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1. Introduct ion  

A version of the continuous wavelet transform for sequences of length p was recently developed 
by Flornes, Grossmann, I-Iolschneider, and Torr6sani [1]. Their approach was to apply the classical 
theory of square-integrable representations to the natural action of the affine Cax+b") group Gp 
defined over the finite field Zp on finite sequences of length p. Here p is an arbitrary prime. 

One major difference between a dilated function defined on the reals, Daf(x)  = ~f(_g)! x 
(a ~ R*), and the analogous dilated function on Zp, Da f (k) = f (a-  t k) (a ~ Z~), is that the support 

of f E l 2 (Zp) is not changed in measure by the application of Dal as it is in the real case. This makes 
it difficult to interpret the dilated functions Da f (x)  as sampled versions of dilated functions in L 2 (R); 
as the authors of [1] observed, the wavelet transforms appear to be "full of holes". As a possible 
remedy for this problem, they introduced the notion of a pseudodilation representation. They gave 
an example which showed that a pseudodilation representation can indeed give a smoother wavelet 
transform, which appears much more like a sampled version of a continuous wavelet transform. 
They pointed out that a complete understanding of all the pseudodilation representations on/2(Zp) 
would involve the solution of a group cohomology problem. 

The present paper completes the classification of pseudodilation operators begun by Flornes, 
Grossmann, Holschneider, and Torrdsani, framing these results in the more general context of all 
finite fields. Let F denote a finite field of order pk, where p is a prime and k is an arbitrary positive 
integer; the discussion in [1] is easily extended from the setting of sequences defined over Zp to that 
of sequences defined over F. We demonstrate a class of filters which satisfies the cocycle conditions 
that were shown in [1] to be necessary and sufficient for a filter to be a "compatible filter", and 
show that a class of compatible filters giving rise to unitary pseudodilation representations can be 

parametrized by the pk - 1 toms T p~-~. The proof that this completely parametrizes the set of 
compatible filters is given by the solution of the cohomological problem mentioned in [ I]; the details 
of this derivation are given in an appendix. 

In the next section, the wavelet transform defined over the finite field F is derived, with 
descriptions of the irreducible components of the action of the "ax+b" group defined over F on 
12 (F), the vector space of real-valued functions on F. It is shown that the energy conservation 
property holds over all of 12 (F) for certain admissible vectors in 12 (F), allowing unitary wavelet 
transforms to be defined over all of 12 (F ) .  It should be noted that throughout this paper, l 2 (F) 
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denotes the space of functions defined over F, taking values in the complexes; elements of/2 (F) 
are occasionally written as vectors. 

In the final section, illustrative examples are given of compatible filters, pseudodilation repre- 
sentations, and wavelet transforms for some values of pk. 

2. Compatible Filters Defined Over F 
The results of [ 1] are extendable, with very minor changes, from Zp to arbitrary finite fields F. 

We can therefore define a standard wavelet transform, or a wavelet transform arising from a unitary 
pseudodilation representation, on sequences from 12 (F). These sequences have length pk, where p 
is a prime, and k is an arbitrary positive integer. 

In what follows, we will introduce standard operators on 12(F), and state results that are 
analogous to those in [1]. These results will be stated without proof, except where the differences 
between F and Zp make clarification necessary. 

2.1 F in i te  fields F a n d  o p e r a t o r s  on 12(F) 

First we give some well-known facts about finite fields. A convenient reference for the very 
few results we will need is [4]. 

1. Each finite field contains pk elements for some prime p, and some positive number k. The 
prime p is called the characteristic of F; for any element f E F, we have p f  = 0- Every 
finite field of order pk is isomorphic as a field to every other field of order pk. The finite 
field F of order pk will be referred to as Fpk when necessary. 

2. The additive group of the finite field of order pk is isomorphic as an abelian group to the 

abelian group (Zp) k , consisting of k-tuples of elements of Zp. Therefore, the unitary dual 

F of the additive group of F, consisting of homomorphisms (characters) from the additive 

~oup  of F to the group of complex numbers of modulus l, is isomorphic to (Zp) k ~- (~p) i  
via a natural isomorphism. Let x(k) = e 27rik/p, k E Zp; then X is a character of Zp. We 

then have that every element N = (nl . . . . .  nk) E (Zp) k gives rise to a character of (Zp) k 
as follows: 

N ~ ) XN, where X N ( ( m l ,  m E  . . . . .  mk)) = x ( M  • N).  

