) -- MEA/x*(M + 1). 
k=2 

The value Atx*(1) is bounded; the last summand was previously estimated. Further, 

M M M 

~ ( 2 k  - 1)A/z*(k) = ~-'~.(2k - l)/z*(k) - ~ ( 2 k  - 1)/z*(k + 1) 
k----2 k=2 k=2 

M M + I  

= ff'~(2k - 1).*(k) - y ~  (2k - 3)/z*(k) 
k=2 k--3 

M 

= 2M ~ / z * ( k )  + 3#*(2) - (2M - 1)/z*(M + 1). 
k=3 

The last two values give the estimate needed. We have )"~-~=3 bt*(k) < ~-~M=3 w(k-2). Since co is 
concave, we have by virtue of Jensen's inequality that 

M w(k -2) < Co) < Cco(h). 
k=3 

Since the integral f01 h-lo)(h) dh diverges, the integral f~ t-lo) (t 2) dt diverges as well, and therefore 
the series ~ 1  °)(2-z~) diverges. Consider the function f with the Fourier series 

f ( x )  ".. ~ k - l l x * ( k )  sinkx. 
k = l  

We have f ' ( x )  = ~o(x) and ~o(f'; 01 <_ Co)(t), and 

llflIA.(T> = ~ 2uP If(m>l = ~ sup m -1/z*(m) 
k = l  k m<oo k = I  k<m<oo 

oo 1 oo 

>_ ~ 2  k sup m-llz*(m) > -~ ~ sup .* (m)  
k = l  2t~+t <m<2k+2- k = l  2k+l-- 2~+z 

1 oo 
> - y~. co(2 -2k-4) = o0. 
- -  8 k = l  

[] 
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3.4. 

Let us give some other necessary and (separately) sufficient conditions for belonging to A*. 

Theorem 3. 

i. For each positive integer N 

u tx u t  :oo u-'O(x+ + 
ii. l f  f '  E A(T), then f E A*(T). If the Fourier series o f f  is lacunary in the Hadamard sense, 

then the converse statement holds. 

Proof .  i. Assume 

gN(X) = ~ f ( ~ 2~'~ ) - N f (O) = ~-'~ N f (kN)eikX. 
k=0 k~0 

Then IIgNIIA.(T) < 2UfllA, ff)-Indeed, 

IIgNIIA.(T)=N sup I f ( k N ) I + E N  sup I / (kN)l  
l_<lkl<vo m=l m_<lkl<~ " 

< 2 E  N sup If(kN)l 
m=l m<lkl<°v 

mN 

< E ~ sup If(kN)l = 211flIA.(T). 
m=l p=(m-1)N+l P -<lkl<~ 

But analogously IIgN(NX)IIA(T) = IIgN IIA<T) --< 211gNIIA*(T) --< 411flIA*<T), and it is enough to apply 
the necessary condition for belonging to A (see, e.g., [K, Chapter II, §10]). 

ii. Indeed, 

m=0 m<k <co m=0 m<[kl k=-oo 

Conversely, if Im(ipl+])signp[ > qlmpl, where m0 = 0 and q > 1, and f (k)  = 0 for k ~ rap, then 

1 ec 
E sup I / (k) l  > ~ ( ]m( ip l+l ) s ignp[ -  I m p l ) l f ( m p ) l  
m_om<k<o 0 -- - -  - -  p . - ~  - -  O 0  

> q - - 1  ~ 
_ ~ Impllf(mp)l, 

p=--eO 

and the boundedness of the right-hand sides of both inequalities is equivalent to the fact that 
f '  E A(T). [ ]  

4.  On Some Propert ies  o f  A*(R) 

4.1. 

As in the case of ,-~. there are many properties which hold both for A*(R) and A*(T). This is 
so because the two spaces coincide locally. 
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Proposition 6. 
A function belongs locally to A*(T) if and only if it belongs locally to A*(R). 

