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Abstract--Representation, identification, and modeling are in- 
vestigated for nonlinear biomedical systems. We begin by con- 
sidering the conditions under which a nonlinear system can be 
represented or accurately approximated by a Volterra series (or 
functional expansion). Next, we examine system identification 
through estimating the kernels in a Volterra functional expansion 
approximation for the system. A recent kernel estimation tech- 
nique that has proved to be effective in a number of biomedical 
applications is investigated as to running time and demonstrated 
on both clean and noisy data records, then it is used to illustrate 
identification of cascades of alternating dynamic linear and static 
nonlinear systems, both single-input single-output and multivari- 
able cascades. During the presentation, we critically examine 
some interesting biological applications of kernel estimation 
techniques. 
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expansions, Nonlinear systems, Volterra series, Cascade Anal- 
ysis. 

INTRODUCTION 

As early as 1887, Volterra was considering the general 
problem of functions that operate on functions. This work, 
his subsequent elaborations (94,95), and the developments 
of others (in particular, Frechet, 17) have grown into a 
field of mathematics whose primary interest is the study of 
functionals and operators and the representation of non- 
linear systems. In such work, Volterra kernels (a constant 
and one-dimensional and multidimensional weighting 
functions) play a central part in representing the nonlinear 
system by a Volterra series. 
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Volterra Functional Expansions 

In a previous paper (47), we concentrated on the use of 
Wiener's functional expansion to characterize a nonlinear 
system, discussing the advantages, limitations, and bio- 
logical applications. In this paper, we study in brief Vol- 
terra series (or functional expansions) and their use in 
representing or approximating nonlinear biological sys- 
tems. We also examine an accurate method for estimating 
the kernels (showing running times and performance on 
noisy data) and its application to identifying cascades of 
alternating dynamic linear and static nonlinear elements 
for both single-input single-output (SISO) and multivari- 
able cascades. Once a functional expansion or other model 
has been identified, its validity (6) and reliability should 
be investigated. We, therefore, point out some pitfalls that 
can unsettle even the best-intentioned attempt to estimate 
accurately the kernels characterizing a system and illus- 
trate our comments with critical references to the litera- 
ture. 

A functional, F, transforms values of the input defined 
over the input domain (e.g., time) into a value of the 
output defined at a single point of the output domain (e.g., 
at a fixed instant). An operator, S, transforms values of the 
input defined over the input domain (e.g., time) into val- 
ues of the output defined over the output domain (e.g., 
time). To quote Schetzen (80), "the essential difference is 
that in the functional viewpoint we focus our attention on 
the output at a particular instant in time, while in the 
operator viewpoint we focus our attention on the complete 
output function." It is important to note that for static 
(i.e., zero-memory or nondynamic) systems the output, y, 
is said to be a function of the input, x, whereas, for dy- 
namic systems (i.e., systems with memory), y is said to be 
a functional of x. Many nonlinear differential or integro- 
differential equations have Volterra series solutions that 
hold for suitable restrictions on the input signal, for ex- 
ample, imposing a bound on the input amplitude. Barrett 
(4) has shown how to find both the Volterra series solution 
and the region of its convergence for certain classes of 
nonlinear differential equations. He shows that the Volt- 
erra series solution often can be generated by regarding the 
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nonlinear terms in the differential equation as a "pertur- 
bation" on the linear system defined by the linear terms in 
the equation, then obtaining the convolution integral (see 
below) solution, which will contain the nonlinear pertur- 
bation terms, then repetitively substituting for those non- 
linear terms in the convolution integral that involve the 
output. 

Consider a functional in which the value of  y at some 
fixed instant, for example t = t 1 depends on values of  x 
over some finite interval, for example, t~ - T  ~< t ~ ta, 
that is, 

y(t 1) = Fix( t ) ,  t I - T <~ t <~ ta]. (1) 

Volterra considered analytic functionals, in which y(t)  

(e .g. ,  at t = q)  could be represented exactly as 

Q 

y(t) = Z Vi[hi,x] (2) 
i=0  

where Q can be infinite, and the zero-order Volterra func- 
tional is the constant 

Vo[ho,x] = ho (3) 

and for i I> 1, the i-th-order Volterra functional is 

Vi[hi,x] = . . . hi('r I . . . . .  "ri) x( t  - "rl) 

�9 . . x ( t  - -  Ti) d'rl . . , d " r  i ( 4 )  

The functional series (Eq. 2) has become known as the 
Volterra series or Volterra functional expansion (see re- 
views in 56,59,66,79). 

Volterra Kernels 

The functions h o, hi, . . . in Eq. 2 are called Volterra 
kernels, and, in particular, h i is called the i-th order Vol- 
terra kernel. 

It is useful to note the following points: 

1. The zeroth-order Volterra kernel is a constant equal to 
the zero-input response of  the system. Note that the 
input may represent a perturbation about some mean 
level. Then the zero-input response would be the re- 
sponse to this mean level, assumed applied for all 
t > - ~.  For an interpretation of  the zeroth-order 
kernel using standard perturbation theory, see Refer- 
ence 60. 

2. If  the system is causal (sometimes called physically 
realizable or nonanticipatory), then the kernel hi('rl, 

�9 �9 �9 , "ri) = 0 when any of  the "rl . . . . .  "r; is less than 
zero, and the lower limits o f  the integrals in Eq. 4 can 
be set equal to zero. If, in addition, the system has 
finite memory T, then the upper limits are set equal to 

T (because the output can depend on input delays up to, 
at most, T). In Volterra's original formulation, the in- 
tegrals in Eq. 4 generally were taken between two fi- 
nite limits. 

3. With no loss in generality, it can be assumed (95) that 
each kernel hi('r 1 . . . . .  "ri) in Eq. 4 is symmetric with 
respect to any permutation of  "rl, . . . , "r~. Two non- 
symmetric forms of  the Volterra kernel, namely trian- 
gular and regular, sometimes are used (66). For exam- 
ple, when the triangular form is used the integrations in 
Eq. 4 with respect to r 1, "r e . . . . .  "ri-1, "ri frequently 
are taken from - ~  (or 0 for a causal system) to, re- 
spectively, �9 rz, "r3 . . . . .  "ri, T, where T is the memory 
of  the system. The regular form is closely related to the 
triangular kernel and essentially is obtained by replac- 
ing �9 r l ,  "r2, . . . ,  "ri-~, "ri wi th ,  r e spec t ive ly ,  

h I + . . . -~- h i ,  h 2 q -  . . . d -  h i . . . .  , h i - - 1  -~- h i ,  

h i (for additional details, see 66). 

The functional Vi[hi,x] is called an i-th degree homo- 
geneous Volterra functional, because if x is replaced by cx 

(where c is a constant) then Vi[hi,cx] = ciVi[hi,x]. 

Frechet (17) showed that if at, for example, t = t 1, 

1. y(t)  is a functional (not necessarily analytic) of  x and 
depends on values of  x(t) only over a finite interval, for 
example, t 1 - -  T <~ t ~< t a, as in Eq. 1; and 

2. F is a continuous functional of  the input, so that small 
changes in the input result in small changes in y ( t l ) ;  

and 
3. the  p o r t i o n  o f  x d e f i n e d  o v e r  the  i n t e r v a l  

t 1 - -  T ~ t ~< t I belongs to a compact set of  signals 
(defined over this interval); that is, the set of  signals is 
uniformly bound and equicontinuous over this time in- 
terval (30); 

then, at t = t 1, y(t) can be approximated uniformly for 
any x(t) ,  t 1 - T <~ t <~ t l ,  belonging to the compact set, 
by the right side of  Eq. 2, to any given accuracy for 
sufficiently large but finite Q (see also 76). 

Note that the integrations in Eq. 4 are conducted over 
the interval [0,T]. 

The Use of Volterra Series for  System Representation 

We now shift our attention from the value of  y at one 
fixed instant t I (a functional viewpoint) to the values at- 
tained by y for all t I /> 0 (an operator viewpoint). 

