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Jacobi Polynomial Estimates and
Fourier=Laplace Convergence

Gavin Brown and Kunyang Wang

1. Introduction

Wang has shown in [5] how to reduce convergence problems for Fourier-Laplace series on
the sphere to the consideration of a certain equiconvergent operator defined by convolution with
certain Jacobi polynomials. Here we derive new estimates for Jacobi polynomials with complex
indices and use Stein’s interpolation theorem to obtain L7 estimates for the corresponding maximal
equiconvergent operator. This leads, in turn, to new results for almost everywhere convergence of
Fourier-Laplace series.

The Jacobi polynomials, Pk(a‘ﬂ )(x) witha > —1, 8 > —1, can be defined by (see [1, p. 62],
formula (4.21.2))

ko ; 1\
Pk(a‘ﬂ)(x)= NMoe+k+ 1) ZCJF(a+I)F(a+ﬂ+k+j+I)<x 1) .
j=0

M+ DIk+1) kPa+ j+ DT+ B+k+1) \ 2

This formula obviously also gives the definition for Jacobi polynomials with complex indices «, 8
such that e > —1,RB > —1. These are the polynomials we must estimate but our purposes
require us to consider only certain types of complex index. In fact, we will prove the following.

Theorem 1.
Leta €[0,2n],8€[0.n),neN,p =1 +ir,t €R Thenfork € N
IPEE P cose)] < BuedThetr, 0<6<2%1; (L1
1PEE P coso) < BptkioT i m — )P, AT <o <x -kt (1)
IPEP (cos)] < Bpelkft, w—kl <6 <m.(13)

Using this theorem and applying Stein’s interpolation theorem (see [2]) we will prove the
following.

Theorem 2.
Letn >3,Q = ((x1,---,xn) € R": x2 4+ 4 x2 = 1}.If f € Llog? L(Qy), i.e.,

f | FGOI(L +Togh | F(x))dx < o0

Qn
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Then

Nli_r)nco SN(fYx) = fx),

a.e.
where Sy (f) denotes the Cesaro means at critical index of the Fourier—Laplace series of f

(14)

We will prove Theorem 1 in Section 2. To prove Theorem 2 we will make use of the equicov-
ergent operator of Cesaro means which was dicussed in detail in [S]. This operator is convenient
for convergence problems. We will investigate the corresponding maximal operators in Section 3

Then, by the results in Section 3 we complete the proof of Theorem 2 in Section 4

2. The Proof of Theorem 1

The following formula is obtained by analytic extension from the formula (3.9) of [3, p. 20]

(@+u.8) _ zur(a + w + 1)(1 +x)d+k+lpk(u+ﬂvﬁ)(1)
P, x) =

Mo+ DO = x)ets Pk(a'ﬂ)(l)

1-y°
. (1+ y)a+gz+l+k

1

PP - x4 ldy .

2.1)
For simplicity, we write
i21 .t 2a+1 9 2a+2k+2
1 sin 3 cos 5
f@.0=\— - — : . .2)
Sin 3 cos 3 Sin bl Ccos 5
Then, by (2.1) we have for 0 < 6 < w and u = % +it(t € R)
r k+1 o 6,1
P(a+“ ﬂ)(cos f) = @+ptk+l) AGL) — Pk(a'ﬁ)(cos t)de . 2.3)
2T ()T @+ k+ D Jo (cost — cos§)77iT
Now we apply the formulae 1.3.(2) and 1.3.(3) of [4], which state
r i 1 v
Mu +v) = 7 H ef+‘, u>0v>0 2.4)
1
—_— = , u>0,velR. 2.5
TG+ 10)] r(u) ﬂ U+ u>2 @2
By (2.4) we have
I'(u + v) j4u
lo - _.
5w I"(u) vy +Z< J+u+v>
Write +
v xX+u
= 1 , >0.
Fe) x+1+ ng+u+v =
Noticing u > 1, v > 0 we have
d v v
Ef(x)__(x+l)2+

Hence, we get

<0
x+uwyx+u+v)

| s <3 6y < r0+ | roa.
j=0
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Integrating by parts we find

o0 o0
d

/ fex)dx = —/ * L f)dx = —v+ulog 25 4+ vlog(u 4+ v) .

0 0 dx
From these we derive that

r
eI+ )Y < Fu+v) < =y 4 )Y, u>1,v>0. (2.6)
T(u)
Similarly, by (2.5) we have
1 v?
log + — .
Elrw+iv Z MRTETE
Since
v2
lo log 1+ -5 / lo 1+ ) dx
Z T u)2 g (x +w)?
v2 o] v2
1 14+ — —_—d
< log +u2+/0 Tt ol X

we get

1+v2 L ———7’”| u>0,vekR 2.7
w2T(u) — IF(u+zv)I - u2 INOD) ' ' '

From (2.3), (2.6), and (2.7), we derive

| PP (cos 0)] < Bakze?!