Here M.  N = m I n I + men2 + ... + mink ~ Zp is the standard dot product in (Zp) k . Every 

character of (Zp) k is obtainable in this fashion. 

3. The multiplicative group F* = F~ {0} of the finite field F is isomorphic to the cyclic group 

of order pC _ 1. This surprising fact allows us to calculate H l (F*, T pk ) and H l (F*, C *p~) 
as easily as we calculated H l (Zp, TP) and H l * *P (Zp, C ), so that we can describe all of the 
unitary and non-unitary pseudodilation representations of the affine group of F. 

4. In order to describe the Fourier transform on l 2 (F),  we assume that we are given a Zp-vector 

space isomorphism op : F -+ (Zp) k, so that we can identify elements of F with elements 

of (Zp) k using (P. We will write Xk instead of X,(k) for the character of F corresponding 

to qb(k). The Fourier transform F on 12(F) is given by 

F f ( k )  = E Xk (qb(b)) f(b), 
b~F 

and the inverse Fourier transform is 

1 
F - '  f '(b) = ~ -  E Xb (-q~(k)) f"(k). 

k~F 
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We have translation in /2(F) :  

dilation: 

and modulation: 

As usual, we have that 

Tbf(k)  = f ( k  - b), 

Daf (k )  = f ( a - l k ) ,  

Eb f (n )  = Xb(~P(n))f(n). 

FTb = E-bF,  FDa = Da-l F, and FTbDa = E-bDa-l  F. 

The scalar product in 12(F) is given by 

(f '  g) = Z f (k)g(k) ;  
kEF 

we defne  
1 

[]f[12 = 7 ( f '  f } '  

and the Parseval (Plancherel) identity gives 

p~ (f,  g) = (Ff ,  Fg) ,  or pk ]]fll2 = IlFfll2.  

We also have the convolution product: 

f *  g ( n ) =  y~. f ( r ) g ( n  - - r ) =  (~'~. f ( r ) T r g ) ( n ) ,  

which satisfies 
F ( f  • g)(n) = F f (n )Fg(n ) .  

2.2 The Affine Group Defined Over F 

We define the F-affine group as follows: 

GF = {(b, a) : b E F, a 6 F*} ,  with multiplication (b, a)(b', a') = (b + ab', aa'). 

The representation 
U : G F  ~ U(I  2 (F) )  

defined by 
U (b, a) f = TbDaf 

gives a natural action of G F on l 2 (F); that is, U (b, a) . U (b', a') = U (b + ab', aa') . In [1], the 
term "pseudodilation representation" was coined to refer to any representation of GF of the form 

U (b, a) f = TbDa, 

where/~a is an invertible operator on 12 ( F ) .  If the/~a term is factored into a product of an invertible 
operator with the standard dilation operator Da on 12 ( F ) ,  Da = KaDa, then it is easily seen that 
the operator Ka must commute with all translation operators Tb, b ~ F; that is, Ka is a convolution 
operator, Ka = Z b ~ r  CbTb for some set {Cb} 6 C. Therefore, any pseudodilation representation is 
determined by the map a ~ F* ---+ Ka, where Ka is convolution by some function Ma ~ l 2 (F) .  
The vectors Ma satisfy the condition 

Maa' = Ma * Da Ma', 
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which after being Fourier transformed turns out to be the more familiar cocycle condition 

Maa'(k) = Ma(k)ma' (ak) .  

The functions M • F* ---> 12(F) are called compatible filters. 
If  the resulting representation is to be unitary, we must also have 

[Ma(k)[ = 1 for all a E F*, and k E F. 

Thus, we may regard the compatible filters giving rise to unitary pseudodilation representations as 
functions from F* to T F, where T F denotes functions from F to the complex unit circle. In what 
follows, v denotes an element of  T F. There is a natural action of F* on T F, given by 

a .v (b )  = v ( a - l b )  . 

L e m m a  1. 
Let z E F* be a generator of the cyclic group F*. Then the functions M(.) : F* --+ T F o f  the 

form 
r - I  

Ma(n) = H ( v k . v ) ( n ) ,  where a = v r ~ F*, n ~ F, 

k=0 

are compatible filters giving rise to unitary pseudodilation representations. The elements vk.v are 

to be viewedasfunct ions F --+ T, and v must satisfy I-Ik~F" v(k) = 1 and v(O) pk-l = 1. 

