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S t a b i l i t y  T h e o r e m s  f o r  F o u r i e r  
F r a m e s  a n d  W a v e l e t  R i e s z  B a s e s  

Radu Balan 

ABSTRACT. In this paper we present two applications af a Stability Theorem of Hilbert frames to 
nonharmonic Fourier series and wavelet Riesz basis. The first result is an enhancement of the Paley- 
Wiener type cor~tant for nonharmonic series given by Duffin and Schaefer in [6] and used recently 
in some applications (see [3]). In the case of an orthonormal basis, our estimate reduces to Kadec' 
optimal 1/4 result. The second application proves that a phenomenon discovered by Daubechies and 
Tchamitchian [4] for the orthonormal Meyer wavelet basis (stability of the Riesz basis property tinder 
small changes of the translation parameter) actually holds for a large class of wavelet Riesz bases. 

1. Introduct ion and Statement of  the Results 

L e t / 4  be a separable Hilbert  space and I a countable index set. A set o f  vectors 2-  = {fi } i d  
in H is called a (Hilbert)frame if there are two positive constants  0 < A < B < oo such that for all 
x ~ H w e h a v e :  

12 A I I x l l Y < Z l < x ,  f i >  < B[Ixll 2 

i d  

If  A = B we call the frame tight. The constants  A and B are called frame bounds. A set of  vectors 
2- = {3~ }ieI in H is called Bessel set ( i f I  = N, it is called Bessel sequence) if there exists a posit ive 
constant  B > 0 such that for any x 6 H we have: 

~--]~ I < x,  f,. > 12 _< BIIxll 2 

i s I  

If the set 2-  is a (Schauder) basis as well as a frame in H,  then 2-  is called Riesz basis. 

The fol lowing result is the stability theorem for Hilbert frames: 
Stability Theorem for Hilbert Frames [Paley-Wiener-Kato-Christensen] Suppose H a 

separable complex Hilbert space, I a countable index set, and .Y" = {f i}isI  a frame in H with 
bounds A,  B. Consider G = {gi } i d  a family of  vectors in H. l f  one of  the following two conditions 

is fulfilled: 

(Type 1) I < x,  3] - g i  > 12 < ~. 1 <  x,  ~ > 12 + Izllxll ,  Vx ~ n (1.1) 

ieI  
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o r :  

(Type2) c i ( f i - g i )  <_ ~. cifi -[-~ ICi[ 2 , ¥ n > 0 ,  ci E C  (1.2) 

where (l,)n>__o is an increasing sequence offinite subsets of I: I0 C II C 12 C . . .  C I such that 
limn~oo In = I, and )~ + -~a < 1; then {gi }i d is also a frame in H with bounds A(I - L - ~A )2, 

B( I  + Z + ~ ) 2 .  Moreover, if _~ is a Riesz basis then ~ is also a Riesz basis. 

This result was first stated by Paley and Wiener in their celebrated paper [11]. They con- 
sidered only the stability of  Riesz basis and the type 2 condition. Later on, in a different context, 
Kato [9] proved a perturbation theorem which basically incorporates the above theorem. Recently, 
Christensen and Heil [1, 2] established the link between Kato's perturbation theorem and frames in 
both Hilbert and Banach contexts. We are going to use this result in studying the stability of  two 
particular frames under parametric perturbations. 

Consider y > 0 and L 2 [ - y ,  y]  with the usual scalar product inherited from L 2. Consider 
a sequence {3.n}n~Z of  complex numbers and construct the sequence of  functions .T" = {f'~}n~Z 

! e ix"x We call {~','},~Z a frame sequence if Y" is a frame by f~ : [ - Y ,  Y] ~ C, fn(x) = ~ • 

for L 2 [ - y ,  y] ,  in which case .T" is called a Fourier frame. Our problem is the following: given a 
frame sequence of  real numbers {An }n~Z with bounds A, B, find a positive constant L such that any 
sequence of  real numbers {/z,,},~Z with I/zn - ~.n I < ~ < L is also a frame sequence. An extension 
of  this problem will take into account the complex case. 

In the context of  an orthonormal Fourier basis (~.,, = n, y = rr), this problem was first 
considered by Paley and Wiener. By using their stability result, they obtained a first value for L, 

In2 = 0.22 .... Finally, L I = . Later on, Duffin and Eachus in [5] improved this constant to L2 = --h-- 
Kadec in [8] proved that the optimal value of  this constant (called the Paley-Wiener constant) is 
LK = 1 (earlier, Levinson in [10] proved that for 6 = ¼ one can perturb the orthonormal Fourier 
basis to a noncomplete set). 

