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J a c o b i  P o l y n o m i a l  E s t i m a t e s  a n d  
Fourier-Laplace Convergence 

Gavin Brown and Kunyang Wang 

1. Introduction 
Wang has shown in [5] how to reduce convergence problems for Fourier-Laplace series on 

the sphere to the consideration of a certain equiconvergent operator defined by convolution with 
certain Jacobi polynomials.  Here we derive new estimates for Jacobi polynomials with complex 
indices and use Stein's interpolation theorem to obtain LP estimates for the corresponding maximal 
equiconvergent operator. This leads, in turn, to new results for almost everywhere convergence of  
Four ier -Laplace  series. 

The Jacobi polynomials,  P(kC~'~)(x) with at > - I , / 3  > - 1 ,  can be defined by (see [1, p. 62], 
formula (4.21.2)) 

F ( a t + k + I )  ~k cJ~F(at+l)F(at+/3+k+j+t)  (x-2 i )  j py,(x  
F(at + 1)F(k + 1) . ^  F(at + j + 1)r'(at + / 3  + k + l)  

j LI "~. 

This formula obviously also gives the definition for Jacobi polynomials with complex indices at,/3 
such that 3~at > - I ,  fit/3 > - 1 .  These are the polynomials we must estimate but our purposes 
require us to consider only certain types of  complex index. In fact, we will prove the following. 

Theorem 1. 
Letat E [0, 2n],/3 E [0, n ] , n  E N, /z  = ½ + i v ,  r E ~ .  Then fork E ~I 

IP~'+u'~)(cos0)l _< Bne31tlktr+½, 0 < 0 < 2k -1 ; (1.1) 

[P~=+u'~)(cosO)I <_ Bne31rlk-½0-~-l(zr - 0) - 8 - 1 ,  2k -1 < 0 < Jr - k -1 ; (1.2) 

IP~+u'~)(cos0)l < Bne31rlk#+½, J r - k  -1 < 0  < n ' . ( 1 . 3 )  

Using this theorem and applying Stein's interpolation theorem (see [2]) we will prove the 
following. 

Theorem 2. 
Letn > 3, f2n = { ( X l , " ' , X n )  E Nn : x 2 + . . .  + x ~  = 1 } . / f f  E Llog2L(f2n), i.e., 

f If(x)l(1 +log 2 If(x)l)dx < c¢ 
t l  
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Then 

lim S u ( f ) ( x )  = f ( x ) ,  a.e. (1.4) 
N--+ c~ 

where SN ( f )  denotes the Cesaro means at critical index o f  the Fourier-Laplace series o f f .  

We will prove Theorem 1 in Section 2. To prove Theorem 2 we will make use of  the equicov- 
ergent operator of  Cesb.ro means which was dicussed in detail in [5]. This operator is convenient 
for convergence problems. We will investigate the corresponding maximal operators in Section 3. 
Then, by the results in Section 3 we complete the proof of Theorem 2 in Section 4. 

2. The Proof  of  T h e o r e m  1 
The following formula is obtained by analytic extension from the formula (3.9) of  [3, p. 20]. 

2t tF(~ + / z  + 1)(I + x)"+k+lP(kU+U'~)(1) p(C~+U,~) (x ) = 
F(ot + 1)F(/x)(1 - x) a+tz Pk('~'/~)(1) 

x (1 - y)a p(a,~)(y)(y _ x) t~- ldy  (2.1) 

For simplicity, we write 

sin cos  

Then, by (2.1) we have for 0 < 8 < Jr and/z = ½ + i r ( r  e R) 

F ( o t + p . + k +  l) fo e f(O,___t) i P(a 'g)(c°s t )dt  (2.3) 
P:a+u't~)(c°s 0) = 2~F(p . )F (a  + k + 1) (cost  - c o s 0 ) :  - i t  

Now we apply the formulae 1.3.(2) and 1.3.(3) of  [4], which state 

r (u  + v) U ~  1 .-L- v 
-- e - y  I [ 7-Z---~---e j+l, u > 0, v > 0 (2.4) 