6 8,t
/ f@,1 __ pk“"ﬁ)(cost)dt ) (2.8)
0 (cost—cosf)z™'"

Then from the well-known estimate (see (1, p. 197})
2
PP (cost)| < B.kY,  0<t< P

we get (1.1).
-1
When 2k~! < @ < 7, we break the integral on the right side of (2.8) into two parts, f(;( and
/; ke_l, and write them as Ik1 and / kz, respectively.

For the first part we note that

6
cost-—c050>cos——cos€>362, O<t<2%k‘'<6<m.

Then we have

k—l
il = / f6.1 — Pk(a"g)(cost)dt
0 (cost—cosf)1 7't
kU 2a41
t dt 1
< Bk% <8 . 29
P nk [) 62a+% (g_t)‘zl' —_ ﬂkea-{-l ( )
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In order to estimate / ,(2 we apply the following asymptotic estimate for Jacobi polynomial with

real indices, which is the formula (8.21.18) in [1, p. 192].

1 NO — k,0)(ksing)~! 1 1
PO (cosg) = /_Z cos(N6 y)+r(:x,ﬂ, 0)(lsm ) L<f<n-2,
T (sin %)u+7 (cos %)ﬂ+7

where N =k + ﬁg;ﬂ, y=(+ %)% and r(a, B, k, 9) satisfies
Ir(e, B,k,0)| < By, a,Bel0,2n], k' <6 <m—k7".

We see that

]

t Nt —

2= (nk)-%/ f(e; )_COS( }f) _dt + R(a, B, k, 0)
k! (cost — cos8) 77" (sin %)Mf (cos %)’Hi

where

dt .

R(x, B, k,68) = (nk)“% /0 f@,t ra, Bk, t)

1 . . 1 1
k=1 (cost —cos8)27'" ksint (sin %)a+7 (cos %)'%2

By (2.2) and (2.11), we get for 2k~! < 6 < — 2k~!

B, 6 dt
IR(a, B, k, 0)] < - /
) Jo

. a+l 1
k(sin§)"" (cos § cos 5(cost — cos9)?

By an easy calculation we know

fa dt T
1 9 -
0 cos 5{(cost —cosf)? V2cos§

Hence, we obtain for 2k~! < 9 < 7w — k™1
By

k (sin %)QH (cos %)ﬂH .

; a+i " —(20+B+2k+3+i27)
h(t) = (sin 5) <cos —)

[R(a, B, k,0)| <

Write

2
and write the integral on the right side of (2.12) as F. Then

9 2a42k+2 i 0 —(2a+1+i2f) [’ h(t) COS(Nt —_— y)
Fy = {cos = sin = Tt
2 2 k= (cost —cos)I T

Ifwewritea=a+%,b=2a+ﬂ+2k+%,thenwehave

d (sin#)®~! _ (sing)*+!
Because b > 2, we have |b + i27| < bel™! and hence

d
< el = |h()| .
<e dzl al

d
lEh(t)

(2.10)

(2.11)

2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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Write

0=k pt Nt — o Nt —
uk(9)=/ O cosWVe = ¥) ;. vk(6)=/ (O cosNe =) 4,
k1 (cost —cosf)2™*T 6—k=! (cost —cos )3T

Integrating by parts we have

; _ -1
up(0) = N-! h(t)sin(Nt 1}3, Z—lk
(coszt—cos )2
A ’ 1_; i
+ N1 o sm(Nt——y)( Koy Griohosn )dt. @2.17)
(cosr—cos0)I7'" (cosr—cos8)Z T

By (2.16) we have

0-](—1 ’ l o .
/ (Ve _y)( (1) LG zr)h(t)s}mt )dtl .
k

1 _; .
- (cost —cos)I™'"  (cost —cosf)2 T

-1

0—k~1
d h(t h(t
/ 281:1__.__|ﬂ___[_d, g OL 2.18)
k

= dt (cost — cos9)? (cost — cos §)2

k!

Meanwhile, we have

o |h(t)] [h(8)]
[7) _d B . 2.19
lvk( )! = -/9‘—Ic_1 (cost — COS@)% P= \//?SITQ ( )

Combining (2.17), (2.18), and (2.19) we get

g\ +1 g\ B+3 -1
[Fe| < Bpel™ x/ksinH(sin 5) (cos -2-) (2.20)

Substituting (2.15) and (2.20) into (2.12), we get for 2k~ <9 < — k™!