The stability question of Fourier frames was considered by Duffin and Schaeffer in their seminal 
I ln[1 + ; A ]  (see paper [6]. They used a type (1.1) inequality with/z = 0 and they obtained Los  = 7 

proof  o f  [12, Theorem 13, §4.8]). This value has been used recently by [3] in a quantization error 
analysis of  Weyl-Heisenberg frame expansions. For y = rr and A = B, one can obtain Los  = In___!2 7r 
which is less than Kadec'  estimate. A better estimate for L is given in Theorem 1: 

Theorem 1. 
Suppose {~'n},z~Z a frame sequence of  real numbers for L 2 [ - F ,  y ]  with bounds A, B. Set: 

L(y)  = 4y g 

Consider the sequence {Pn }n~Z of complex numbers Pn = Ixn + i~,, such that SUpn Ilzn - )-hi = 8 < 
L(y  ) and supn I~n I = M < oo. Then, the following two conclusions hold true: 

1. The sequence {P,}~sZ is a frame sequence for L2[ -y ,  y]; 
2. The real sequence {Ix~ },,~Z is a frame sequence with bounds: 

A 1 - (1 - cos y8 + sin ~,8) , B(2 - cos g8 + sin )~S) 2 (1.4) 

We now turn to the statement of  our second application. Consider two positive numbers ao > 1 
and bo > 0 and a function ~ e L2(R). We set H = L2(R), I = Z 2 and define the set of  functions 
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5"*:aob0 = {~Pm,,:aobol(m, n) ~ I} by ~Pmn:aobo(x) = aom/2qJ(aomx - n b o ) .  If the set-T'.:a(,bo is 
a frame in H we call it a wavelet frame; likewise, if it is a Riesz basis in H we call it a wavelet 
Riesz basis. Our problem concerns the behavior of the set -~*:ab when a = a0 and b runs through 
a neighborhood of b0. This problem was first considered by Daubechies and Tchamichian in 1990 
for the Meyer orthogonal wavelet basis (see [4]) where a0 = 2, b0 = 1. They proved that for all b 
in some nontrivial interval [1 - e, 1 + ~], the corresponding ~*:2h constituted a Riesz basis. We 
are going to extend this stability result to a more general class of  wavelet Riesz basis. The precise 
statement is given in Theorem 2: 

T h e o r e m  2. 
Suppose that the function qJ E L2(R) generates a wavelet Riesz basis with bounds A,  B f o r  

some a0 > 1, b0 > 0 (i.e., .~,:~&~ is a Riesz basis with bounds A, B). Furthermore, let £P, the 

Fourier transform o f  ~P, satisfy the following requirement: ~P is o f  class C l on R and both (P and (P' 
are bounded by: 

Iv~(~)l, I~'(~)1 < C f~1~ , ¥~ E R (1.5) 
(1 + t~l)~ 

f o r  some C > 0 and V > 1 -kcl > 1. Then there exists an ~ > 0 such thatfor any b with ]b - b01 < ~, 
the set-Y'*:aob is a Riesz basis. 

2. Proof  of  the Theorems 
Proof  o f  Theorem 1 
By Theorem II from [6] (see also [12, Theorem 14, §4.8]) we need to prove Theorem 1 only 

for real sequences Pn = IZn • On the other hand, if we scale the sequence, we can reduce the problem 
to the case y = ~r. Indeed, if {~.,,}n~Z is a frame sequence for L2[-V,  y], then {~-,'2 = × -~)~n}nE z is a 

_iX, x in the frame sequence for L2[- r r ,  Jr] with the same bounds (in the former case f, ,(x) = v~-~e , 

latter f ' ( x )  = l__L_vT~eiL'x). Thus, L ( y )  = ~-L(rr) and we have to prove: 

1 1 arcsin (_~2 (1 _ ~/-~-))  (2.1) L(rr) = 4 rr 

Observe that this is consistent also with the frame bounds because ?'3 = zra'. 
To prove (2.1), we shall use Kadec' estimations from his theorem and then the Type 2 form of  

the Stability Theorem with ). = 0. Let N ~ N and c,  ~ C, n ~ IN be arbitrary. Set 3, = Izn - Xn. 
We obtain: 

U= ~ c n ( - - -~e i)~"x t-~eilZnx ~ 1 }n~tN • ( I  ei"x ) I ,z~lu ~/2.rr / = ~ cne 'x"x -- (2.2) 

By expanding 1 - e  ia"x into a Fourier series relative to the orthogonal system { 1, cos vx,  sin(v - ½)x}, 
v = I, 2 . . . .  we obtain: 

1 - e iSnx ( sin zr&,) k ( - 1 ) v 2 ~ , , s i n z r ~ n c o s ( v x )  

v=l 7g(V2 -- &n2) 

+ i ~-'~. ---~v --  - ~  7 8,-~-) sin v -  x 
v=l 

(2.3) 

We plug (2.3) into (2.2), we change the order of  summation, we use the triangle inequality, and then 
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we use the bounds II cos(ux)~0(x)ll _< [koll and II sin((v - ½)x)~o(x)l[ < Ik011. We obtain: 

s i n . , .  II -"7- I c,,e II + ~ 26n sin rr6n ix.x 
: II v = ,  , 7r(v2-a"2)cne 

Now we use that {~n}nsZ is a frame sequence with upper bound B. Therefore. each norm can be 
bounded as: 