P(u) jx~ 1 + u+--7 

oo ¢ 1)2 
1 _ 1 H 1 + - -  u > 0 ,  ve lR (2.5) 

I r (u  + iv)l r ( u )  j=0 (J + u)2, 

By (2.4) we have 

log - -  
F(u + v) 

F(u) 
= - y v + ~  v + log  

j=0 J S r u ~ - V  

Write 
1) 

f ( x )  = - -  
x + l  

Noticing u > 1, v > 0 we have 

d v 

x + u  
+ l o g  , x > 0 .  

x + u + v  

Hence, we get 

U 
-'~x f ( x )  = (x + 1) ------------5 + (x + u)(x -F u + v) < O. 

jo yo f ( x ) d x  < f ( j )  < f(O) + f ( x ) d x  . 
j=O 
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Integrating by parts we find 

fo°° f (x)dx = - fo~X ff--T f (x)dx = - v  + u l o g  - -  
u + v  

u 
+ v log(u + v).  

From these we derive that 

e - l - Y v ( u  + U) v < - -  r(u + v) 
r(u) 

<_ eO-Y)°(u + v) °, u > l ,  v > 0 .  (2.6) 

Similarly, by (2.5) we have 

1 
log 

[I'(u + iv)l 
1 + E l ° g  1 + - -  

- -  l o g  ~ j = 0  

V 2 

(j  + U) 2 " 

Since 

Z log I + 
j=0 

V 2 

( j  + u) 2 
< ~/ v2 l fo ° °  ( 1;2 ) log 1 + ~ - ~ + ~  log l + ~ ( x  dx 

v2 fo c~ v2 
log 1 Jr- ~ -q- (x -t- u )  2 '1- v 2 dx 

we get 

/ v2 l u  "-'~ ,P(u q-1 iv), I + F(u--'--S < < 1 + - -  - -  

From (2.3), (2.6), and (2.7), we derive 

O 2 1 

u 2 r'(u) 
e~ Ivl, u > 0, v E R .  (2.7) 

ip(ka+iz,#)(cosO)[ < Bnkle21rl fO 0 f(O, t) a'#)(cost)dt - -  1 . e (k " 
( C O S  t ^ -  ~ - t  r - -  c o s  t t)  

(2.8) 

Then from the well-known estimate (see [1, p. 197]) 

2 
['k°(a'~)(c°st)[ - < Bnk~' 0 < t < -k 

we get (I.1). 

When 2k - l  < 0 < Jr, we break the integral on the right side of (2.8) into two parts, fo k-I and 

f°_l, and write them as 11 and I 2, respectively. 
For the first part we note that 

0 
cos t - - cosO  > c o s - - - c o s O  > BO 2, 

2 
0 < t  < 2 k  -1 < 0  < z r .  

Then we have 

= --jO ~-I f__(O, t__.2) I ,r P(a'~)(c°st)dt 
(cos t - cos 0)~ -~ 

f 0  k - l  t 2 a + l  dt 1 
<- B"k~ 02~+~ (0 - t)½ -< B . ~ + ~ .  (2.9) 
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In order to estimate 12, we apply the following asymptotic estimate for Jacobi polynomial with 
real indices, which is the formula (8.21.18) in [1, p. 192]. 

~/ 1 c o s ( N O - y ) + r ( ~ , / 3 ,  k,O)(ksinO) -1 1 1 
Pk(a 'g)(cos0)= ~ (sin0_~c~+½(cosO)g+½ , ~ < 0 < j r - ~ ,  (2.10) 

2/ 
a+B+l 1 rr where N = k + 2 , Y = (~ + 7)~  and r(ct,/3, k,O) satisfies 

Ir(ot,/3, k ,O)l<Bn,  or,/3 6 [0,2n], k -1 < 0  < j r - k  -1 . (2.11) 