Suppose (after Barrett (5)) 

1. the above assumptions hold for all t 1 /> 0; and 
2. the system is time-invariant ( i .e . ,  a translation of  the 

input over time results in an equivalent translation of  
the output over time); and 

3. the input x belongs to a set of  signals that is uniformly 
bounded and equicontinuous for all t I> - T ;  
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then y( t )  for each t /> 0 can be approximated uniformly 
over this set of input signals to any given degree of accu- 
racy by the right side of Eq. 2 for sufficiently large but 
finite Q (which does not depend on the particular input x 
selected from the set or on the value of t /> 0). 

Therefore, in summary, to any given accuracy. 

y( t )  = ho + r j o  r h l ( ' q )  x ( t  - r l )  d 'q  

f T f  h2(r l , r2)  x ( t  - -  r l ) X ( /  - -  '1"2) d r l d r  2 + 
. J  

o 

T 

+ ' " +  f o f  ho(r, . . . . .  to) 

x ( t  - rl) . . . x ( t  - rQ) dr l  . . . d'rQ + r( t )  (5) 

where, for any x from the input set and any t i> 0, the 
error magnitude le(t)l can be made arbitrarily small for 
sufficiently large Q. 

This Volterra series approximation can be used to rep- 
resent, over a uniformly bounded equicontinuous set of 
inputs, any nonlinear system that is finite-memory, phys- 
ically realizable, time-invariant, single-input single- 
output, and a continuous functional of its input. More- 
over, Eq. 5 may be generalized to the multiple-input mul- 
tiple-output and time-varying cases (56). However, in 
general, infinite-memory systems, such as those incorpo- 
rating hysteresis or limit-cycle properties, cannot be rep- 
resented by the Volterra series and are outside the scope of 
this paper. The identification of systems exhibiting hys- 
teresis has been considered by several authors, for exam- 
ple, Andronikou et  al. (2). 

In place of the finite-memory assumption, Boyd and 
Chua (8) have defined systems with "fading memory," 
which they show also can be represented by Volterra se- 
ries. Note that the case T = o~ has been used to include 
inputs that are not zero for distant negative time and sys- 
tems that depend, to an arbitrarily small extent, on the 
remote past of the input. As an example of the latter, 
consider the following analytic system, described by 

y ( / ) =  f0 ~ e - ~ x ( t  - r)  dr  + f =f e-r ' -~2x( t  - r l )  
o 

x(  t - "1"2) d r  l d r  2 

In this example the first- and second-order kernels are 
decaying exponentials, so that input values in the 
remote past have a negligible effect on the output when 
the input again is a member of the uniformly bounded 
equicontinuous set of signals. 

It is important to note that linear time-invariant 
systems form a subclass of systems describable by the 
right side of Eq. 5, because the convolution integral 

defines the output as 

y( t )  = f o  x h (r )  x ( t  - r )  dr  (6) 

The first-order kernel h(~) in Eq. 6 is known as the unit 
impulse response function (or, equivalently, the system 
weighting function, inverse Laplace transform of the 
transfer function, or inverse Fourier transform of the fre- 
quency response function).  This kernel is a one- 
dimensional weighting function that determines the extent 
to which the input value r seconds earlier contributes to 
the present value of the output. More generally, the i-th- 
order kernel hi(r I . . . . .  r i) is an/-dimensional weighting 
function that determines the extent to which the interaction 
of input values that are "q . . . . .  % seconds earlier con- 
tributes to the present output value. 

As discussed, an analytic nonlinear system can be de- 
scribed exactly by the right side of Eq. 5, when e(t) =- 0 
and Q may be infinite. Note that, for an analytic nonlinear 
system, the first-order Volterra kernel, h~(r), in general is 
not equal to the unit impulse response. Rather, the output 
caused by a unit impulse is given by 

y( t )  = h o + hl(t ) + h2(t , t  ) + . . . + ho( t  . . . . .  t). 
(7) 

The influence of nonlinearity on this response is evi- 
dent through the additional terms ho, h z ( t , t )  . . . . .  

ho ( t  . . . . .  t). 
To model a nonlinear system by using a truncated Vol- 

terra series (more particularly, using the right side of Eq. 
5 when Q is finite) the kernels h 0, hx(T) . . . .  , h e ( r  1, 

�9 . . , to) must be determined. 

M E T H O D S  F O R  D E T E R M I N I N G  T H E  

V O L T E R R A  K E R N E L S  

Various techniques have been used to analyze the Vol- 
terra series or to estimate the Volterra kernels ( e .g . ,  see 
1,7,9,10,15,16,19,22,38,41,43,45)�9 Schetzen (78,79) 
proposed a Volterra kernel estimation method that in- 
volved the use of multiple pulse inputs and repeated ex- 
periments to identify the Volterra kernels of a finite-order 
system. This valuable approach has been applied by Stark 
(85) as one method for estimating the kernels of the 
pupillary system. In addition, Pece et  al .  (63) used 
Schetzen's method to estimate the first- and second-order 
Volterra kernels for a dark-adapted locust photoreceptor 
intracellular membrane potential response. These kernels 
were similar, except for a change in time scale, to the 
Wiener kernels estimated (via the fast orthogonal algo- 
rithm; 38) from white noise experiments at various back- 
ground light intensities. 

We illustrate Schetzen's (78) method in brief by esti- 
mating the Volterra kernels of a second-order (analytic) 
nonlinear system by using double-pulse experiments. The 
pulses are sufficiently brief to approximate impulses, and, 
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for convenience, are assumed to have unit area. Suppose 
that a single such pulse is applied to the (resting) system at 
t = 0. Then, the resultant output is 

y l ( t )  = h o + h i ( t )  + h2(t , t ) .  (8) 

Next, suppose that the resting system is disturbed by a 
pulse applied at t = 0 followed by a pulse at t = T, 
where T > 0. The resultant output is 

y2(t)  = h o + h i ( t )  + h2(t , t  ) + h l ( t  - T) 
+ h2(t - T , t  - T) + 2h2( t , t  - T) 

= yl(t) + y l ( t  - T) - h o + 2h2( t , t  - T) .  
(9) 

The zero-order kernel ho is simply the zero-input response 
and is assumed to be known. Therefore, we can solve Eq. 
9 for hz( t , t  - T), T > 0, and, therefore, obtain the sec- 
ond-order kernel, except along its main diagonal. The di- 
agonal kernel values can be obtained by interpolation, 
assuming continuity of the kernel. Then, Eq. 8 can be 
solved for hi ( t ) ,  the first-order kernel. 

Note that kernel continuity is not guaranteed for every 
nonlinear system that is a continuous functional of its in- 
put. Thus a system can be a continuous functional, in that 
"small"  changes in the system input result in "small"  
changes in the system output, yet the system's kernels 
need not be continuous functions. An example of this is a 
Hammerstein model, which has non-zero kernel values 
along only the main diagonals of its Volterra kernels. It is 
clear that, in this case, the diagonal values of the second- 
order Volterra kernel cannot be interpolated from the zero 
off-diagonal values. A more elaborate example can be 
constructed by imagining that the system under consider- 
ation is the sum of a subsystem whose kernels are contin- 
uous and a subsystem that is a Hammerstein model. 
Again, the diagonal kernel values of the overall system 
could not be inferred from the off-diagonal values. One 
simple and widely known method for estimating diagonal 
kernel values (without assuming kernel continuity) is il- 
lustrated on our second-order nonlinear system. 

One disadvantage of Schetzen's method is that the 
highest-order kernel must be estimated before the next 
highest order, etc.  Schetzen (79) points out that a certain 
simplification is possible by suppressing the response of 
all of the even-order, or all of the odd-order, kernels by 
applying the inputs x and - x  separately. Therefore, to 
determine just the first-order kernel of a fifth-order system 
first requires determining all higher-order kernels (or all 
odd higher-order kernels, if the simplification is used) in 
descending sequence starting with the fifth-order kernel. 

When kernel continuity cannot be assumed, one can 
estimate h l ( t  ) and hz( t , t )  of our second-order nonlinear 
system by applying, for example, an additional single 
pulse having an area of 2 at t = 0 to the system at rest. 
The resultant output would be 

y3(t) = h 0 + 2hl(t ) + 4h2( t , t  ). (10) 

Because, as noted above, h 0 is known from the zero-input 
response, hi ( t )  and hz( t , t )  can be obtained by simulta- 
neously solving Eqs. 8 and 10. 