1
112 < Bye!! ) (2.21)

k (sin %)aH (cos %)ﬂ-H

A combination of (2.8), (2.9), and (2.21) yields (1.2).
Next we assume 7 — k™! < 6 < 7. By (2.8) we have

6 6,t
[Pk(a!"Hlsﬂ)(COS 9)[ < Bnk%e2|f|/ M|Pk(a'm(cos t)ldt .
0 cost —cosé

Wehave forr —k~! <6 <=

ratl if 0<t<k™l,

FECA3] l @B) 1 if bk l<t<m—k!
—_— | P/ (cos t Is B g+l ’
/oSt — cos @ k ( ) n ./k(cz%t—cose)(n—t) 2

/cost—~cosf ’

if m—-kl<t<6.

From this we derive (1.3).
The proof of Theorem 1 is complete. O
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Remark. Ifwetake u =¢+it, ¢ € (0, 1) in Theorem 1, then the same argument will yield the
following estimate:

Pk(a+5+ir,ﬂ)(cose)
kate if0<@ <k,
< BTN} omdgmamemip gy o=t it k-l ch<m—k!,
PRl L fr—kl<g<m.

This estimate is better than Theorem 1, which is good enough for our use but is definitely not the
best possible. We guess that the factor £~! in the above estimate is removable and hence it should
yield an estimate for ¢ = 0.

3. Equiconvergent Operators

Denote by 0'1‘3, the Cesaro means of the Fourier-Laplace series on the unit sphere 2,,. We will
apply the main result of {5]:

Proposition 1.
Assume 8§ > —1, D is a non-empty subset of Q2,,, f € L(Q) and sup{| f(x)! : x € D} < oo.
For uniform convergence on D, the following two relations are equivalent:

lim $%(g:)(x) =0, (3.1)
N—o0
Jim o (g)(x) =0 (3.2)

where the function g, is defined for each x € D by g,(y) = f(y) — f(x) and the operator S}sv is
defined by

SAH@) =al <f * P,f,"'ﬁ-“l”‘"i‘]’) @),  feL@)xeQni>—1  (33)

where
I'(N -nr S
& = 9l Witn-DI@N+0+m 3.4)
202 (2 AL TN + 5T 2N + 26 +n)
T@E+k+1)
A} = 3.
k T+ DIk+1) (3-5)

Remark. The expression (3.4) is a correction of the formula (4) in [5] by inserting a factor

F(n—l)
_ 2
2| M= ——— 2,

n—1

Tz

Now we normalize the operator va to obtain the following.

Definition 1.
We call the following operator

EY(f) = Sy(f) (Sy(D) ™

where 1 denotes the constant function of value 1, the equiconvergent operator of or]‘f,.
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Next we give a multiplier representation for this operator. Denote by Y} the projection operator
n— l n—-3
on the subspace H; of spherical harmonics of degree k. Write P,f, 7 s gns cn ik Py as hy

temporarily for 51mp11cxty Then we have

Yi (S5() (x) ad ((f * gn) * h)

a?v/ (/ f(u)gN(uv)du)hk(xv)dv
o, \Ja,

afvf f(u)</ gN(uv))hk(xv)dv>du.
Qn Qn

By the Funk-Hecke formula (see [6]} we have

i

/ gnuvYhi(xv)dv = afv‘khk(xu) R

Qp
where
271"'—5_ 1 n n—3
oy = ) LgN(t)P" O -7 dr. (3.6)
Hence, we get
Ye (Sy () (@) = ajed fQ Fh(xu)du = ajady , Ye(f)(x) . 3.7

To calculate the value of "‘?v, «» We apply Rodrigues’ formula (see [6]) and get
2T / ( )
3 P
o (1= T { — ) gn(D)dr.

We see that af\,‘k = 0, ifk > N. When 0 < k < N we make use of the formula (see [1, p.
63], (4.21.7))

d\* (TN +8+n+k—1) (5 4sik.253 4k
— =27 P !
(dt) g () TN+ o+n—1) Nk ®)

and get by partial integration that

n—1
— 1 n=1 n-3 e
a?“ _ 2777 I‘(I\i+8+n+k 1 P]E/—jkdmwc.-—2 +k)(t)(1 N 23dt
) 4"1“(k+—”5 WW((N+8§+n-1)

T(N+6+n+k— DN+ 25

= 2’1_l %_lAa . 3'8
ANk N o+ n—DI(Ntk+n—1) (3-8)
Then, by (3.7) we get
S (D) = Yo(S§(D) = adyed o -
We write
_ M@+ DN+ DN +n~1)
v = o= Ce DI DI TR =) 69
(m) T T(N + 38+ DI'(N + 251)
o ayy AN T(N+8+n+k—DIWN+n—1) (3.10)
Nk a8 7 AL, T(N+8+n—DI(N+n+k—-1)" '
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Then, by an analytic extension for the indexes we get the following.

Proposition 2.
Let 8 be a complex number with R > —1 and N € Z4. Then

N
sl g n=3
EL(H®) = v <f x Pyl )) 1) =3 B V(). f € L), x€Q,
k=0
EL(Dx) = 1, for constant function T(x) =1,x € Q2 .
Definition 2.