We see that 

f o f(O, t) cos(Nt  - y) I 2 = (7rk)-½ - -7 - -7 - . - - - - - - - -7"  d t+R(~ , f l ,  k,O) (2.12) 
-1 ( c o s t -  cos0)~ - ' r  (sin ~)a+~ (cos ~)t~+½ 

where 

R(ot, fl, k, O) = (jrk )-½ f (O, t) , r(et, /3, k, t) 
-l (COSt ~ C-"OS"-0)~-i~ k s in t  (sin ~)~+½ (cos ~)/~+½ dr"  (2.13) 

By (2.2) and (2.11), we get for 2k -1 < 0 < Jr - 2k - l  

Bn fo 0 dt IR(ot,/3, k, 0)1 < , . (2.14) 
k (sin 0~'~+' (cos o)fl ~(cost cos0)~ ~j - cos - 

By an easy calculation we know 

Hence, we obtain for 2k -1 < 0 < Jr - k -1 

Write 

dt Jr 

cos ~(cos t - cos 0)½ v/-~ cos o 

IR(u,/3, k, 0)1 _< 
k (sin 3,°~a+l (cos o)#+1 " 

_/' ~) t'~a+½ ( ~ t )  -(2'~+/~+2k+ ~ +i2r) 
h(t) = [sin cos 

and write the integral on the right side of  (2.12) as Fk. Then 

( ~ ) 2 ~ + 2 k + 2 (  O~-(2a+l+i2r, fO h(t) c o s ( N t _ y )  
Fk = cos - sin 2 /l jk_l . . . . .  ~---7 dt . 

(cos t - cos 0) ~-~r 

If  we write a = a + 1, b = 2~ + /3  + 2k + 5, then we have 

d (sin t) a-I (sin t) a+~ 
~-~h(2t) = a (cos t) b-l+i2¢ + (b + i2r )  (cos t) b+l+i2r " 

Because b > 2, we have [b + i2r] < be Irt and hence 

I d h ( t ) l  < elr ldlh( t ) , .  

(2.15) 

(2.16) 
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Wri te  

f O-k-I h(t) c o s ( N t  - y )  
Uk(O) = 

dk-1 (COSt --  C0S0) l - i t  

Integrat ing by parts we have 

Uk(O ) -~. N - I  h ( t ) s in (Nt -y )  O-k  -1 
(cos t_cos 8) l - i t  k -1 

+ N -I ¢O-k-t s i n ( N t  - y) { h ' ( t )  (½-ir)h(t)sint 
,]k - I  ~ (cost_cosO)½_ir "~- 3 ir / dt . (cos t -cos  0) 7 - 

By (2.16) we have 

re-k-' ( h'(t) (1 _ir)h( t)s int  ~dt  
s i n ( N t  - y )  - - -  + - - - -  < 

a -  ( c o s t  - cos0)½ - i t  ( c o s t  - cos  0 ) 3 - i t  / - 

°-k-~ d Ih(t) l  Ih(t)l  ° -k-~  
f 2e lrl dt = 2e Irl 

Jk- I  dt ( c o s t  - cos0)½ ( c o s t  - cos0)½ k- 

Meanwhi l e ,  we have 

fo h(t) c o s ( N t  -- y) dt . 
dt, vk(O) = -k-I ( c o s t  -- c o s 0 )  l - i ' c  

fo dt < B 
Ih(t)l  [h(0)l 

I v k ( 0 ) l  < ~ _ ~ .  
- - k - ~  ( c o s t  - -  c o s 0 ) ~  

C o m b i n i n g  (2.17), (2.18), and (2.19) we get  

I&[<Bnelr ' (  k~sinO(sinO)~+½(cosO)~+½) -1 

Subst i tu t ing  (2.15) and (2.20) into (2.12), we get for 2k -1 < 0 < Jr - k - l  

1 
[l~l < Bne Irl 

k (sin ~,°]a+l (cos  -°)/~+I " 

A combina t ion  of  (2.8), (2.9), and (2.21) y ie lds  (1.2). 
Nex t  we assume zr - k -1 < 0 < Jr. By (2.8) we have 

Bnk½e21r I fO  If(O, t)L < 
- J0 ~/cos t - cos 0 

t a+l  , 
1 

~/k(c~%t_cosO)(~_t)~+½ ' 

[ ]  

I P~ a't~) (cos t)Idt. 

if 0 < t < k  -1 , 

if  k -~ < t < J r - k  - I ,  

if 7r - k  -1 < t < O . 