Korenberg (31) devised a method, based on Volterra's 
original definition of the kernels, to estimate a kernel of 
any given order without requiring the previous estimation 
of other kernels. Variations of the method (35) involving 
exponentially or sinusoidally modulated random inputs 
were devised to cope with data corrupted by output noise. 
These methods work best for identifying lower-order 
kernels (although the system order may be arbitrarily 
high). In addition, the Volterra kernels can be calculated 
very accurately by using the parallel cascade method 
(34,37,41,43), which is effective even for higher-order 
nonlinear systems and systems with lengthy memory. The 
sinusoidally modulated random inputs used (35) for kernel 
estimation are examples of cyclostationary inputs, which 
subsequently, also were considered for the same purpose 
by Gardner and Archer (18). 

ADVANTAGES AND DISADVANTAGES OF THE 
VOLTERRA APPROACH 

1. A prime advantage of the functional expansion approx- 
imation is its generality. 

2. Any finite-memory system that is a continuous func- 
tional of its input can be approximated pointwise to an 
arbitrary degree of accuracy by a Volterra series of 
sufficient but finite order Q for a given set of input 
signals, x, which are uniformly bounded and equicon- 
tinuous. 

3. One difficulty is that the order, Q, may need to be very 
large to achieve a specified accuracy over the given set 
of signals (5). The determination of even the first- and 
second-order Volterra kernels can involve the estima- 
tion of a large parameter set. For example, Marmarelis 
and Naka (55) computed over 250 distinct second- 
order kernel values (actually a very moderate number 
for this type of analysis but more than the number of 
parameters that, say, a differential equation model 
would typically require) in their elegant nonlinear sys- 
tem modeling of the receptive field responses in the 
catfish retina. 

4. Directly identifying the Volterra kernels in Eq. 5 for 
general nonlinear systems poses severe numerical 
problems, in particular because the homogeneous func- 
tionals Vi[hi,x] in the series are not mutually orthogo- 
nal. Orthogonality would imply that 

E{Vi[hi ,x  ] �9 Vj[hj,x]} = 0 if i r j 
> 0 i f i  = j, 

where E{.} denotes infinite-time average. 



254 M.J. KORENBERG and I. W. HUNTER 

ESTIMATION OF KERNELS IN A FUNCTIONAL 
SERIES APPROXIMATION USING WIENER'S 

ORTHOGONAL APPROACH 

In 1955, Barrett (reviewed in 3) considered the general 
problem of generating multidimensional orthogonal poly- 
nomials for a wide variety of inputs (lacking special au- 
tocorrelation properties), before proceeding to the partic- 
ular case of Gaussian processes for which the multidimen- 
sional Hermite polynomials formed an orthogonal set. In 
addition, Schetzen (79) considered the possibility of con- 
structing orthogonal polynomials corresponding to spe- 
cific non-Gaussian inputs for the purpose of nonlinear sys- 
tem identification. Palm and Poggio (62) note that the 
Gram-Schmidt orthogonalization of the Volterra series, 
performed by Wiener (97) for a Gaussian input process 
(more precisely, Brownian motion), can be conducted for 
many other processes. However, Palm and Poggio (62) 
also noted that calculating only a third-order orthogonal 
functional can produce severe difficulties, unless more 
specific assumptions on the input process are made. To 
understand the problem, consider Wiener's orthogonaliza- 
tion of the Volterra series for the Gaussian case. 

Wiener Kernel Approach 

In the late 1940s Norbert Wiener (reviewed in 50) re- 
alized the practical limitations of the nonorthogonal rep- 
resentation. In the most general form, the Volterra series 
is an infinite series, when Q in Eq. 5 is infinite. By using 
the Gram-Schmidt orthogonalization technique (see, for 
example, 87), Wiener orthogonalized the Volterra series, 
under the important assumption that the input is a Brown- 
ian process, which is the integral of a white (i .e. ,  has a flat 
power spectrum) Gaussian process. It is usual now to 
present Wiener's derivation in terms of a white Gaussian 
input. The resultant series, known as the Wiener series, 
can be written 

~c 

y(t) = E Gj[wj,x] 
j=O 

(11) 

where the Gj are orthogonal functionals and the wj are the 
Wiener kernels (discussed below). That is, if the input, x, 
is Gaussian white noise with a mean of zero and a given 
power spectral density, then 

E{Gk[wk,x] �9 Gj[wj,x]} = 0 if k # j 
> 0 if k = j ;  

Gj is the j-th-order Wiener G-functional, where the G 
denotes that the functionals have been orthogonalized with 
respect to a particular Gaussian stationary, white input 
process. 

Consider a discrete-time finite-memory system, which 

is a continuous mapping of its input (again, small changes 
in the input result in small changes in the output). Let the 
discrete Gaussian white input have mean zero and vari- 
ance P. Via Gram-Schmidt orthogonalization (performed 
by Wiener for the continuous-time case), the first few 
discrete-time Wiener functionals can be shown to equal: 

Go[wo,x] = Wo (12) 

I 

GI[Wl,X] = E wl(i)  x(n - i) 
i=0 

(13) 

I I 

G2[w2,x] = E E w2( i l ' i2 )x(n  - i l)x(n - i2) 
il=O fi=O 

1 

- P E w2(i,i) 
i=0 

(14) 

1 1 1 

G3[w3,x] = E E E w 3 ( i l , i 2 , i 3 ) x ( n -  il) 
i1=0 i2=0 i3=0 

I 1 

x(n - i2)x(n -- i3) -- 3P E E 
i l = 0  i2=0 

w3(il,i2,i2) x(n - il) (15) 

where w o, w~, w 2 . . . .  are called the Wiener kernels, and 
wj is the j-th-order Wiener kernel. 

For the continuous-time case, Lee and Schetzen (51) 
showed that the Wiener kernels could be estimated from 

I( ) W j ( T  1 . . . . .  Tj) = jT_--_~ E y(t) - Gin[win,x] 
m=0 

x(t  - ~1) . . x( t  - 'rj)}. 

When all the "q . . . . .  ~j are distinct (i .e. ,  unequal) this 
reduces to (51) 

1 
wj('q . . . . .  .rj) = :---F-ffoi E{y(t) x( t  - "rl) . . �9 x(t  - Tj)}. 

j : r  + 

For the above-considered discrete-time case, t, I"1, 
. . . .  "rj are replaced respectively by n ,  i 1 . . . . .  ij, and 
the infinite-time average will be of y(n) multiplied by the 
factors x(n - il) . . . . .  x(n - ij), for distinct i 1 . . . . .  
i t. Barrett (5) and Goussard et al. (20) have pointed out 
that if these factors are replaced by the multidimensional 
Grad-Hermite polynomials of the factors, then wj(i~, 
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. . . .  ij) also can be determined at minor and major diag- 
onal values. A similar idea for the continuous case is set 
forth by Lee and Schetzen (51). Goussard et al. (21) have 
shown that a stochastic approximation algorithm can be 
used to produce kernel estimates that are better than those 
from cross-correlation for the same computational com- 
plexity. 

Watanabe and Stark (96) proposed a technique of ker- 
nel estimation in which each kernel was expanded by us- 
ing a set of basis functions, such as the Laguerre func- 
tions; the coefficients in the resultant expansion were de- 
termined by least-squares fitting over the data record. 
When the kernels can be approximated accurately by using 
only a few Laguerre functions, the Watanabe-Stark 
method enables rapid estimation of kernels, and in their 
application, third-order kernels could be estimated in only 
a few seconds. Although the Laguerre function approach 
harks back to Wiener (97), Watanabe and Stark's (96) use 
of least-squares fitting introduced much greater accuracy. 
Note that least-squares estimates are obtained for the ex- 
pansion coefficients and not, in general, for the resultant 
kernel estimates. When the number of Laguerre functions 
required to approximate the kernels accurately is consid- 
erably less than the system memory (see below), then and 
only then does the method save significant computing 
time. One means of indirectly obtaining least-squares es- 
timates of the required coefficients is by combining 
(37,47) basis function expansion of the kernels with exact 
orthogonalization (discussed below). This permits a con- 
cise subset of basis functions to be rapidly selected to 
approximate the kernels accurately. Simulations were pro- 
vided in Reference 47. 