Proof.  Because the norm in A* is invariant with respect to shift, we can restrict to a neigh- 
borhood of the origin. If supp f C T and f 6 A* (R), then 

IlfllA,(r~= sup If(k)l<~-'-~ sup If(x)l 
m=Om<lkl<~ m=om<lxl<oo 

_< sup If(x)l + f sup If(x) ldu <_ 211flIA.(R). 
x d u _ < l x ] < ~  

0 

If now f ~ A*(T)and suppf  C [-zr + ~, zr - ~ ] ,  e ~ (0, zr), then f ~ A*(R). This statement, 
similar to Wiener's well-known result for A (see [W, Chapter II]) may be proved analogously. In 
this case, f is an entire function of exponential type less than or equal to zr - ~. We have (see, e.g., 
[W, Chapter II, §11]) 

Z.~ ~ f ( k )  sin(rr - ~/2)(x - k) sin (e(x - k)/2) f(x) 2 
k=-oo (x - k)2e/2 

Therefore, 
oo 

f sup 
u_<lxl<~o 

0 

j (x) ldu <_ sup If(x)l 
m=om<lxl<o~ 

oo ~ [ k)/2) - < Z  sup Z I f ( k ) l l s i n ( z r - e / Z ) ( x - k ) s i n ( e ( x -  

But for x ~ R the inequality Isinotx/(otx)l ~ (4 + [~])/(l~l(l[x]l + 1)) holds, and inequality (5) 
completes the proof. [ ]  

An integral analogue of Proposition 2 (in slightly weaker form) may be found in [Bo]. 

4.2. 

Let us give one more result. Consider for tr > 0 the following integral operators on A(R): 

J J H~f  = Hc,(f; x) = [xl -~ signx [x - t l ~ - l f ( t ) d t  = (1 - t )~ - l f ( x t )  dt, 

0 0 

integral means of fractional order ~, and 

A a f  = Aa( f ;  x) = x - a f ( x ) ,  I x l - " f ( x )  (or t x l - ~ f ( x ) / s i g n x ) ,  

for a integer or noninteger, respectively, the operator of division by the power function. 
If f = ~, then we consider the fractional derivative of f 

f(~) (x) = f ( - iu )ag(u)e  -i"x du. 

R 

Theorem 4. 

i. Ha is a linear bounded operator taking A(R) into A(R) for ~ > O, and A(R) into A*(R) 
for a > 1. 
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i i .  If f and f(~) E A(R), and f(")(0) = O for integer v E [0, or), then A~ f  E A(R). lf  c~ > 1 
then A~ f  E A*(R). 

P r o o f .  Let us introduce a multiplicative convolution for functions from L 1 [0, e~) 

(f*g)(x)=ff(t)g(t)t-'dt=fg(t)f(t)t-lat 
0 0 

and assume L*[0, oo) = { f  : Ilfll£. = f esssup,_.x<~o If(x)ldt < oo1. 
0 

Lemma 2. 

i. lf  f, g E L1[O,~),then f * g E Lx[O, oo) andllf  * gll£, < Ilfllz'llgllL~- 

ii. If f E L 1 and g E L*, then f • g E L* and Ilf * gilL- < Ilfllv Ilgll£.. 

Proof of Lemma 2. Applying Fubini's theorem and then changing variable we obtain 

;o;o : :  g(t) f(t)t-ldt dx < dx t-l[/(t,l g(t) dt 
0 0 

oo oo 

=f.:(.,.atf 
0 0 

which proves i, and 

° / (t) T e s s  sup g f (t)t -! dt 
d u<x<oo 
0 

oo oo 

f ~u f t-llf(t,l:s:s:~ g (t) dt 

0 0 
00 oo 

= f l f  (t)ldt f esssup lg(v)lt-l du 
u/t<_o<~ 

which proves ii. [ ]  

0 0 

f l f(t)ldt fesssuplg(v)ldx =[If [ IL,  llg[[L., 
J x ' : :  t , < ~  

0 0 

Let us prove the first part of Theorem 4. If f = ~ and g E L 1 (R), we obtain by the substitution 
of v for ut that 

1 

H , f  = f (1 - t )~ - ld t  f g(u)e-iUXtdu 

0 R 

I 

= f<1-t:-'at f 
0 R 

1 

=fe-i~a~=f(l-tW~g(t)t-',~t. 
R 0 
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The right-hand side is the Fourier transform of  the convolution of  functions g E L l and 9~(t) = 
(1 - t) " - I  for t E [0, 1] and ~ou(t) = 0 for t > 1. It is clear that ~0~ E L 1 for each tz > 0 and that 
~o~ E L* for ot > 1 only. Nothing remains as to apply Lemma 2. 

