K. Niemi, P. Vuoristo, and T. Mäntylä

Alumina, $Al_2O_3 + 3$ to 40 wt% TiO₂, and $Al_2O_3 + 40$ wt% ZrO₂ coatings were deposited by atmospheric plasma spraying (APS) and detonation gun spraying (DGS). The coatings were evaluated by optical microscopy, microhardness measurements, and X-ray diffraction. Wear resistance of the coatings was evaluated by rubber wheel sand abrasion and particle erosion test methods. Detonation gun-sprayed coatings exhibited more homogeneous microstructures and somewhat higher microhardness than corresponding plasma-sprayed coatings. Small additions of TiO₂ (3 wt%) improved both the abrasion and erosion wear resistance, whereas 40 wt% TiO₂ significantly decreased the erosion wear resistance of both APS and DGS coatings. Alumina + 40% ZrO₂ coatings exhibited the best abrasion wear resistance of both APS and DGS coatings, but the erosion wear resistance of these coatings was lower than that of the Al₂O₃ and Al₂O₃ + 3 wt% TiO₂ coatings. The best abrasion wear resistance of the coatings studied was obtained with DGS Al₂O₃ + 40 wt% ZrO₂ and Al₂O₃ + 3 to 40 wt% TiO₂ coatings. These coatings exhibited lower wear rates than bulk Al₂O₃. The best erosion wear resistance was obtained with the DGS Al₂O₃ + 3 wt% TiO₂ coatings however, it exhibited a higher wear rate than bulk Al₂O₃. In general, detonation gun-sprayed coatings showed significantly enhanced abrasion and erosion wear resistance than the corresponding plasma-sprayed coatings.

1. Introduction

THERMALLY sprayed alumina-based coatings are widely used in various applications. Atmospheric plasma spraying (APS) is an economical way to deposit these coatings and is satisfactory in many cases. The properties of alumina-based coatings can be influenced by alloying. For example, an addition of TiO₂ to Al₂O₃ increases toughness and decreases porosity of coatings deposited by plasma spraying (Ref 1). In the case of plasmasprayed alumina-titania coatings, the abrasion wear resistance tested using the SiC-paper grinding method has been found to increase with small additions of TiO2 (3 wt%), whereas addition of 40 wt% TiO₂ decreased wear resistance (Ref 2). Zirconia has also been reported to increase the toughness of Al₂O₃ based coatings (Ref 3). In addition, the characteristics, e.g., abrasion wear resistance, of alumina-based coatings can be significantly higher when these coatings are deposited by high-velocity combustion processes (HVOF). Detonation gun spraying (DGS) is a promising HVOF technique used to deposit high-quality oxide ceramic coatings, because under detonation conditions the flame temperature is about 1000 °C higher than in a free burning gas mixture of acetylene and oxygen gas. Thus, it is possible to spray high-melting-point ceramics, e.g., Cr₂O₃ and ZrO₂ by DGS methods, and ceramic coatings with extremely good wear characteristics (Ref 4-7) have been produced.

In the present study Al_2O_3 , $Al_2O_3 + 3$ to 40 wt% TiO₂ and $Al_2O_3 + 40$ wt% ZrO₂ coatings were deposited by APS and DGS

Key Words: Alumina materials, atmospheric pressure plasma spraying, detonation gun spraying, wear and erosion

K. Niemi, P. Vuoristo, and T. Mäntylä, Tampere University of Technology, Institute of Materials Science, P.O. Box 589, FIN-33101 Tampere, Finland.

on low-carbon steel substrates. The microstructure, microhardness, and phase structures of the coatings were studied, and wear resistance was evaluated by the dry sand rubber wheel abrasion and particle erosion tests. The wear characteristics of the deposited APS and DGS coatings were compared to those of bulk alumina.

2. Experimental Procedure

Alumina and $Al_2O_3 + TiO_2$ powders selected for this study were supplied by Hermann C. Starck (Germany) and L + 40 wt% ZrO₂ powders by Plasma-Technik AG (Switzerland). Powder details are presented in Table 1. The coarser powders were used for APS and finer powders for DGS. The coatings were deposited onto low-carbon steel substrates without bond coatings.