Functions of this form satisfy the cocycle condition for compatible filters. I f  a ,  a r 6 F*, 
suppose that a = v r, and b = v s. Then aa t = z r+s, and 

r+s-I  r-1 s-1 

Ma , = I -I  (vk'v  = I-I(vk'v  " = 
k=O k=O k=O 

The conditions on v are necessary in order to assure that Mrpk = MT; this must hold, since r pk = z. 
This result gives an explicit description of a class of  compatible filters which gives rise to 

unitary pseudodilation representations, parametrized by T IFl-1 × F*. These are, in fact, all of  the 
unitary compatible filters. As shown above, the functions 

37/(.) > T ~" 

must satisfy the cocycle condition 
A 

Maa'(k) = Ma (k)Ma,(ak) 

for all a,  a '  E F* and k 6 F,  in order to give rise to unitary compatible filters. Therefore, they are 
representative elements of  the cohomology classes which constitute H l (F*, T F ) .  Since  F* is a 
cyclic group, some well-known results on the construction of cyclic group cohomologies apply, and 
the standard methods of  constructing all the elements in the kernel of  the appropriate coboundary 
map yield precisely the cocycle functions given above. The details of  this derivation, and references, 
are given in an appendix. 

3. Wavelet Transforms Defined from Pseudodilation 
Representations 

Operators in the standard representation U of GF on l 2 (F)  act as permutations on the vectors in 
12 (F)  ; therefore, they preserve the pk _ 1 dimensional subspace E of/2 (F)  consisting of sequences 
having mean 0 [i.e., i f ~  e E,  ~l, = (ao, al ..... apk_l), then ~ a i  = 0; equivalently, J / (0)  = 0]. 
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Lemma 2. 
The representation U restricted to E C 12(F) is irreducible. 

This lemma can be proved by direct calculation, using Schur's lemma. Now let ~ be a fixed 
element of 12(F). 

Definit ion.  The standard wavelet transform T¢ : l 2 (F)  > l 2 (GF) associated with ~ is defined 
by 

T ¢ f  (a,b) = <  f , U  (a,b)ap >, 

for f ~ 12 ( F ) ,  and (a, b) ~ GF. [] 

If ~ e E ~ 12(F), then standard results on square integrable representations give the following 
result (see [1], [2]). We will denote by 7r the subrepresentation of U given by restricting the operators 
U(b, a) to the invariant subspace E. 

Theorem 1. 
Forfixed ~/ E E, the mapping T~ [E : E --+ 12(GF) given by 

To f (b, a) = (f, rr (b, a)~ )) 

b bometric up to a constant factor x / ~ ;  we have 

Ilz fll 2 = c ,  l l f : ,  

where 
1 p2k 

c ,  -- I[~ II 2 (b,a)~GFZ 1(7:, zr(b, a ) ~ ) l  2 = p k _  I [l~]t2" 

The irreducible subrepresentation U IE accounts for pk _ 1 dimensions of the representation U 
on l 2 (F)  ; the remaining irreducible component of the representation is the identity representation, 
arising from the restriction of U to the one-dimensional subspace K of constant elements of l 2 (F)  
(clearly dilation and translation can have no effect on this subspace). 

The unitary representations of GF are all either isomorphic to the pk _ 1 dimensional repre- 
sentation zr, or are characters of F*. This is a consequence of the Peter-Weyl Theorem, which states 
that for any compact topological group G, each of its irreducible unitary representations appears in 
the regular representation of G on L 2 (G) with multiplicity equal to its dimension; in the case of GF, 
it is easily seen that after the pk _ 1 dimensional representation of GF on E is accounted for, there 
are only pk _ 1 dimensions of the p2t _ p~ _ dimensional left regular representation left for other 
representations, and these are fully accounted for by the characters of F*, which must be present 
since F* is the "abelianization" of GF.  