Let us prove the second part of  the theorem. Since f(~) E A, we have [ul~")g(u) ~ LI(R) ,  
and f(~)(0) = 0 (0 _< v < or). Consider the function 

(ix) k 
~0~(x) = Ix l -~8(x)~  k! ' 

k>ot 

where a > 0,/~(x) = 8,~(x) = s ignx when ~ is odd,/~(x) = 1 when t~ is even, and ~(x) = s ignx 
or 1 when ot is not integer. If  ~o~ = g~ with g~ ~ L 1 (R), and 

h~(t)=flul=-'a(u)g(u)g~(~ut)du. 
R 

then 

ff~(x) = f h~(t)e-i'X dt = f lul~8(u)g(u)du f g~ (~ut)e-"Xlul-l dt 
R R R 

= f lul~,(u)g(u)du f g~(y)eiUyX dy = f lul~,(u)g(u)du~o~(-ux)du. 
R R R 

Taking into account that ~(xy) = 8(x)~(y), we obtain for ot = n + e (e ~ (0, 1) ) 

(- iux) n 
1 8(-x) du ff=(x)=flxl-~g(u)[e-i"~-l-. ~ j 

R 

f - = Ixl-~6(-x) g(u)e '"~du = Ixl-~8(-x)f(x).  
R 

Thus we see from the definition of  h~ and Lemma 2 that the question is whether ~0,~ belongs either 
to A or to A*. In fact, ~o,, ~ A*(R) for ~ > 1 only. For ~ = 1 it may be verified immediately since 
the Fourier transform of tpl is bounded. When ct = n + e, the function 

~o~(x,={eiX-~-~ (ix,k } 
k=0 ~ Ixl-~(x) 

is absolutely continuous, and for each r the r th derivative is estimated as ~o~ (~) = O(Ixl -~-~) as 
Ixl ~ oo. Now we can apply Theorem 3 (see ii, c~ = 1). When a ~ (0, I) we have ~o,,(x) = 
Ixl-~(e ix - 1)~ (x) ~ A(R)  (it may be shown by various methods, for example, by applying Boman's  
result [Bn]), but ~o,~ ~ A*, because l i m ~ l  I ~ ( x ) l  = c~. Indeed, f o r x  ~ (0, 1) 

oo 

f ltl -~ Itl-% -itx d t =  2 f t -~ [cos  t(1 - x)  - cos tx] dt 
R 0 

= [(1 - x)  ~-1 - x '~-1 ] 2 f u -~ cos u du. 
0 

Theorem 4 is proved. [ ]  

Let us note tha t / - / ,  is sometimes called the Hardy operator, and that ii of  Theorem 4 is an 
analog of  well-known Hadamard 's  lemma on division by the power function in the C-space.  
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5. Summability at Lebesgue Points 

5.1. 

The following Lebesgue theorem is very well-known. 

I f  f is integrable, then 

h 

f l f ( x  + t) - f ( x ) l d t  = o(h) as h ~ 0 

o 

for almost all x. Every point x for which (14) holds is called a Lebesgue point. 

Let f ~ L 1 (T) be a 2re-periodic function with the Fourier series 

E / ( k ) e i k x .  

k 

Let ~ be a continuous function on R representable as 

~.(X) = f e -ixt  d l z ( t ) ,  

R 

where/z is a finite Borel measure. Assume that 

f dlz(t) = 1. 
R 

Consider the means 

where 

~f l im [ ( f - - ~ )  ( f  * dlz)~ h~O J fh du(u),  
R 

(14) 

(15) 

fh(x)=h-xf ( )f(x-t)dt. 
R 

Here go(t) is infinitely differentiable, equal to 1 for It[ < 1, vanishing for [t[ > 2, and such that 

f go(t) dt 1. 
R 

For f sufficiently smooth it is possible to take the limit inside the integral, yielding 

k 
R 

so the linear means of the series (15) are considered. These means are generated by the function ~.. 
The following theorem investigates the behavior of ( f  * d/~)u, as N -+ oo, at Lebesgue points 

of  integrable functions f .  It has an exact form and, in certain sense, is the most general in this field. 