I[ ~iNa"cnei~'nxll < ~/-Bl]{anCn}ll < ~/-Bsuptanl n 

and we have: 

I sin rr,~,, 
1 7r8,, 

28n sin 7ra,, 

-_ 82) 

28n COS rrSn 

7/'((1: - -  1 )2  _ an 2) 

sin ~r8 
- ~ 8  

28 sin zr8 ,< 
- r r ( v 2 _ 8 2 )  

28 cos zr8 < 
- -  l rr((u - ~)- - 82) 

(the last inequality holds because 8 < ¼) and thus: 

U <_.v/-B(Re(1-eiZr'~)-lm(1-eiZra)) C~lulCn[2 ) 
1/2 

o r :  
1/2 

Now we can apply the Stability Theorem (Type 2) with L = 0 and/x = , / B ( I  -- cos zr8 + sin rrS). 

turns into/z < ~ or I - cos zr8 + sin rr8 < V/A and then, by a little The condition o f  that theorem 

trigonometry we get: 

8 < L = 4  Jr 

tz 2 The frame bounds for {/z,,},,~ Z come from A(1 - ~ )  and B(1 + ~ ) 2 .  This ends the proof. 

To prove Theorem 2, we shall use the Type 1 criterion of stability together with an upper bound 
estimation given by Daubechies in [4] Theorem 2.7, 2.8. This estimate reads as follows: Consider 
f 6 L2(R) and, for some a > 1, b > 0 construct the set of functions .~f:at, as before. Then, a 
sufficient condition for .~'l':at~ to be a Bessel set for L2(R) is that: 

f 

2;'r ~ sup 2 f(a"~) 2 
B := ~ / l<Vg]<a m~Z 

< oo (2.4) 



Stability TheoremsJbr Fourier Frames and Wavelet Riesz Bases 503 

where f l (s)  = supL<l~l< a Y'~-,,sZ I f ( a ' ~ ) l  • I f (am~ + s)l. Moreover, the constant B in (2.4) is an 
upper bound of  the Bessel sequence. A sufficient condition for (2.4) to hold for is that the function 

f( ,x)  has gooddecay,  for instance I f (~) l  < C I~ l"  fo r some ?' > I + ~  > I a n d C  > 0. 
- O+I~lP" 

Now we return to the proof of  the theorem: 

Proo f  o f  Theorem 2 
Consider tp and a0 > 1, bo > 0 and b > 0 as in hypothesis and denote by U/, : LZ(R) --+ 

/ ~  yt" b x- ~ L2(R) the unitary operator (U/~f ) (x )  = ~ / g ~ , g  ,. We define qb = U~,qJ, or more specific 

/-~/qj. b . • (x)  = ~ / ~  tt-;2,,x). One can easily check that Ui,~Pmn:aol, = @mn:aol,(j; therefore, Uh maps 5%:aob 

into 5r.;aol, o unitarily. Thus, -Y'*:ao/~ is a Riesz basis (frame) if and only if 5r.:ad,o is a Riesz basis 
(frame). Moreover, they have the same bounds. In order to prove that -Y*:aob is a Riesz basis, we 
show that ~'*:ad, c~ is a Riesz basis by comparing it with U , : , d ~ ,  We note that: 

~lmn:aobo -- ~mn'aobo = ( ~ -- ~)mn:aobo 

Therefore, the condition (1. l) with )~ = 0 is equivalent with the condition 5r._¢:ao/,o to be a Bessel 
set with upper bound less than A, the lower frame bound of the Riesz basis -Y'*:aol~.. 

Let us denote by B,~.y the constant B given by (2.4) for f ( ~ )  = I~r~ It is simple to 
( l + [ ~ l ) r  - 

check that t+ (~)  @(~)l < C, I~1" - _ t ~ .  Therefore, an upper bound for the Bessel set .Y',_¢:aobo is 

given by CI, Bu.×. On the other hand, using the Ascoli-Arzeld. lemma and the hypotheses on +(~)  
i (1+1~[) 7 ~ (l+l~[)r and '-P (se), we obtain that gl~(~) = ~ @ ( ~ )  conver=es un i formly  to gho(~) = ~ ¢ ( ~ )  as 

b ~ bo. Thus, we may choose Cb to depend continuously on b around b0 and Cl, o = 0. Then, for 
some neighborhood of b0 for which ChBuy < A we may set /z = ~ in (1.1) and we obtain 
that -Y'O:aoho is a Riesz basis. Now the proof is complete. 

3. Conclusions 
The first theorem proved in this paper gives a better stability bound of  Fourier frames than 

known previously in literature. This result covers also Kadec's theorem and extends its conclusion 
to Fourier tight frames. One can check that: 

47"n" _ l T a r c s i n  1 1 -  > ~ I n  1 +  

which means that the stability margin given by Theorem 1 is larger than LDS. 
The second result shows that wavelets Riesz bases are stable under translation parameter 

perturbations provided some mild regularity and decaying conditions are satisfied by the wavelet. In 
particular, it applies also to Meyer 's  orthogonal wavelet basis and thus extends a previously known 
result. 
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