Following Wiener (97), Ogura (61) extensively consid- 
ered the use of discrete Laguerre functions to expand the 
kernels to simplify their estimation. Ogura (61) developed 
a fast algorithm for kernel estimation involving efficient 
formulas (Eq. 131 in 61) for recursively calculating the 
outputs of the Laguerre function filters when driven by the 
experimental input. The Watanabe-Stark (96) method of 
determining the coefficients in the Laguerre expansion of 
the kernels by least-squares fitting over the data record 
recently was used by Marmarelis (57). In addition, Mar- 
marelis (57) used Ogura's technique (61) for recursively 
calculating the outputs of the Laguerre filters (Eqs. 13 and 
14 in 57 are equivalent to Eq. 131 in 61). The Watanabe- 
Stark (96) method of least-squares fitting Laguerre func- 
tions to estimate the kernels, together with Ogura's effi- 
cient formulas (61), can, depending on the application, 
yield impressive results even for third-order kernels. It is 
of interest that Marmarelis (57) added the detail of sug- 
gesting a criterion for choosing a parameter in the 
Laguerre functions controlling their rate of decay. More- 
over, although least-squares fitting the Laguerre expan- 
sion (96) certainly is not new, Marmarelis's paper (57) 

does have the merit of repopularizing this useful technique 
from decades ago. 

Sometimes, the use of Laguerre functions may result in 
estimating a more compact set of parameters (namely, the 
coefficients in the Laguerre expansion of the kernels) than 
the set of all distinct kernel values. Other times, numerical 
difficulties may make the use of Laguerre functions less 
parsimonious than using all distinct kernel values. For 
example, consider a simple Wiener model comprising a 
linear filter 

k(j) = e//2,j = 0 . . . . .  15 
= 0, elsewhere 

followed by the second-degree polynomial (.) + (.)2. 
That is, if u(n) is the output of the linear filter, then the 
output of the polynomial is y(n)  = u(n) + uZ(n). 

Theoretically, because the memory length is 16, only 
16 distinct Laguerre functions should be required to ex- 
actly represent the kernels by using a Laguerre expansion. 
But this may not result in accurate kernel estimation even 
with the use of noise-free data, which is investigated 
readily by using the comprehensive LYSIS software pro- 
gram (53), and the criterion in Reference 57 to choose the 
value of the parameter controlling the rate of decay of the 
Laguerre functions. However, using the fast orthogonal 
algorithm (38,43) to estimate kernels up to second-order 
with lags 0 . . . . .  15 yields very good results. In this 
case, use of the Laguerre expansion form can prove less 
compact in practice than use of the discrete kernel form, 
i .e . ,  the distinct kernel values ho,hl( iO,h2(i l , i2) ,  i 1 = O, 
. . . .  15, i z = 0 . . . . .  i~. Another instance in which use 
of Laguerre expansion may prove less compact (resulting 
in lower estimation accuracy and increased computational 
requirement) is when the system kernels have an initial 
delay. An example is the Wiener model with linear filter 

k(j) = j -  3, j = 4  . . . . .  16 
= 0, elsewhere, 

followed by the polynomial (-) + (.)2. In our attempt, 
using the criterion in Reference 57 to choose the rate of 
decay of the Laguerre functions did not yield an accurate 
result when 17 Laguerre functions were used (a number 
equal to the system memory length). 

The use of Laguerre functions to estimate the kernels 
may be economical in instances when a system's kernels 
have smooth forms. In general, however, there is no a 
pr io r i  reason to assume that a system's kernels are 
smooth, and much detail provided by the distinct kemel 
values may be lost by an identification procedure that 
produces smoothed kernels. 

An example is furnished by the kernels measured in 
(44) for two cells in the feline visual cortex. For each cell, 
an orthogonal method (45) was used to obtain two inde- 
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pendent estimates of kernels up to second order by using 
two distinct 1,000-point input segments. Each of the sec- 
ond-order kernel estimates had a very jagged appearance 
that could easily have been dismissed as a result of noise. 
In fact, however, the two estimates of the second-order 
kernel for each cell were virtually superimposable and had 
excellent replication of the jaggedness (but differed be- 
tween the cells). In this application, a few Laguerre func- 
tions would not have sufficed to capture the jagged ap- 
pearance but, rather, would have yielded much smoother 
kernels, that could erroneously have been considered to be 
more accurate. 

It may be argued that simply increasing the number of 
Laguerre functions used to approximate the second-order 
kernel could enable one to recover more and more of the 
jagged shape. This is not necessarily true, because, as 
seen above, numerical difficulties may cause the Laguerre 
expansion approximation to be inaccurate even if the num- 
ber of Laguerre functions used is equal to the memory 
length. 

It has been claimed that, for systems with lengthy 
memory, use of Laguerre expansions to estimate kernels is 
less computer-memory intensive than are other methods. 
But this means that significantly fewer Laguerre functions 
will be used than the assumed memory length. Therefore, 
the comparison is not a fair one, because, in general, 
smoothed kernels will result; and "smoothed" may mean 
"less detailed," just as a smoothed version of an electro- 
cardiogram has less information than the jagged original. 
Moreover, the smoothed kernels may well result in a sig- 
nificantly larger mean-square error of fit than will the 
kernels found by the orthogonal (45) or fast orthogonal 
(38,43) methods. Kernels with lengthy memory, for ex- 
ample, those with more than 11,000 distinct kernel values, 
can be recovered accurately (without introducing smooth- 
ing) via parallel cascade identification (43) on an ordinary 
personal computer (e.g., limited to 640 kilo-bytes of 
RAM memory). 

Ogura (61) suggests that systems in which the kernels 
exhibit an initial delay can be better represented by using 
associated Laguerre functions (see Eq. 167 in 61) and, 
therefore, he developed a fast algorithm to generate the 
outputs of biorthogonal Laguerre filters. Of course, the 
Watanabe-Stark (96) method of estimating the coefficients 
in the expansion by least-squares fitting over the data rec- 
ord also can be used here for increased accuracy. 

Investigators (e.g., 48,54,55,67-75) have made exten- 
sive use of Wiener kernel analysis to study the neural 
network of the catfish retina. This work, which was pio- 
neered by Marmarelis and Naka (54), has revealed much 
detailed information about neural processing and neural 
connectivity in the vertebrate retina. 

Note that even with a white-Gaussian input process, the 
higher-order orthogonal functionals become increasingly 

complicated. These functionals, however, are consider- 
ably more simplified than are the expressions that would 
be obtained if an attempt were made to calculate the cor- 
responding orthogonal functionals for an input lacking 
suitable autocorrelation and probability density properties. 
The complexity derives from attempting to calculate the 
orthogonal functionals explicitly in terms of the input pro- 
cess, as in the Wiener G-functionals shown above. This 
complexity can be avoided by defining each orthogonal 
functional recursively in terms of previously created or- 
thogonal functionals, as commonly done using Gram- 
Schmidt orthogonalization in many applications, such as 
functional expansions (see 62). 

Sutter (89,90) has devised a powerful and very rapid 
procedure for kernel estimation that involves constructing 
multilevel test inputs using binary M sequences. Sutter 
(90) has noted that his procedure has an interesting anal- 
ogy to the sum of sinusoids technique of Victor and 
Knight (93): Both methods use a test input constructed "to 
achieve exact orthogonality of the kernels and kernel es- 
timates." Sutter's procedure is particularly valuable for 
analyzing nonlinear multi-input systems, such as the vi- 
sual system (91), when each experimental input individ- 
ually can be manipulated to follow precisely a multilevel 
sequence. Indeed, in such cases, Sutter's procedure may 
be the method of choice. When inputs cannot be so ma- 
nipulated or when they merely can be monitored, Sutter 
(90) suggests that they may be "suitably parameterized for 
application of the binary algorithms," but this would in- 
troduce unnecessary measurement error. In the latter 
cases, alternate kernel estimation techniques, such as the 
fast orthogonal algorithm (38,43), parallel cascade iden- 
tification (43), or the Watanabe-Stark method (96), may 
be indicated. 