E P(k ~+u't~) (cos 0) 

We have for  zr - k -1  < 0 < 

[f(o,t)[ 
lP,!='/~)(cost) < Bn 

~/cos  t - cos 0 ~ 

F r o m  this we derive (1.3). 

The  p roo f  of  Theorem 1 is comple te .  

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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R e m a r k .  I f  we take/z = e + i r ,  e 6 (0, 1) in Theorem 1, then thesame argument wil lyield the 
following estimate: 

I p~U+~+i~,:) (cos O) 

< Bne 31rl e - l k - : O - a - e - :  (:rr -- O)-~-e-½ 

e-:k~+E 

i f 0 < 0 < k  -1 , 

if k - l  < 0 < r r - k  - 1 ,  
if J r - k - 1  < 0  < : r .  

This estimate is better than Theorem 1, which is good enough for our use but is definitely not the 
best possible. We guess that the factor e - i  in the above estimate is removable and hence it should 
yield an estimate for ~ = 0. 

3. Equiconvergent Operators 
Denote by ~r~, the Ces~ro means of the Fourier-Laplace series on the unit sphere f2n. We will 

apply the main result of  [5]: 

Proposition 1. 
Assume8 > -1 ,  D is a non-empty subset of f2n, f ~ L ( f2n ) and sup { l f ( x ) [ : x E D} < c,z. 

For uniform convergence on D, the following two relations are equivalent: 

lim S~(gx)(X) = 0, (3.1) 
N--+oo 

lira ~ ( g x ) ( X )  = 0 (3.2) 
N --.,-oo 

where the function gx is defined for each x ~ D by gx(Y) = f (Y )  - f ( x )  and the operator SSN is 
defined by 

where 

f E L(f2n),X E f2n,3 > - 1  (3.3) 

Remark. 

a ~  = I~n_l l  - I  F ( N + 8 + n -  1 ) I ' ( 2 N + 8 + n )  , (3.4) 
2"-2r(~-t)a~r(N + vS-t)r'(2N + 28 + n) 

A], = r(8 + k + :) (3.5) 
F(8 + 1 ) F ( k +  1) 

The expression (3.4) is a correction of the formula (4) in [5] by inserting a factor 

21~-2n_11--1 _~. I " ( - ~ )  
n-I 

7f "-'f- 

Now we normalize the operator S~ to obtain the following. 

Definition 1. 
We call the following operator 

= 

where T denotes the constant function of value 1, the equieonvergent operator of a~. 
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Next we give a multiplier representation for this operator. Denote by Yk the projection operator 

on the subspace 7-/~ of spherical harmonics of degree k. Write --"-'P~-~+'s"~-!) as gN, Cn,k P~ as hk 
temporarily for simplicity. Then we have 

Y~ (S~N(f)) (x) = a~N ( ( f  * gN) * hk) 

= 

= 

By the Funk-Hecke formula (see [6]) we have 

where 

Hence, we get 

ffa g N ( U V ) h k ( x v ) d v  = Ot~N,khk(xU) , 
n 

n - I  

°t 8 2rr --c f l  9..-3 _ = gN(t)P~(t)(1- t-) 2 dt .  

yk(s~N(f))(x) ~ a ~ f(u)hk(xu)du=a~Na6N, kYk(f)(x) a NOt N, k 
n 

To calculate the value of o~, k, we apply Rodrigues' formula (see [6]) and get 

o: 2,~ ~: :~ ( d ) ~ = (1 - -  t2)  k+~--~- 
~'~ 2 ¢ 7 ; 7 ~ )  , a; e~(,)at. 