Deposition of the coatings was performed at the Institute of Materials Science in Tampere University of Technology (Finland), except for plasma spraying of $Al_2O_3 + 40$ wt% ZrO₂ coatings, which were deposited in Plasma-Technik AG (Swit-

Table 1 Spray Powder Details

Powder composition	Commercial designation	Particle size, µm
Al_2O_3 (fused)	Amperit 740.0	5.6-22.5
2 3 4 7	Amperit 740.1	22.5-45
$Al_2O_3 + 3\%$ TiO ₂ (fused)	Amperit 742.0	5.6-22.5
2 5 2 2 7	Amperit 742.1	22.5-45
$Al_2O_3 + 40\%$ TiO ₂ (ag- glomerated)	Amperit 746.0	5.6-22.5
8	Amperit 746.3	5.6-45
$Al_2O_3 + 40\% ZrO_2$ (fused)	Plasmatex F0036	5.6-22.5
·/	Plasmatex PT 12	10.0-40.0

zerland). Plasma spraying was performed with Plasma-Technik A3000S 4/2 equipment using argon and hydrogen as plasma gases. The specimens were grit blasted with coarse alumina just before the coating process.

Detonation gun spraying was performed with Perun P equipment (Ref 8) developed in the Institute for Superhard Materials of Ukrainian Academy of Sciences and E.O. Paton Electric Welding Institute in Kiev. Technical data for the Perun P detonation unit are given in Table 2. The spraying conditions and parameters were optimized at the Institute of Materials Science in Tampere University of Technology. The explosive gas mixture used in this study was acetylene + oxygen, and spraying was carried out with a short barrel. The coating thickness was about 300 µm for both coating methods.

Microstructural evaluation of the coatings was carried out using optical microscopy. Microhardness values (average of ten tests) were measured with the Vickers pyramid method using a weight of 0.2 kg. Phase analysis of the alumina-zirconia coatings was performed by X-ray diffraction (XRD).

Abrasion wear resistance of the coatings was evaluated using rubber wheel abrasion test equipment (Fig. 1). The specimen for abrasion testing was $20 \times 20 \times 50$ mm, and the coating, 300 μ m in thickness, was deposited on one long side of the specimen. Dry quartz sand with a grain size of 0.1 to 0.6 m was used as an abrasive. Five samples were tested simultaneously over a test time of 60 min. Each sample was tested 12 min in each of the test

Table 2 Technical Data of Perun P Detonation Gun G
--

6.6 or 3.3 s^{-1}	
660 or 1100 mm	
21 mm	
2	
3 to 10 µm	
·	
propane-butane, acetylene or hydrogen	
oxygen	
air or nitrogen	
air or nitrogen	
6.6 or 3.3 s ⁻¹ 660 or 1100 mm 21 mm 2 3 to 10 μm propane-butane, acetylene or hydrogen oxygen air or nitrogen air or nitrogen	

positions to eliminate differences in wear characteristics that might arise from different positions of the sample holders. Weight losses were measured after each 12 min to a precision of 0.001 g. The surface speed of the rubber wheel was 1.64 m s^{-1} , which resulted in a total wear length of 5904 m in each 1-h run. Samples were pressed against the rubber wheel with a force of 13 N.

The erosion wear resistance of the coatings was studied with a centrifugal accelerator in which 15 samples could be tested simultaneously. The samples were $15 \times 20 \times 4$ mm. Quartz sand (see the abrasion test above) was used as an erosive. Weight losses were measured to a precision of 0.0001 g. The velocity of the erosive particles was 80 m s⁻¹, and the wear loss of the coatings was studied at impact angles of 30 and 90°.

3. Results and Discussion

Optical microscopy studies of the coatings revealed that the porosity level in the DGS coatings was significantly lower than

Fig. 2 Optical micrograph of Al₂O₃ coating deposited by (a) atmospheric plasma spraying and (b) detonation gun spraying

nuuc

that in the coatings prepared by APS. Examples of the microstructures of the coatings are presented in Fig. 2 and 3.