Exact Orthogonalization 

In the orthogonal method for estimating the kernels 
accurately (45), recursively defined functions are created 
to be mutually orthogonal over the data record (or the 
portion of the record exceeding the system memory dura- 
tion). Once the orthogonal functions have been created, 
their weightings can be determined simply via cross- 
correlations with the system output. The weightings in the 
orthogonal series then can be efficiently converted into the 
kernel values in the original Volterra series used to ap- 
proximate the system. Note that the orthogonalization here 
occurs with respect to the particular input signal that 
evoked the measured output and is not independent of the 
input process. Because the functions used were made or- 
thogonal over the data record, greatly improved kernel 
estimates resulted compared with estimates made with the 
Lee-Schetzen (51) approach to estimating the Wiener ker- 
nels, in which, theoretically, an ideal Gaussian input must 
be applied to the system for an infinite duration of time. 
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To illustrate the orthogonal method (45), consider the 
discrete-time second-order Volterra series 

let 

1 

ys(n) = ho + Z h i ( i ) x ( n  - i) + 
i=0 

1 1 

Z Z h2(il,i2) x(n - il)x(n - i2), (16) 
fi=0 i2=0 

y(n) = ys(n) + e(n) 

where x and y are respectively, input and output of  
the nonlinear system, e is the model error, and the ker- 
nels h i are to be estimated. Suppose that the finite-length 
data record is defined for time instants n = 0 . . . . .  N. 

In simpler notation, Eq. 16 can be written equivalent- 
ly as 

M 

y(n) = Z amPm(n) + e(n) 
m=0 

(17) 

where po(n) is unity and each pro(n), m t> 1, is either an x 
term of  the form x(n - i) or a cross-product of  x terms 
(i.e., of the form x(n - iOx(n - i2)). The a m correspond 
directly to the individual kernel values to be estimated. 
The upper limit M in Eq. 17 is the total number (minus 
one) of  distinct terms on the right side of  Eq. 16. In more 
detail 

po(n) = 1 
pro(n) = x(n - m + 1) m = 1 . . . . .  1 + 1 (18) 

The line above produces the x terms in the first-order 
Volterra functional in Eq. 16. The cross-product (xx) 
terms in the second-order Volterra functional in Eq. 16 
can be generated according to the following scheme: 

m = l + l  
F O R i l  = 0 T O I  

FORi2  = i l T O l  
m = m + l  

FOR n = 1 TO N 

pro(n) = x(n -- i l )x(n -- i2) 
NEXT n 

NEXT i2 

NEXT il 

The  p, ,(n)  would be defined analogously to correspond to 
cross-product x terms in higher-order Volterra functionals 
when they are present. 

Below, we shall create ortbogonal functions fSm(n ) (via 
the Gram-Schmidt procedure) that correspond to distinct 
p, ,(n)  above. These functions will be orthogonal for the 

actual input values over the record from n = I to n = N, 
so that there is no theoretical requirement for an infinite 
record length or particular joint density functions for the 
input process. Of course, an input sufficiently rich in both 
amplitudes and frequencies is required for any identifica- 
tion technique to work. This richness of  the input is re- 
flected in its fractal dimension, and Victor (92) has shown 
how the fractal dimension (specifically, the capacity di- 
mension) limits the number of  terms identifiable in an 
orthogonal functional expansion representation. 

Our objective is to rearrange Eq. 17 to have the form 

M 

y(n) = Z groOm(n) + e(n) 
m=0 

(19) 

where the [3,,(n) are mutually orthogonal over the portion 
of  the record from n = I to n = N. 

Following Wiener, we again use the Gram-Schmidt 
procedure to construct the orthogonal terms, but herein 
orthogonality is over the finite interval [I, N] (as opposed 
to a theoretical infinite-length record). Moreover, herein 
the orthogonal ~m(n) are defined recursively (as com- 
monly done with the use of  the Gram-Schmidt procedure) 
to avoid increasingly complex expressions. Finally, recon- 
version to the original Volterra series approximation is 
performed efficiently by a simple formula. 

The modified Gram-Schmidt procedure (65) will be 
used to construct the orthogonal ~m(n) from the defined 
pro(n), m = 0 . . . . .  M and n = I . . . . .  N. To under- 
stand the procedure, let each pm(n), n = I . . . . .  N, cor- 
respond to a vector of  dimension N - I + 1, so that 
there are a total of M + 1 such vectors. The procedure 
begins by selecting one of  the vectors, e.g.,  po(n), to be 
the first of  the orthogonal vectors. Then the part of  each 
remaining vector that is parallel to po(n) is removed, to 
form the vectors pm(1)(n), (m = 1 . . . . .  M) ,  each of  
which is orthogonal to po(n). One of  the pm(1)(n), e.g.,  
plr is selected to be the second orthogonal vector. 
The part of  each remaining vector pm(1)(n) that is parallel 
to pl(~)(n) is removed to form the vectors pm(Z)(n), m = 2, 
. . . .  M. Each of  the p,,(2)(n) is orthogonal to both po(n) 
and pl(1)(n). One of  the pm(Z)(n), e .g . ,  pz(Z)(n), is selected 
as the third orthogonal vector, and so on. Although the 
procedure is equivalent mathematically to the classical 
Gram-Schmidt procedure, this modified method (65) is 
much more numerically robust. 

In more detail, for n = I . . . . .  N and for m = 0, 1, 
2 . . . . .  M let 

p(~ ) = pm(n). (20) 

By using the modified Gram-Schmidt procedure (65), for 
r = 0 . . . . .  M - 1 andre  = r + 1 . . . . .  M, w e d e -  
fine (37) 
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p(m r+ 1)(n) = p}~)(n) -- ot,,rp~r)(n) 

where the orthogonal functions are the 

~3r(n ) = p~r)(n) 

and 

p~)(n) ~r(n) 
~mr = ~(n)  (21) 

Here, the overbar denotes the time average over the record 
portion from n = I to n = N. For example, 

N 
1 

p~)(n) ~r(n) = N - I + 1 E p(~)(n) ~r(n). 
n=I 

Then it follows from Eq. 19 and the orthogonality of the 
~m(n) that 

The first-order kernel is hi(i) = tli+l, i = 0 . . . . .  I. 
The second-order kernel h2(i 1,i z) can be recovered by us- 
ing the following scheme: 

m = l + l  
FORi l  = O T O I  

FOR i2 = il TO I 
m = m + l  

hz(il,i2) = a m  

IF il ~ i2 THEN h2(il,iz) = 0.5 h2(il,i2) 
NEXT i2 

NEXT i I 

Similar formulas for estimating the higher-order kernels 
can be set down analogously. Fast orthogonal methods for 
conducting the kernel estimation also are available 
(38,40,42,43). 

y(n) ~m(n) 
gm ~(n) (22) 

An alternative formula (37), based on the residue of y(n) 
(rather than y(n) directly) is 

y(n) -- 

gm = 

m - 1  

E gj~j(n) ~3m(n) 
j=0 

~ ( n )  
(23) 

Once the g,, have been determined, then the system has 
been "identified" (more precisely, least squares fit) by 
the orthogonal series expansion on the right side of Eq. 
19. The next step is to convert the gm into the coefficients 
a,, (corresponding to the individual Volterra kernel val- 
ues) on the right side of Eq. 17. For this purpose, the 
following formula (45) can be used: 

M 

am = E g ivi (24) 
i=m 

where 

Vm = 1 
i-1 

v i =  - E OtirVr f o r i =  m + 1 . . . . .  M 
(25) 

r=m 

It is clear that, as noted, there will be a direct corre- 
spondence between the required Volterra kernel values 
h o, hi(i),  h2(il,i2) . . . .  and the coefficients am. This en- 
ables the kernel values to be written down directly from 
the values for the a m . Therefore, the zero-order kernel is 

ho = ao. 