Theorem 5. 
The linear means ( f  • dl~)N(x) converge to f (x) as N ~ cx) at all the Lebesgue points of 

each f E L I(T) if and only if the measure t~ is absolutely continuous with respect to Lebesgue 
measure and I~' ~ L*(R). 
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Proof .  Let us note that the sufficient part of this theorem was known earlier (see [SW, 
Chapter I]). Therefore, we will only give a proof of the necessity. 

It will be convenient for us to assume x = 0 to be a Lebesgue point and f (0)  = 0. It follows, 
from the existence of (fh * dlZ)N(O) for every h and from the Banach-Steinhaus theorem, that 
( f  * dlZ)N(O) is a bounded linear functional on 

PM*(R) = {g : llglh, M.(R) =supt- l  f x  If(x)ldx < oo} 
t I<t 

(see [Bo, BT2]). Using the condition of convergence of ( f  • dlz)N(O) for every f ~ PM* and 
applying the Banach-Steinhaus theorem to this sequence, we obtain 

sup sup I ( f*d/z)N(0) l  < oo; 
N IlfllPM* < 1 

this value is not less than 

sup sup I(J~ * d#)N(0)l, 
N ]h:lrfllvM*<C 

where fh(x) = fh(x) -- fh(O). Indeed, the equality fh(0) = 0 is obvious, and it is easy to verify 
that I1~ IIPM" < (1/C)llfllpM.. Thus substituting 3~ by the explicit representation we have 

SUPN "f't,,.-sup <C /h-lf~°(h) f(N~t)dtd~z(u)R < O O .  

Expanding fh into the Fourier series and using the inverse formula for the Fourier transform we 
obtain 

sup sup 
N IlfllrM* <C 

Lf, x f ( -~ )  N-1 ~ .  ~(Iklh)e ikx/N dx < O O .  

Put h = e/N. Then the left-hand side is not less than 

oo 

Jr0 u_<lxl<o~sup / ~(Itle)~.(t)e itx dt du 

(see [B2]). Substituting the definition of)~ and using the inverse formula, we obtain that 

F f sup ~-1 ~o dlz(t) du < oo 
Jo "<-txr<~ l R 

(16) 

uniformly with respect to e > 0. Let us show that/z is absolutely continuous everywhere except 
a neighborhood of the origin. Let r > 0. Then for each continuous function g(x), vanishing for 
Ix l < r, we have 
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Using step by step the Lebesgue theorem and Fubini's theorem we obtain 

~imoe-lfR g(t) I ! ~ o ( ~ - ~ ) d l z ( x )  1 dt 

 (t'su l  dt 

<-supsup'-l f ~o(L-~-L) dU(x) fl,l> lg(t)ldt. 
e It >r R 

Because of (16) this value is less than or equal to Cr fltl>r Ig(t)l dt. Hence, the functional 

flxl>r g(x) dlz(x) may be extended by continuity to the space of all the functions integrable in the 
domain {x : Ixl > r}. Taking into account a general form of the linear functional in this space (see 
[DS, Chapter IV, Theorem 5]), we obtain that there exists a function qs, with ess sUPlxl>r 10,1 (x)l < ~ ,  
such that 

fxl>r g(X) dlz(x)  = flxl>r g(X)dl(x)  dx" 

This means that the measure/z is absolutely continuous. Now we complete the proof by substitution 
of qJ(x) dx for dlx(x) in (16), letting e --+ O. [ ]  

5 . 2 .  

In the assumption that/.t is absolutely continuous, Theorem 5 was obtained earlier by E. 
Belinskii [B 1, B2] and P.-A. Boo [Boo]. Observe that Theorem 1 from the paper of Oberlin [O] is 
contained in these papers (and, of course, in Theorem 5). We must say a few words about Theorem 2 
in [O], which establishes necessary and sufficient conditions of summability at LP-Lebesgue points. 
This result is contained in the paper od Dyachkov [Dy] among many other interesting results (for 
example, necessary and sufficient conditions of summability at the points at which a function is the 
derivative of the indefinite integral of the function). 

5 . 3 .  

The following statement establishes certain relations between A*(T) and A*(R) for functions 
of compact support. 