The average microhardness values of the coatings are presented in Table 3. The microhardness values of the DGS coatings are about 100 to 200 HV (0.2 kg) units higher than those of the corresponding APS coatings.

The XRD analysis results of $Al_2O_3 + 40$ wt% ZrO₂ powders and coatings are presented in Table 4. The $Al_2O_3 + 40$ wt% ZrO₂ powder consists of α -Al₂O₃ and monoclinic ZrO₂ (*m*-ZrO₂) phases. The α and γ phases of alumina are present in the coatings, and part of the *m*-ZrO₂ phase has transformed into the tetragonal-ZrO₂ (*t*-ZrO₂) phase. The amount of *t*-ZrO₂ is higher in the DGS coating than in the APS coating. Therefore, the DGS coating is favored for wear applications, because *t*-ZrO₂ is as-

Table 3Mean Microhardness Values of Plasma Sprayedand DGS Alumina, Alumina-Titania, and Alumina-ZirconiaCoatings

Coating	Average microhardness , HV(a)		
composition	Plasma sprayed	Detonation gun sprayed	
Al ₂ O ₃	780 ± 98	1023 ± 52	
$Al_2O_3 + 3$ wt% TiO ₂	881 ± 125	990 ± 70	
$Al_2O_3 + 40$ wt% TiO ₂	827 ± 72	896 ± 62	
$Al_2O_3 + 40$ wt% ZrO_2	967±93	1030 ± 57	
(a) 0.2 kg			

sumed to have better abrasion wear resistance than the m-ZrO₂ phase.

Rubber wheel abrasion test results of the coatings are presented in Fig. 4. The abrasion wear resistance of the plasma-sprayed $Al_2O_3 + TiO_2$ coatings is improved as the TiO_2 content increases. The $Al_2O_3 + 40$ wt% ZrO_2 coating exhibited the best abrasion wear resistance of the tested APS coatings. Also, in the case of DGS coatings, the abrasion wear resistance of the Al_2O_3 + TiO_2 and $Al_2O_3 + 40$ wt% ZrO_2 coatings was better than that of the pure Al_2O_3 coating. The best abrasion wear resistance was obtained with the DGS $Al_2O_3 + 40$ wt% ZrO_2 coatings, but Al_2O + 3 wt% TiO_2 and $Al_2O_3 + 40$ wt% TiO_2 coatings exhibited similar high wear resistance.

A significant difference between APS and DGS coatings was observed by comparing the rubber wheel abrasion wear test results. The weight losses of the APS coatings were about sixfold greater than the corresponding DGS coatings. Moreover, the abrasion wear resistance of DGS $Al_2O_3 + 40$ wt% ZrO_2 , $Al_2O_3 +$ 3 wt% TiO₂ and $Al_2O_3 + 40$ wt% TiO₂ coatings is improved over that of bulk alumina (97.5% Al_2O_3) (Fig. 5).

Particle erosion test results of the coatings are presented in Fig. 6. The wear loss of both APS and DGS coatings decreases with small additions of TiO₂ (3 wt%), but increases with 40 wt% TiO₂ additions at both impact angles (90 and 30°). Erosion wear losses of the APS and DGS $Al_2O_3 + 40$ wt% ZrO₂ coatings (Samples 3 and 7) were higher than with Al_2O_3 and $Al_2O_3 + 3$ wt% TiO₂ (samples 1, 2, 5, and 6) at both impact angles. In general, erosion wear losses were higher with the impact angle of

 Table 4
 Summary of XRD Analysis of Al₂O₃ + 40 wt.% ZrO₂ Powder and Coatings

		Pha	ses	
Powder/coating	$\alpha - Al_2O_3$	$\gamma - Al_2O_3$	t-ZrO ₂	<i>m</i> -ZrO ₂
Feedstock powder	****			****
APS processed	**	***	**	***
DGS processed	**	***	***	**

***** ≥ high. ** ≥ low

Fig. 3 Optical micrograph of Al₂O₃ + 40 wt% ZrO₂ coating deposited by (a) atmospheric plasma spraying and (b) detonation gun spraying