Advantages, Disadvantages, and Further Details of  the 
Orthogonal Method (45) 

1. For any assumed order, the Volterra kernel expansion 
obtained by this method results in the minimal mean 
square error of all functional expansions of that order 
for the input and duration used in the identification 
experiment. 

2. Wiener kernel values can be identified simply by use 
of a white-Gaussian input, because a finite-order 
Wiener series (47) that contains the Wiener kernels 
(which are input-variance dependent) can be rear- 
ranged into a corresponding Volterra expansion that 
minimizes the mean-square error for such an order 
and input. For example, suppose a system can be 
represented exactly by an infinite-order Volterra func- 
tional expansion but is approximated by a second- 
order Volterra series with a white-Gaussian input. 
Then, the first- and second-order kernels obtained by 
the orthogonal method are, in fact, the Wiener kernels 
that correspond to that input. If the approximating 
series were of the i-th order, then the i-th and (i - l)- 
th order kernels obtained would equal the Wiener ker- 
nels of corresponding order. (If a colored-Gaussian 
input were used, then the Fourier-Hermite generali- 
zations of the Wiener kernels would be obtained.) 

3. The addition of further terms to the orthogonal ex- 
pansion will not affect the values of the orthogonal 
terms previously determined. 

4. An implementation of this method should eliminate 
those 13,,(n) for which ~ is less than some spec- 
ified small value. This helps to avoid division by a 
very small number in Eqs. 21 and 22, which would 
result in significant inaccuracies in the final esti- 
mates. 

5. In contradistinction to the Lee-Schetzen method, the 
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diagonal values of the kernels can be found with equal 
accuracy as can the off-diagonal values without mod- 
ification of the orthogonal method examined above. 

6. If the same input is to be applied repeatedly in various 
experiments, then it is only necessary to generate and 
store the orthogonal functions ~m(n) and the OLmr 
once. Under these conditions, the orthogonal method 
execution time can be reduced even further. 

7. The method avoids the need for lengthy inputs. This 
is because the orthogonalization is over the actual 
data record, i.e., specified for the actual input used. 
In many experimental environments, short inputs not 
only are desirable, but sometimes are mandatory 
(e.g., preparation fatigues or dies). The fact that short 
input records suffice for the orthogonal method makes 
it possible to subdivide the total record length into 
smaller segments for individual identification and 
thereby, verification of the kernels obtained. This 
also enables slowly time-varying systems to be 
tracked by successive determination of snapshots of 
the kernels. Moreover, shorter record lengths reduce 
execution time for identification. Discussion of suit- 
able record lengths is provided below in simulations 
of the related fast orthogonal algorithm (38,42,43). 

8. The orthogonal method (45) also eliminates the re- 
quirement that the input have special autocorrelation 
(e.g., white) or probability density (e.g., Gaussian) 
properties. Frequently, it is impossible to produce 
white-Gaussian inputs because of both bandwidth and 
amplitude range limitations on the experimental ap- 
paratus. 

9. Even when the input is an excellent white-Gaussian 
approximation, the method achieves estimates that 
are orders of magnitude more accurate than are those 
obtained by the cross-correlation method of Lee and 
Schetzen (51). Even when the input is 100 times 
longer, in our experience, the cross-correlation 
method does not achieve the same accuracy as does 
the orthogonal method with the shorter input. 

10. A disadvantage of the orthogonal method in the 
above-reviewed form is that the execution time is 
many times longer than is that of the Lee-Schetzen 
cross-correlation technique, which may become sig- 
nificant when the memory length is large. 

11. A fast orthogonal algorithm developed by Korenberg 
(38,42,43) eliminates the need to create the orthogo- 
hal functions explicitly and exploits the lagged nature 
of the input terms in the Volterra series, thereby re- 
ducing dramatically the computing time. This faster 
algorithm retains the advantages noted, in particular, 
the significant improvement in accuracy over the 
cross-correlation method. Moreover, the faster algo- 
rithm enables second-order Volterra series approxi- 
mations with memory lengths greater than 50 and 

record lengths greater than 10,000 to be calculated 
within a few minutes on a modern microcomputer. 
This is illustrated in the following section, but it 
should be noted that third- and higher-order kernels 
also can be estimated by this method. 

Simulation Results for  Kernel Estimation 

The simulated system consisted of a dynamic linear 
subsystem followed by a squarer with unity offset. The 
output, y, was given by 

Y ( n ) = ( ~ h ( i ) x ( n - i ) )  2+ 1 (26) 

for n = 0, 1 . . . . .  N 

where x is the input, y is the output, N + 1 is the number 
of input-output data pairs, h is a (discrete) impulse re- 
sponse function, and e is zero-mean, Gaussian white noise 
(corrupting the output) with a specified variance. Note that 
I + 1 is the memory length of the system, because the 
output depends on input values that have delays from 0 to 
I lags. The impulse response function, h, was obtained by 
sampling (at 0.05-second increments) a continuous low- 
pass second-order impulse response function, the Laplace 
transform of which was 

2 
ato n 

H(s) = $2 "[- 2~tonS + (02 n 

where to, = 6, ~ = 0.2, and a = 2. 
In the simulation, the input x was approximately zero- 

mean, unity variance, Gaussian white noise. Kernel esti- 
mation by means of the fast orthogonal algorithm of Ko- 
renberg (38,42,43) and the cross-correlation method of 
Lee and Schetzen (51) was investigated in both noise-free 
and noisy conditions. A second-order Volterra series was 
used as the test system in this example, because, in that 
case, the corresponding Wiener and Volterra kernels of 
first and second-order are equal, as observed above and 
discussed further below. The fast orthogonal algorithm 
(38,43) does not require that the input be Gaussian white 
noise: This input was used here to enable use of the Lee- 
Schetzen (51) technique. 

In the first study, the memory length (I + 1) equaled 
55. Therefore, 1 zeroth-order, 55 first-order, and 1,540 
distinct second-order kernel values were to be esti- 
mated by both the cross-correlation method and the fast 
orthogonal algorithm with the use of 5,000 input-out- 
put data pairs. In general, the data record is assumed 
to be available for n = 0 . . . . .  N, but the Volterra 
series is best-fit over only n = I . . . .  N. Therefore, 
to estimate a second-order series requires at least 
1 + I + 1 + (I + 1)(I + 2)/2 + I (here 1,650) data 
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pairs, but this would allow no redundancy. Because algo- 
rithm performance in a noisy environment is examined 
below, the number of data pairs used was approximately 
three times the minimum required. 

The actual first-order kernel is zero for the test system 
and, indeed, was found to be negligible to six significant 
digits by the fast orthogonal algorithm. Figure 1 shows the 
actual second-order kernel of the test system plotted to- 
gether with the kernel estimated using the fast orthogonal 
algorithm. The two plots are indistinguishable because the 
fast orthogonal kernel estimate was accurate to six signif- 
icant digits. For comparison, Fig. 2 shows the second- 
order kernel estimated via cross-correlation. It is clear that 
the fast orthogonal algorithm is much more accurate. In- 
deed, the estimates obtained here by this method are 7 
orders of magnitude more accurate than are those obtained 
via cross-correlation. The kernel estimates shown in Figs. 
1 and 2 were obtained by using noise-free data. Figure 2 
is shown after 3 • 3 smoothing, i.e., the second-order 
kernel value at lag pair i l, i 2 is found by averaging the nine 
kernel values corresponding to a 3 • 3 grid centered at i~, 
i2. This smoothing is beneficial when it is known that the 
system kernels have smooth shapes. For such kernels, use 
of a basis, such as the Laguerre functions, to expand the 
kernels will result in smooth kernel estimates even with 
noisy data. This is because the basis functions themselves 
are smooth and may economically fit certain smooth ker- 
nel shapes. Therefore, by choosing the system kernels to 
be smooth, one can engineer a test in which use of 
Laguerre functions apparently can give increased accuracy 
on noisy data. However, the use of mild smoothing (such 
as over nine adjacent points) can be equally effective (see 
below). 