We see that ot S N,k 
63], (4.21.7)) 

( d )  k 2 - t F ( N + 3 + n + k - 1 ) - ( ~ - t + a + k ' ~  2+k).- 
-~ g u ( t )  = r ( N + 8 + n -  1) r u - k  (t) 

and get by partial integration that 

2zrz~tF(N + 3  + n  + k  - 1) f l  _(-~-t+,~+k,~-~+k) 
if8 = j _  /'N-k (t)(1 -- t2)k+~-~dt 

,,k 4 : / i 7 , E ~ > ~ 7 ~ 7 ; :  i) , 

2n- Izr "-~ ~ F ( N + 3 + n + k - 1 ) F ( N + ~ - ~ )  
= 2 AN_ k F ' ~  +3"-~n'---~((Y-~k'-k"-n ----1)" 

Then, by (3.7) we get 

(3.6) 

(3.7) 

= 0, i fk  > N. When0  __% k < N we make use of the formula (see [1, p. 

We write 

S~v (I) Yo(S~(I)) 8 ~ aNOtN, 0 • 

(3.8) 

y~ = ( ~  ° ) -  ~ = r ( ~  + 1 ) r (N + 1) r (N + n -  1) 
• n - - I  

( 4 ~ ) - r  r ( N  + a + 1)F(N + ~ ! )  

ba Ot~N,k A~N_k r ( g  + ~ + n + k - 1)P(N + n - 1) 
N,k = ~T,~ = A~ r ( N + a + n - 1 ) ? ( N + n + k - 1 )  

N,O 

(3.9) 

(3. i o) 
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Then, by an analytic extension for the indexes we get the following. 

Proposi t ion  2. 
Let ~ be a complex number with ~ > - 1 and N E Z+. Then 

N 

( .... ) z 
n23 ) 

E~N(f)(x) = Y~N f *  P(N ~ + &  (x) = bSN,krk(f)(x), f E L(f2n), x E f2n , 
k=O 

E~N(I)(x) = 1, forconstantfunction l (x)  = 1,x 6 ~2n • 

Def in i t ion  2.  

Let ~ be complex number such that ff[~ > - 1. The maximal equiconvergent operator E~, of  
Cesfiro mean is defined by 

E~.(f)(x) = sup{[E~N(f)(x)l " N e N} . 

T h e o r e m  3 .  

Le tn  > 3, L =  - - ~ 3 = L + e + i r ,  z ~ N. lfE E (O,n), then 

E~.(f)(x)  < Bne-l  e31rl( H L ( f ) ( x )  + H L ( f ) ( - x ) )  

where H L denotes the Hardy-Littlewood maximal operator on sphere. 

P r o o f .  8 = X + e + i t ,  e 6 (0, n) ,  r ~ R.  First we note that by (3.9) 

IY 'l-  Bne21rlU½-e, U E N .  

Then 

[E~( f ) (x ) [  < Bne21rlN½ -e f *  PN(a'~)(X)I 

where ot = n --  3 + e + i t ,  /~ = -~-~. write 

F(x,  t) = f f ( y ) d a t ( y )  (0 < t < re) 
dx y =COS t 

where crt (y) denotes the measure element on the surface {y 6 f2n : xy  = cos t}. We have 

fo IF(x, t) ldt  < 0 n - l H L ( f ) ( x ) ,  0 E (0, re) 

and 

Then we get 

F(x ,  t) = F(--x ,  p: -- t), t E (0, zr) . 