Fig. 4 Rubber wheel abrasion test results of atmospheric plasma sprayed (APS) and detonation gun sprayed (DGS) alumina, alumina-titania and alumina-zirconia coatings. The weight loss was obtained after 1 h test, which equals wear length of 5904 m. Samples 1 to 4 were manufactured by APS and samples 5 to 8 by DGS methods. (1) Al₂O₃, APS. (2) Al₂O₃ + 3% TiO₂, APS. (3) Al₂O₃ + 40% TiO₂, APS. (4) Al₂O₃ + 40% ZrO₂, APS. (5) Al₂O₃ + 40% ZrO₂, DGS. (6) Al₂O₃ + 40% ZrO₂, DGS. (7) Al₂O₃ + 40% TiO₂, DGS. (8) Al₂O₃ + 40% ZrO₂, DGS.

Fig. 5 Comparison of abrasion wear resistance of bulk alumina $(97.5\% Al_2O_3)$ to that of DGS alumina-based coatings. The weight loss was obtained after 1 h test, which equals wear length of 5904 m. (1) Bulk Al₂O₃. (2) DGS Al₂O₃. (3) DGS Al₂O₃ + 3% TiO₂. (4) DGS Al₂O₃ + 40% TiO₂. (5) DGS Al₂O₃ + 40% ZrO₂

Fig. 6 Particle erosion test results of APS and DGS alumina, alumina-titania, and alumina-zirconia coatings. The weight loss was obtained after using 1 kg of quartz sand as an erosive with a velocity of 80 m s⁻¹ at impact angles of (a) 90°, and (b) 30°. Samples 1 to 4 were manufactured by APS and Samples 5 to 8 by DGS methods. (1) Al₂O₃, APS. (2) Al₂O₃ + 3% TiO₂, APS. (3) Al₂O₃ + 40% TiO₂, APS. (4) Al₂O₃ + 40% ZrO₂, APS. (5) Al₂O₃, DGS. (6) Al₂O₃ + 3% TiO₂, DGS. (7) Al₂O₃ + 40% TiO₂, DGS. (8) Al₂O₃ + 40% ZrO₂, DGS

 90° than with 30° , as could be expected in the case of ceramic materials. With Al_2O_3 and $Al_2O_3 + 3$ wt% TiO₂ coatings, the erosion wear losses of the APS coatings were about twice as high as with DGS coatings, but in the case of $Al_2O_3 + 40$ wt% TiO₂ the wear losses were significantly higher and about equal with both coating methods used. As in the rubber wheel abrasion test, the DGS $Al_2O_3 + 3$ wt% TiO₂ indicated the best erosion wear resistance of the studied coatings. The erosion wear resistance of bulk Al_2O_3 is compared to the coatings with the best erosion wear resistance in Fig. 7. The erosion wear resistance of the studied coatings is lower (i.e., a higher wear loss) than that of bulk Al_2O_3 .

4. Conclusion

Alumina, $Al_2O_3 + 3$ wt% TiO₂, $Al_2O_3 + 40$ wt% TiO₂ and $Al_2O_3 + 40$ wt% ZrO₂ coatings deposited by atmospheric plasma spraying and detonation gun spraying were studied and compared with each other. Detonation gun-sprayed coatings exhibited low-porosity microstructures and higher microhardness values than corresponding plasma-sprayed coatings. Abrasion

Fig. 7 Comparison of erosion wear resistance of bulk alumina (97.5% Al₂O₃) to DGS alumina-based coatings. (1) Bulk Al₂O₃. (2) DGS Al₂O₃. (3) DGS Al₂O₃ + 3% TiO₂. (4) DGS Al₂O₃ + 40% ZrO₂. The weight loss was obtained after using 1 kg of quartz sand as an erosive with a velocity of 80 m s⁻¹ at the impact angle of 90°.

wear resistance of the coatings as tested with the rubber wheel abrasion test and particle erosion tests showed that the wear resistance of the plasma-sprayed and detonation gun-sprayed coatings is improved with small additions of TiO_2 , whereas 40 wt% TiO_2 significantly decreases the erosion wear resistance. Alumina + 40 wt% ZrO_2 coatings showed the best abrasion wear resistance among both APS and DGS coatings. On the other hand, erosion wear resistance of these coatings was lower than with Al_2O_3 and $Al_2O_3 + 3$ wt% TiO_2 coatings.