Figures 3 and 4 (3 • 3 smoothed) show the effect on 
fast orthogonal estimates of corrupting the output with 
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FIGURE 2. The second-order kernel (3 x 3 smoothed) esti- 
mated by using the cross-correlation method, for a memory 
length of 55 and a noise-free record of 5,000 data pairs, 

small and large amounts of additive noise (e(n) in Eq. 26). 
Figure 3 is the second-order kernel estimate obtained 
when the variance of the corrupting noise was 5% of the 
variance of the noise-free output. Figure 4 shows the sec- 
ond-order kernel estimate for a 50% noise corruption. It 
should be noted that this kernel estimate is very close to 
the actual kernel (Fig. 1) and much more accurate than is 
the cross-correlation estimate (Fig. 2) obtained under 
noise-free conditions. 

In the second study, the effects of changes in memory 
length (I + 1) and record length (N + 1) were investi- 
gated, together with an estimation of computing time. Fig- 
ure 5 shows the measured total time taken to estimate the 
zeroth-, first-, and second-order Volterra kemels by using 
the fast orthogonal algorithm implemented in the C lan- 
guage running on an IBM RISC/6000 320H workstation. 
The number of input samples (N + 1) was fixed at 5,000, 
and the memory length (1 + 1) varied from 10 to 55. Note 
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FIGURE 1. Actual second-order kernel of the test system plot- 
ted together with the kernel estimated by using the fast or- 
thogonal algorithm, for a memory length of 55 and a noise- 
free record of 5,000 data pairs. The two plots are indistin- 
guishable. 
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FIGURE 3. The second-order kernel (3 x 3 smoothed) esti- 
mated by using the fast orthogonal algorithm, for a memory 
length of 55 and a noisy record of 5,000 data pairs. Here, the 
noise corrupting the output had a variance equal to 5% of the 
noise-free output variance. 
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FIGURE 4. The second-order kernel (3 x 3 smoothed) esti- 
mated by using the fast orthogonal algorithm, for a memory 
length of 55 and a noisy record of 5,000 data pairs. Here, the 
noise corrupting the output had a variance equal to 50% of the 
noise-free output variance. This should be compared with Fig. 
2, which shows the performance of the cross-correlation 
method with the use of noise-free data, 

that the logarithm of the execution time increases approx- 
imately linearly with the memory length. A memory 
length of 55 (corresponding to the estimation of 1,596 
distinct kernel values) required an execution time of 1,600 
seconds. Sutter's method (89,90) would require only a 
fraction of this time, if it were possible to apply precisely 
a suitable multilevel input to the system. If this is not 
possible, then using the fast orthogonal algorithm (38,43) 

or obtaining kernels via parallel cascade identification (43) 
may well be indicated to provide high accuracy. 

Figure 6 shows the execution times for the fast orthog- 
onal algorithm with the use the same computer and code, 
when the memory length (1 + 1) was held constant at 40 
and the number of samples (N + 1) was varied from 
1,000 to 100,000. Each simulation involved the estima- 
tion of 861 distinct kernel values. Note that the execution 
time increases nearly linearly with the number of samples. 
For comparison, singular value decomposition (SVD al- 
gorithm sydcmp in 64) was used to solve for least-square 
estimates of the kernel values. For example, for a memory 
length of 35, the total running time, starting with the raw 
input-output data, was 36 times longer than was that of the 
fast orthogonal algorithm. 

IDENTIFICATION OF CASCADES 
(BLOCK-STRUCTURED MODELS) 

The more precise kernel identification achieved by or- 
thogonalizing over the actual data record (38,42,43,45) 
enables more accurate estimation of block-structured mod- 
els. Consider, for example, the discrete two-input two- 
output cascade of Fig. 7, in which the square boxes denote 
the filters of dynamic linear subsystems and the rectangu- 
lar boxes denote two-dimensional static nonlinearities. 
Suppose that the inputs x~ and x 2 are mutually independent 
Gaussian white processes. In this case, it has been shown 
(36) that the cross-correlations 

I000 

..E 100 
[-  
r 
o 

CO 

~r lO 

/- 

/ 
/ 

1 
0 10 20 30 40 50 60 

M e m o r y  Length 

FIGURE 5. The measured times taken to estimate all of the 
zeroth-, first-, and second-order kernels in a second-order Vol- 
terra series approximation for a nonlinear system. The times 
ere for the use of the fast orthogonal algorithm and are plot- 
ted as a function of the kernel memory length. Here, 5,000 
input-output data pairs were used. The algorithm was coded 
in C and run on an IBM RlSC/6000 320H workstation. 

1200 

1000 

800 

~  

= 600 
..r 

 4oo / /  
2O0 

0 
0 20 40 

f 

k 

Number of Samples (1000's) 

FIGURE 6. The measured times taken to estimate all of the 
zeroth-, first-, and second-order kernels by using the fast or- 
thogonal algorithm plotted as a function of the number of 
input-output data pairs used. The kernel memory length was 
40, corresponding to 861 distinct kernel values. The algorithm 
was coded in C and run on an IBM RlSC/6000 320H worksta- 
tion. 

60 80 100 



262 M.J. KORENBERG and I. W. HUNTER 

FIGURE 7. Two-input two-output LNL cascade. The square 
boxes denote dynamic linear systems and the remaining rect- 
angular boxes denote two-input single-output static nonlin- 
earities: 

qbx~vj(nl) = E{yj(n)xi(n - nO} 
~c 

= Aij E kj(r) gij(nl - r) 
r = O  

(27) 

+xyyj(nl ,n2) = E{(yj(n) - E{yj(n)})x i (n  - n l ) x i (n  - n2)} 

~ c  

= aiij E kj(r) gij(nl - r) gij(n2 - r) (28) 
r = O  

where Aij and Aii j are constants, and E{.} denotes infinite 
time-average taken over n. Here, i = 1, 2 (two inputs) 
and j = 1, 2 (two outputs), but these results hold for 
analogous multivariable cascades with arbitrary numbers 
of inputs and outputs (36). 

The basic results for the SISO cascade of a dynamic 
linear, a static nonlinear, and a dynamic linear subsystem, 
frequently called an LNL cascade (46), can be shown (36) 
to carry over to such multi-input multi-output (MIMO) 
cascades. For example, it is widely known (11,82) that, 
for the SISO cascade, the first-order Wiener kernel is pro- 
portional to the convolution of the two dynamic linear 
subsystems ("sandwiching" the static nonlinearity), and 
Eq. 27 is a generalization of this result. Similarly, Eq. 28 
is a MIMO generalization of the result (32,33) for the 
second-order cross-correlation of an SISO LNL cascade. 
In addition it has been shown that the dynamic linear 
subsystems of the SISO cascade can be estimated readily, 
from the cross-correlation functions, in both the frequency 
domain (32) and the time domain (34,36). Moreover, the 

Wiener kernels for the cascade are proportional to the 
Volterra kernels of corresponding order (32,33), provided 
that the cascade has a Volterra series representation as 
well as a Wiener functional expansion. (The Volterra se- 
ries will exist when the static nonlinearity between the 
dynamic linear subsystems is representable by a polyno- 
mial or a power series.) The shape of the dynamic linear 
filter preceding the static nonlinearity is given by the first 
nonnegligible slice of the second-order (symmetric) 
Wiener kernel parallel to one axis (34,36). Multiple slices 
of the second-order Wiener kernel also can be used (39) to 
give improved estimates of the first dynamic linear sub- 
system in the LNL cascade. The same results apply and 
can be used to identify MIMO cascades (36) analogous to 
that in Fig. 7, and, for this reason, such cascades properly 
can be called MIMO LNL cascades. 

In Fig. 7, suppose that x~ and x 2 are mutually indepen- 
dent, Gaussian white processes applied simultaneously. 
Assume that we measure the first- and second-order 
Wiener kernels wl(/) and w2(Jl ,J2) when x I is taken as the 
input and Yl as the output. Then (34,36), the shape of the 
dynamic linear filter g~ 1(/') is proportional to the first non- 
negligible term of the sequence Wz(j,0), wz(j, 1) . . . . .  
Next, it follows from Eq. 27, that the first-order Wiener 
kernel w~(j) is proportional to the convolution of g~ and 
k 1. Therefore, the filter k~(j) can be obtained, up to arbi- 
trary scaling constant and horizontal shift, by deconvolv- 
ing g~ from wl(/). Alternatively, the identified filter glx 
can be used to calculate u ~ ( n )  (again, up to an arbitrary 
proportionality constant and time shift). The system with 
u~ as input and y~ as output is a Hammerstein model (26), 
the first-order kernel and second-order kernel diagonal 
values of which each are proportional to k~(j). Therefore, 
kl(j) can be determined up to a proportionality constant 
and horizontal shift. 