For ~ 6 l 2 (F),  define y (~)  = ~ b ~ F  ~ / (b ) .  For T o defined with arbitrary ¢ ~ l 2 (F),  if T~0 
is unitary, we have 

llr  f 2 = IIT, PEfll  2 + IIT, 'Kfll 2, 

where P E f  and P K f  denote the orthogonal projections of  f onto E and K, respectively [note that 
Pt¢f is the constant function P K f  (x) = -~y  ( f ) ] .  It is easy to see that 

(Tc PE f , Tc PE f )  = (TpEc PE f , TpEc PE f ) , and (Tc PK f , To PK f )  = (Tpro PK f , Tpro PK f ) , 

and so, using Theorem 1, we have 

2 p2k 1 
HTgtflllZ(Gr) -- pk-~ 1 IIPEfII2 IIPeq/ll2 + )--ff (lY ( f )  Y (~) l )  2 
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= _ (llfl12 llPeT:l12 - --p2k Iy ( f ) l  2 IIPET:II 2) + ~-ff  ( ly  ( f )  Y (7:)1) 2 

= I l f l l  2 IIPE7:II 2 + I× ( f ) l  2 ~ 1×(7:)12 IIPE7:II 2 . 

Thus, TO: is a multiple of an isometry precisely when II PE 7: II 2 is nonzero, and either y ( f )  = 0 

(i.e., f 6 E)  or ~ IY (7: )12-  l II PE 7: [I 2 = 0. This last condition is equivalent to the condition 

that 
1 l ~S (0) 2 pk  _ 1 p2k = Z ~ (a) 2 

a-7kOE F 

which is a necessary condition on 7: for T~, to be a multiple of an isometry. If 7 : 6  l 2 (F)  is a 
nonzero function satisfying this condition, then II PEeP I[ 2 5 k 0, and therefore this condition is also 
sufficient. 

We now consider the case where the representation U is replaced by a pseudodilation repre- 
sentation. Any unitary, or indeed nonunitary, pseudodilation representation ~r : GF ) U (l 2 (F))  

fixes the subspace E of /2  (F) ;  this is because ~ (a, b) = TbKaDa, where Ka is a convolution, and 
convolution operators are merely linear combinations of translation operators, which fix the subspace 
E. 

A unitary pseudodilation representation ~r (b, a) arising from a filter Fa is unitarily equivalent 
to Jr when restricted to E,  and is unitarily equivalent to a character of F* when restricted to the 
space of  constant sequences in /2 (F) ;  the character of  F* to which it is equivalent is given by 

X (a) = X (rm) = e27rirm/pk-I, where ~aa(0) = e 2~rirlpk-l. 

We pause at this point to observe that the usual representation U of GF on /2 (F )  is the pseudodilation 
representation given by the filter Fa satisfying Fa(k) = 1 for all k 6 F. Thus, the results we are 
about to obtain for admissibility of a vector 7s 6 / 2 ( F )  are also applicable to the representation U. 

We have, for the wavelet transforms 7~ given by the representation Jr = erie, defined as 
Tq/f(b, a) = (f, erE(b, a)7:) for a vector 7: ~ E, that 

Ilm+sll 2 = <+ i is : ,  

where 

1 ~ l(7:,~r(b,a)7:)l 2 _ p2k 
117:tl2 (b,a)~GF p k _  1 II 112;V: 

i.e., the constant c¢, is unchanged by replacing Ule  by ale .  For any 7: ~ 12(F), we define the 
wavelet transform 

T¢ : 12(F) ~ 12(GF) 

by 

T• f (b, a) = (f,  erE(b, a)7: ) . 

We then have that, for all 7:, f 6 12(F), 

as before, where y ( f )  = 7(0)  = Z k ~ F  f (k) .  Thus, we have the following proposition. 
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Theorem 2. 
Let Fa be a compatible filter satisfying IF~'~)[ = 1 for all k E F. Then the wavelet transform 

T¢ defined using 7/ E l 2 ( F) is a multiple of an isometry on all of l 2 ( F) if and only if T/ ~ 0 satisfies 

k~F* 

If  so, we have the reconstruction constant 

II Zv, fll 2 
Ilfll 2 

p2k 
- -  - ~ 117/112 • 0. 

Proposition 1. 
We then have, for all f E/2(F), the reconstruction formula 

f (n)  = K .  ~ T¢ f (b ,a )  (~r(b,a)7/)(n), 
(b.a)~GF 

( )-' where K is a constant ([2]), K = ~-~.(b.a)~Gr (<r (b, a) ~, 7/) . 