Detonation gun-sprayed $Al_2O_3 + 40$ wt% ZrO_2 , $Al_2O_3 + 3$ wt% TiO_2 and $Al_2O_3 + 40$ wt% TiO_2 coatings exhibited the best abrasion wear resistance of the coatings examined and were also more wear resistant than bulk Al_2O_3 .

Detonation gun-sprayed $Al_2O_3 + 3$ wt% TiO₂, Al_2O_3 and $Al_2O_3 + 40$ wt% ZrO₂ coatings exhibited the best erosion wear resistance of the studied coatings; however, these coatings exhibited a higher wear rate than bulk Al_2O_3 .

The detonation gun-sprayed coatings tested in this program were significantly better in abrasion and erosion wear resistance than the corresponding plasma sprayed coatings. Detonation gun sprayed alumina-based coatings, therefore, have benefits over atmospheric plasma sprayed coatings in applications that demand high abrasion and erosion wear resistance.

Acknowledgments

The authors wish to thank Dr. G. Barbezat of Plasma-Technik AG (Switzerland) for the deposition of the plasma-sprayed $Al_2O_3 + 40$ wt% ZrO₂ coatings.

References

1. S. Safai, "A Microstructural Investigation of Plasma Sprayed Metal and Oxide Coatings," Doctoral thesis, State University of New York, Stony Brook, May 1979, University Microfilm No. 7919359

- H.L. Filmer, J. Hochstrasser, A.R. Nicoll, and S. Rangaswamy, Plasma Spray Deposition of Alumina-Based Ceramic Coatings, *Ceram. Bull.*, Vol 69 (No. 12), 1990, p 1955-1958
- F. Beltzung, G. Zambelli, E. Lopez, and A.R. Nicoll, Fracture Toughness of Plasma Sprayed Ceramic Coatings, *Thin Solid Films*, Vol 181, 1989, p 407-415
- 4. P. Vuoristo, K. Niemi, and T. Mäntylä, Hard Oxide Coatings Deposited by Plasma and Detonation Gun Spraying Techniques, *Proc. 2nd Plasma-Technik-Symp.*, Lucerne, Switzerland, S. Blum-Sandmeier, H. Eschnauer, P. Huber, and A.R. Nicoll, Ed., Plasma-Technik AG, Wohlen, Switzerland, 1991, p 323-331
- K. Niemi, P. Vuoristo, and T. Mäntylä, Chromium Oxide Coatings Deposited by Plasma Spraying and Detonation Gun Spraying, *Proc. 2nd Plasma-Technik-Symp.*, Lucerne, Switzerland, S. Blum-Sandmeier, H. Eschnauer, P. Huber, and A.R. Nicoll, Ed., Plasma-Technik AG, Wohlen, Switzerland, 1991, p 311-322
- K. Niemi, P. Vuoristo, A. Mäkelä, P. Sorsa, and T. Mäntylä, Comparison of Plasma Sprayed and Detonation Gun Sprayed Alumina-Magnesia and Alumina-Titania Coatings, *Proc. Fifth Int. Conf. Surface Modification Technol.*, T.S. Sudarshan and J.F. Braza, Ed., The Institute of Materials, Birmingham, UK, 1992, p 571-580
- P. Vuoristo, K. Niemi, and T. Mäntylä, On the Properties of Detonation Gun Sprayed and Plasma Sprayed Ceramic Coatings, *Thermal Spray: International Advances in Coatings Technology*, C.C. Berndt, Ed., ASM International, 1992, p 171-175
- Yu. S. Borisov, E.A. Astakhov, and V.S. Klimenko, Detonation Spraying: Equipment, Materials and Applications, Proc. Int. DVS-Conf., Thermal Spraying Conf., TS '90, 1990, Essen, FRG, p 26-31
- 9. "Standard Practice for Conducting Dry Sand/Rubber Wheel Abrasion Tests," ASTM G65-85, ASTM, 1985