Proposition 7. 
I f  suppl. C T, then the condition ~ ~ A*(R) is equivalent to the following two conditions: 

afier periodic continuation )~(x) ~ A*(T) and x)~(x) ~ A*(T). 

Proof .  Let L e A*(R). Then ~.(x + 2zr) ~ A*(R) yields ~.(x) + ~.(x + 2~r) e A*(R), 
and hence A*(Rhoc. Therefore, we can continue ~ periodically such that it is in A*(T)loc, and 
consequently L e A* (T) in virtue of Proposition 1 i. Since ~. is boundedly supported, xL(x) ~ A* (R), 
and this yields x)~(x) ~ A*(T) as above. 

Now let ~.(x), xZ(x) ~ A*(T). Set 

2x, 
e(x) = 

Jr sign x, 

7C 
Ixl < ~ ,  

7T 
- < Ixl _< rr, 
2 
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and continue this function 2zr-periodically. Then 

e(x)~.(x)  = (e(x)  - x ) Z ( x )  + x X ( x )  ~ A*(T) 

since £(x)  - x is piecewise linear and equals 0 at the points - J r  and zr. 

l l ( x )  = (2Jr)-l(Jr + £(x))3.(x), /2(x) = (2:r)-l(:r -£(x)))~(x) E A*(T) and A*(T)loc. 

If we consider a function ~.(x) on T, as vanishing outside T, then within T we have, by virtue of 
Proposition 6, that k ~ A*(T)~o~ is equivalent to ~. ~ A*(R)loc. In neighborhoods of the points - : r  
and rr, zero-continuation of ~. coincides with Ii and 12, respectively. Membership of ~. in A*(R)1oc 
follows from Proposition 6. Since ~. has compact support, ~. ~ A*(R). [ ]  

6 ,  C o n c l u d i n g  R e m a r k s  

We finished our survey of the main results around A*, both published and unpublished. We 
tried to give only such results that have some difference with A (either by their formulations or by 
their proofs). Of course, various results may be formulated and proved completely analogously as 
their A-prototypes. In particular, this may be done for many results from [K] or, for example, [Ru, 
Chapter 7]. 

Let us introduce clarity into authorship, make some additional remarks, and point out several 
open problems. 

Propositions 1, 2, and 7 and Theorem 3 obtained by RMT were the first results by which a 
systematic investigation of A* [T1, T3] was begun. The short proof of Proposition 7 may be applied 
to obtaining the A-prototype (see [T2]) as well. To prove Proposition 2 we follow the method 
proposed in [T3, BT1]. Note that exact constants are what is significant in this proof. A very short 
proof without exact constants, given in [BT1 ], uses the equivalent norm (3). 

Proposition 4 was obtained first by RMT [TI, T3], and Proposition 3 is obtained by ERL. 
Both proofs are slightly modified in order to give quantitative estimates (9) and (10). It will be very 
interesting to find some applications of these estimates. 

We must note that the central problem of spectral synthesis, that is, existence of sets that are 
not of synthesis as well as existence of functions not admitting synthesis, is still open for A*. 

Another question is connected with Beurling's result [Be]. It would be interesting to know 
whether the following statement, converse to that in § 1.2, is true or not: 

I f  f o r  every f E A* we have F o f E A,  then F E Lip 1. 

In Proposition 5 certain alterations in comparison with the proof known earlier, and, in partic- 
ular, the proof of ii, which gives another method of proving Katznelson's corresponding result for 
A, were made by ESB. Theorem 1 as well as the construction in Theorem 2 were found by ESB. It 
is very probable that ii in Theorem 1 is sharp for p > 1 as well as for p = I. 

Theorem 4 was obtained by RMT [T3, T5]. Theorem 5 was obtained jointly by ESB and 
RMT [BT2]. 

We can add that the asymptotic behavior of Fourier transforms of functions with a derivative 
from A*(R) was studied by different methods in [T6, L2] 

Some of the results presented have already been generalized to the multidimensional case, 
but they are not of special interest and do not demonstrate an essential difference between the one- 
dimensional and the multidimensional cases. So, we do not formulate them and can refer a reader 
to the papers [B1, BT2, T4, T6, L1-L3]. 
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