4 .  E x a m p l e s  

In these sections, some simple, illustrative examples are given to demonstrate the construction 
of compatible filters and admissible vectors. 

4.1 All  Compatible Filters and Admissible Vectors for p = 3 

The field Z3 consists of  the elements {0, 1,2},  with multiplication and addition modulo 3. 
Lemma 1 states that a unitary compatible filter is completely determined by the choice of  a function 
v ~ T 3 satisfying v(0)  2 = 1, and v(1)  • v(2) = 1; thus v(0)  = a = 4-1, and v(1)  ~ v ( 2 )  = r 
for some r such that Irl = 1. Having made the choice of the function v, we have that MI ----- 1 and 
/~2 ~ U, 

Letting oJ denote a fixed primitive cube root of unity, we can find the compatible filter M 
by taking the inverse Fourier transform of the given functions. The function M1, of  course, is the 
convolution identity, the Dirac delta function centered at 0. The function M2 is the inverse Fourier 
transform of v, given by 

i ( r + r - t + a )  i f x = 0  
~ ( a  + wr + w - l r - l )  i f x  = 1 . 

F - i v ( x ) =  - ( a + w - l r + o ) r  -1) i f x = 2  

These give rise to one of two inequivalent unitary pseudodilations, depending on whether a is chosen 
to b e l o r - 1 .  

The method given here for finding admissible vectors 7/which give rise to isometric wavelet 
transforms generalizes easily to find admissible vectors in l 2 (F)  for any F;  the component  of  ¢" 
which belongs to E can be chosen freely, and a constant component can be added to P E 7 / w h i c h  
causes the condition in Theorem 2 to be satisfied. For the case of Z3, suppose PE 7 / =  (0, x, y) for 
some valuesx,  y ~ C (note that any function in E satisfies f (0) = 0). Then, to be admissible, 7/must  

satisfy 1~(0) ]  2 = 9 (]Xt2 q_ [y[2). This can be achieved by adding to PE~ the constant function 

with value PK 7/ - 4 s ~ l x  12 + l Y 12. Pe  7 / i s  obtained by taking the inverse Fourier transform of 
(0, x, y) .  
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4.2 C o m p a t i b l e  F i l t e r s  fo r  p2 = 2 2 = 4 

The field F --- F22, which is the smallest finite field that is not of  prime order, may be 
constructed by forming the polynomial ring Z2 [x] over an indeterminate x, and defining addition 
and multiplication modulo the irreducible polynomial x 2 + x  + I. This is just like normal polynomial 
addition and multiplication, except that field operations are done modulo 2, and the relation x2 =_ x + 1 
holds. One is easily convinced that the field F consists of four elements: 0, 1, x, and x + 1. Since 
F* _ Z3 is a prime field, all members of F* except for 1 are generators of the multiplicative group 
of  F.  Therefore, we fix a generator of F*, r = x. Below is a table defining the multiplication in F. 

* 0 1 x x + l  
0 0 0 0 0 
1 0 1 x x + l  
x 0 x x + l  1 
x + l  0 x + l  1 x 

• Unitary compatible filters are now functions M : F* "" Z3 --+ l 2 (F) ,  and again, a compatible 
filter is completely determined by its defining function v e T 4, which must satisfy v (0) 3 = 1 and 
v (1) .  v (x ) -  v (x + 1) = 1. We have, from Lemma  1, that MI -- 1, ~tx = v, and ~rx+l = v-  x.v ,  
where x .v  denotes the action o f x  on v by x .v  (a) = v ( x - l a )  = v ((x + 1)a) .  This gives 

~tx+l = ( M x + l ( O ) , M x + l ( 1 ) , M x + l ( x ) , M x + l ( x + l ) )  

= @ ( 0 )  2 v ( x + l )  v(1)  v(1)  v ( x )  v (x )  v ( x + l ) )  

In general, we set v (0) = co for co a primitive cube root of  unity, and set v (1) = r and v (x) = 
s for some r, s of  unit modulus, with v (x + 1) = (rs) -1 of  necessity. Then we have ~tx = 
(~o, r, s, (rs) -1)  and 3~tx+l = (co2, s - l ,  rs, r - l ) .  The compatible filters themselves can be found 

by taking the inverse Fourier transforms of &ix and ~tx+l.  
A computational caveat; the Fourier transform taking values in the complexes, and defined over 

the field of  order 2 ~, bears little relation to the standard Fourier transform of length 2k; in addition, 
it is complex-valued, and so bears no relation to the binary-valued Fourier transforms used in coding 
theory to define cyclic linear codes• It can be seen from the definition of Fourier transform that the 
finite field Fourier transform over the field of  order 2 k contains only second roots of  unity, and no 
primitive roots of  higher order. Since only the factors 4-1 are involved in computations, however, 
Fourier transforms over finite fields of order 2 g are easily programmed and quickly computed• 