]E~N(f)(x)I < Bne21rtN½ -e fo Jr IF(x, t)p  ' '(cost)lat 
Now we break the integral in (3.13) into four parts: 

,12 = N½ -e ~ ,13 = N½ -e Jr-N-~, I4 = N½-E 
-1 d~ - N  -1 

(3.11) 

(3.12) 

(3.13) 
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and apply Theorem 1 to estimate these integrals. Accounting (3.1 1) and (3.12) we get 

fo N-1 Bn HL( f ) ( x )  , (3.14) Illl < Bne3[rlN n-I IF(x, t)ldt < e31rl 

1121 < Bne31t I 1 f~r ]F(x, t) ldt  < Bne31rle_iHL(f)(x) (3.15) 
- - ~  -1  t n - l + e  - 

1 
f o  g-I IF(-x,t~r! t)l dt <_ Bne31tlN-EHL(f)(-x)  (3.16) 1/31-< Bne31rl-~ 

f 0  n - !  
1141 <_ Bne 31rlN'~q-t-~ N l ] F ( _ x ,  t)ldt < Bne31t lN--- f - -eHL(f ) ( -x) .  (3.17) 

A combination of (3.13) through (3.17) yields the desired inequality. [ ]  

Coro l la ry  of  T h e o r e m  3. If 3 = L + e + i r, e 6 (0, n), r E/R and 1 < p < ~ ,  then 

IIE,8(f)llp _< Bne 31rl P IIf[Ip. (3.18) ~ (p -  1) 
R e m a r k .  For the maximal Ces~o  operator cr,~(f) = sup{10~c(f)l " N ~ N} it is well known 
(see [7, p. 239]) that 

II~r,~(/)llp < n e cr2 _ 6 ,p  I l f l l p ,  1 < p < ~ .  

But no estimate for the bound Be, t, exists. By the method in [7], which is based on the estimates for 
the Cesgzro coefficients with complex indices, we would be able to obtain only Be p < Bne -2 --£-r (e E . . . . .  ' - -  p - j .  
(0, n)) where the power of  e IS - 2 .  Our theorem gives - 1. This is important because this power 
decides the power of  log+ appearing in the conclusion of  Theorem 2. This is the reason that we first 
give an appropriate estimate for Jacobi polynomials with complex indices and then make use of  the 
equiconvergent operator which is a convolution with Jacobi polynomial as kernel. 

Now we turn to estimate the L 2 bound of E .  8. 

Theorem 4. 
Let~ = e +  i t ,  r ~ ]R. Ife ~ (0, n), then 

IIE.~(f)II2 < Bne41rle-lllfll2. (3.19) 

P r o o f .  It is also known from [7, p. 239] that 

IIcr.8(f)ll2 _< geC~Zllfll2. (3.20) 

In [7] the dependence of the constant B on the parameters n, e was not discussed (and the factor e cr2 
is not exact.) But by the same argument we may refine (3.20) and get 

Ilcr.8(f)ll2 < Bn~-le31rlllfll2, e > 0 .  (3.21) 

Then we apply the formula (5) of  [5]: 

cr~(f) = SSN(f) + ]~n-1 [-1TN~ ( f )  

where the factor If2n-11-1 in front of TN ~ was missed in [5]. Then we get 

T~N(f) = Z bk( N, S)~r~N+k(f) 
k = l  

with Ibk(N, 8)1 < Bnelrlk - l -n -e  (see [5], Lemma 1) and hence 

ESN(f) = (aNOIN,O)8 ,~ -I{crN8 ( f )  _ [ f2~_ l l - lT~( f )}  

So, by (3.21) we derive (3.19). [ ]  
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4. Proof  of  The or e m 2 

It is a routine application of  Stein's interpolation theorem (see [2] or [8] for more details) to 
derive the LP(1 < p < 2) bound from Theorem 3 and Theorem 4. We omit the details and state the 
result: 

Theorem 5. 
I f  l < p < 2 ,  then 

IlE,X(f)llp < Bn(p -  1)S21lfllp. (4.1) 

Also,  it can be regarded as routine to derive the L log~_ L bound (r > 0) from the known LP 

bound (p  - 1) - r  fol lowing the argument stated in [8] (see [8]: Lemma 2 of  Section 9 and the proof  
of  Theorem D*). Then we have the following. 

Theorem 6. 

n 

As a consequence of  Theorem 6 we establish Theorem 2. 

(4.2) 
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