Let § be complex number such that %6 > —1. The maximal equiconvergent operator ES of
Cesaro mean is defined by

EX(f)y(x) = supl{lES(f)(x)|: N eN).

Theorem 3.
Letn>3, A= 5’~2—8=k+s+ir, t € R.Ife € (0, n), then

ES(F)(x) < Bue LT HL(f)(x) + HL(f)(~x))

where H L denotes the Hardy-Littlewood maximal operator on sphere.

Proof. § =A+s+ir, £ € (0,n), T € R. First we note that by (3.9)
ly3] < B.e?"INT¢, NeN.

Then
|EL (D] < BN~ £ 5 PFP ()

wherea=n—%+s+it, ﬂ="7_3.write

Fx,1) =/ fdo(y) O<t<m)
xXy=cos!

where o, (y) denotes the measure element on the surface {y € 2, : xy =cost}. We have

8
/ [F(x,0)|dt <" 'HL(f)(x), 6 ¢€(O,n) 3.11)
0
and
F(x,t)=F(—x,m —1), te(0,n). (3.12)
Then we get
|ES(H(x)] < B,,ez‘flzv%-ef ]F(x, PP (cos z)\d: . (3.13)
0

Now we break the integral in (3.13) into four parts:

Le N1 1, z 1, n—-N~— 1, T
Ii=N2 ,Ih=N2 ,I3=N12 ,Ig =N2 ,
0 N-1 z n—N-1
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and apply Theorem 1 to estimate these integrals. Accounting (3.11) and (3.12) we get

-1

N
1] < ByelTINTT! / |F(x,)|dt < By HL(f)(x), (3.14)
0
1 (3 |F(x, 1) _
e~ 37| —1
L] < B, T /N_l e dt < BT HL(H() (3.15)
1 [T |F(=x,t
I < B,,e3'”—€/ #l—)!dtsB,,eZ‘"'N“EHL(f)(—x), (3.16)
N N-l ==

— N_l n—
L] < B,,e3'f'1v-z—'°€/ |F(=x,0)ldt < By IN"THL(f)(~=x). (3.17)
0

A combination of (3.13) through (3.17) yields the desired inequality. O
Corollary of Theorem 3. If § =A+e+it, e € (0,n),r e Rand 1 < p < 00, then

s el P

IEXAp < Bae™ Pl (3.18)
Remark. For the maximal Cesiro operator af(f) = sup{IG,‘f, (f)l : N e N}itis well known
(see [7, p. 239]) that

lo2(Fllp < Bope I fllp 1< p < o00.

But no estimate for the bound B; , exists. By the method in [7], which is based on the estimates for
the Cesaro coefficients with complex indices, we would be able to obtain only B, , < Bpe~? ;;Ll (¢ €
(0, n)) where the power of € is —2. Our theorem gives —1. This is important because this power
decides the power of log_ appearing in the conclusion of Theorem 2. This is the reason that we first
give an appropriate estimate for Jacobi polynomials with complex indices and then make use of the
equiconvergent operator which is a convolution with Jacobi polynomial as kernel.

Now we turn to estimate the L2 bound of EZ.

Theorem 4.
Letd =¢e+it,t € R Ife € (0, n), then
IES(f)l2 < Bue*™e™ "I fl2. (3.19)
Proof. It is also known from [7, p. 239] that
2
lof(H)ll2 < B £z - (3.20)

In [7] the dependence of the constant B on the parameters n, &£ was not discussed (and the factor P
is not exact.) But by the same argument we may refine (3.20) and get

lod(Hll2 < Bue™ N fll, e>0. (3.21)
Then we apply the formula (5) of [5]:
b () = SY(F) + Q1T TH)

where the factor |$2,—|~! in front of T;\s, was missed in {5]. Then we get

Ti(f) = ) bu(N, &)oy ()
k=1

with |bg(N, 8)| < B,el™lk~1-"~¢ (see [5], Lemma 1) and hence
ES () = (a§ad o) Hod (f) — 192117 TR
So, by (3.21) we derive (3.19). O
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4. Proof of Theorem 2

It is a routine application of Stein’s interpolation theorem (see [2] or [8] for more details) to
derive the L7 (1 < p < 2) bound from Theorem 3 and Theorem 4. We omit the details and state the

result:

Theorem 5.
If1 < p <2, then
IEX O < Balp = D2 Flp - (4.1)

Also, it can be regarded as routine to derive the L log’, L bound (r > 0) from the known L”
bound (p — 1)7" following the argument stated in [8] (see [8]: Lemma 2 of Section 9 and the proof
of Theorem D*). Then we have the following.

Theorem 6.

IEx(H)lh < Ba (/ | £ )11+ logh If(X)I)dx> . 4.2)
Qn
As a consequence of Theorem 6 we establish Theorem 2.
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