5. Appendix: H 1 (F*, T F) ~-- ZIFI_I 
In this appendix, it is shown that all the functions from F* to T F = { f  : F -+ C : I f  (x)l = 

1 for all x} are given by the construction outlined in Lemma 1. For simplicity of  notation, we restrict 
the discussion to F = Zp for some prime p; however, the discussion generalizes to F of order p*, 
since F* is always cyclic. 

Consider the action of Zp on the p-torus T p, consisting of p-tuples of complex numbers of  
modulus 1, given by 

a.C = a.(cl,  c2 . . . . .  cp) "= (Ca.l, Ca.2 . . . . .  Ca.p).  

The cocycle condition on the Fa, together with the requirement that the pseudodilation be unitary, 
means that the desired functions F map Zp into T p and are actually cocycle representatives of  the 

cohomology group H l (Z~, TP). 

The group Zp is isomorphic to the cyclic group of  order p - 1, and we can compute H 1 (Z.i, ' T p) 
using some well-known theorems for calculating cyclic group cohomologies, which apply also to 
the calculation of H l (F*, T F) 
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The following material is developed in [3, Sec. VI.7]. We think of  T p as a Z~-module as 
given above. Cocycles are functions cr - Z~ --+ T p, which satisfy cr(aa I) = cr(a) • a.c~(a'). 

Choose a generator r 6 Zp, and define the maps 

(b" T p--+ T p, qb(C) = r . C . C  -1, 

p-2 

: T p --+ T p, 7/(C) = 1 7  rk•c" 
k=0 

Then Proposition 7.1 of[3]  says that H I ( Z ~ ,  T p) ~ ker ( ~ / ) / i m  (qS). 
Ker (~p) can be easily calculated once one observes that the product is over all the elements of  

Zp. Suppose C 6 ke r (~ ) ;  since C = (cl . . . . .  Cp), and the action of  Zp fixes the element Cp, we must 

have Cp p -  l = I, so that Cp must be a p -  ! th root of  unity. Since each nonzero element of Zp is a gener- 
p - I  

ator of the additive group Zp, we will have 7/(C) = (k . . . . .  k, cp ), where k is the product of all the 
ci, i ~ p. Therefore, C 6 ker(7/) if and only i fk  = 1 and Cp is a p - l th root of unity. Thus, we have { , - '  } ke r (~ )  = C ~ T p : C = (cl .. . .  Cp-2, (cl. .Cp-2) -1,  Cp), where Cp = I . On the otherhand, Im 

we h a v e  cplc.r(p) = 1 for any r .  Since Im(4~) ~ TP/ker(~b), we calculate ker(q~). Ker(4~) = 

• { }, * ' i f C i s  * { C o  TP C is r-fixed} = C 6 T p : C is Zp-fixed s i n c e r  i s a g e n e r a t o r o f Z p ,  Z p -  

fixed, it is easy to see that C = (a, a . . . . .  a ,  b), where a,  b 6 T. Therefore, Im(4~) is isomorphic to 

the subgroup of TP consisting of elements of  the form C = (ill,/32 . . . . .  /3p-2, (/31/32.../3p-2)-1, 1). 
This proves the following proposition: 

Propos i t ion  2. 

~-- * -~ Z p - l .  H l(Zp,  T p) ker(g/) / Im(~)  ~- Zp 

As a final note, we observe that the value of M"~ (0), which must satisfy M-'~ (0) p - I  = 1, 
determines which cohomology class the cocycle representative M : Zp --+ T p actually lies in; fur- 
thermore, the pseudodilation representations derived from compatible filters coming from different 
cohomology classes are inequivalent because the restrictions of  these representations to the space 
of constant functions K ~ 12 (Zp) are inequivalent characters• Conversely, those compatible filters 
that come from the same cohomology class are unitarily equivalent representations. 
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