Similarly, we can obtain g21, and a second estimate of 
k~, by measuring the first- and second-order Wiener ker- 
nels when x 2 is taken as input and Yl as output. When gll,  
gel, and k 1 are known, the static nonlinear characteristic 
m I (. ,.) can be estimated by a simple least-squares proce- 
dure with the use of calculated values of u~ and u2~ and 
the known output y~. The filters g~2, g22, and k 2 and static 
nonlinear characteristic m2( . , . )  can  be estimated analo- 
gously. 

Another, usually more accurate, alternative for estimat- 
ing the dynamic linear filters is to apply each of the Gaus- 
sian inputs separately. For example, when x 1 is the sole 
input, the SISO cascade enables g12 and k 2 estimates when 
Y2 is the output and gll and k I estimates when y~ is the 
output. Analogously, having x 2 as sole input enables es- 
timates of g2~ and g22 and reestimates of k~ and k 2 to be 
obtained. 

It will be appreciated that the two-input two-output 
cascade of Fig. 7 can be treated as a pair of two-input 
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single-output cascades. Accordingly it is sufficient to il- 
lustrate identification of such simpler cascades. 

Simulation Results for MIMO Cascade Identification 

Figure 8 shows a two-input single-output cascade. 
Only the identification of the dynamic linear filters is il- 
lustrated, because the estimation of the two-dimensional 
static nonlinearity is then straightforward. Note that, al- 
though the defining polynomial for the static nonlinearity 
is indicated in Figs. 8 and 10, the static nonlinearity was 
not assumed to be known in identifying the cascade. 

Two different experimental paradigms were used to 
compare the accuracy of the filter estimates. First, filter 
estimates (in Fig. 8) were obtained when x I and x 2 were 
simultaneously applied, 1,000-point, white Gaussian se- 
quences that were approximately mutually independent 
(normalized cross-correlation shown in Fig. 9). (These 
inputs were created by using an extension of a noise- 
generation technique proposed in 24.) Second, the same 
inputs x] and x 2 were applied individually, resulting in the 
filter estimates shown in Fig. 10. In both paradigms, each 
linear filter preceding the static nonlinearity was estimated 
from the first nonnegligible slice, parallel to one axis, of 
the relevant second-order Wiener kernel (34,36), i.e., the 
first nonnegligible term of the sequence w2(j,O),w2( j, 1), 
. . . .  The first- and second-order Wiener kernels were 
estimated by approximating the relevant input output data 
with a second-order Volterra series and by using the fast 
orthogonal algorithm (38,42,43). 

In Figs. 8 and 10 the cascade inputs x~ and x 2, respec- 
tively, had means of - 0.001 and - 0.002, and variances 
of 1.000 and 0.996. The signals u 1 and u 2 had variances of 
1,391 and 1,306, respectively. Because only one of the 
simultaneously applied x 1, x 2 is taken as input (with y as 
output) in calculating the Wiener kernels, at the input to 
the static nonlinearity (in Fig. 8) there is a signal-to-noise 
ratio of approximately unity. This explains why the filter 

xn(n) : ~ un(n) _-, 

x2(n) ~ u2(n)- 

v(n) = ] ~ . k ~  y(n) 

FIGURE 8. Two-input single-output LNL cascade forming the 
simulated nonlinear system to be identified. The square boxes 
show the true (solid line) impulse responses of the dynamic 
linear systems together with the estimated values (points). 
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FIGURE 9. Cross-correlation of the Gaussian white inputs xl 
and x 2 simultaneously applied to the LNL cascade of Fig. 8 to 
identify it. The graph shows that the two inputs are nearly 
uncorrelated. 

estimates in Fig. 10, in which the inputs x 1 and x 2 are 
applied individually, are superior to the estimates in Fig. 
8, which result from simultaneously applied inputs. How- 
ever, the Fig. 8 filter estimates are surprisingly accurate 
given the poor signal-to-noise ratio. The estimates can be 
improved by increasing the experimental duration, by 
3 • 3 smoothing the second-order kernels, and by using 
input signals (for xl, x2) for which the normalized cross- 
correlation function is closer to zero than is that shown in 
Fig. 9. 

Finally, an iterative scheme can be used to increase the 
accuracy of the filter estimates for both SISO and MIMO 
cascades. To illustrate, in Fig. 10, begin by estimating gl 
from the first nonnegligible slice through the second-order 
Wiener kernel parallel to one axis. With the use of calcu- 
lated values of un(n) as input and the known y(n) as out- 
put, measure the first- and second-order Wiener kernels 
and estimate k from the first-order or second-order diag- 
onal kernel values (or both). Then, calculate the two-sided 
inverse (25) of k, and use this inverse, with y(n) as input, 
to estimate v(n). The nonlinear system with x 1 as input and 
v(n) as output is a Wiener model (26) (not to be confused 
with a Wiener series). This model's first-order Wiener 

V = Ul 4- 1,121 .~ 

FIGURE 10. The two single-input single-output LNL cascades 
resulting from Fig. 8 by applying individually the inputs xl and 
x 2. The square boxes show the true (solid line) impulse re- 
sponses of the dynamic linear systems together with the es- 
timated values (points). 
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kernel and any slice of the second-order kernel parallel to 
one axis is proportional to gl. Therefore, calculate these 
Wiener kernels using x I as input and the estimated v(n) as 
output, and then use the first-order kemel, and/or slices 
(or, preferably, the sum of slices) of the second-order 
kernel, to reestimate gl. A new estimate of u I can now be 
calculated, and so forth. 

RELATION OF VOLTERRA TO WIENER KERNELS 

The Wiener kernels, in general, are not the same as the 
Volterra kernels of corresponding order. For example, the 
zeroth-order Volterra kernel simply is the system output 
when the system input is zero, whereas the zeroth-order 
Wiener kernel is the mean output for the particular Gaus- 
sian white input used. However, a straightforward relation 
between Volterra and Wiener kemels exists, as does a 
relation between Wiener kernels measured with different 
input mean levels or power densities (27-29,56). Suppose 
that the Wiener kemels are measured with zero input 
mean. To calculate the i-th-order Volterra kernel from the 
Wiener kernels requires knowing the Wiener kernels of 
order i, i + 2 . . . .  (an analogous requirement exists 
when converting from Volterra to Wiener kernels). If a 
system is described by a finite-order (e.g., Q) Volterra 
series, as on the right side of Eq. 5 when e(t) = 0, then 
the Volterra kernels of order Q - 1 and Q will equal the 
corresponding Wiener kernels. Therefore, the correspond- 
ing first- and second-order Volterra and Wiener kernels 
are identical when the system has no higher-order kemels. 

APPLICATIONS OF THE VOLTERRA 
KERNEL APPROACH 

Perhaps the first to use the Volterra kernel representa- 
tion in the biological sciences was Stark (see 77,83-85), 
who modeled the human pupillary control system. Stark 
assumed that the relation between light flux as input and 
pupil area as output could be approximated by the first two 
terms of a Volterra expansion (85). He then (84,85) ob- 
tained first- and second-order kemels by using two differ- 
ent procedures. First, by using noise excitation experi- 
ments, he found two Wiener kemels that would best char- 
acterize the system in the mean-square sense. Assuming 
that the system is only second-order, these also are the 
Volterra kernels. Second, by using Schetzen's (78) dou- 
ble-pulse experiments, Stark found the two Volterra ker- 
nels which would completely fit the resultant data. The 
poor agreement between the second-order kernels found 
by these two procedures was attributed to the "use of 
different excitation functions--random noise and multiple 
pulses--[that] puts the complex pupillary system into dif- 
ferent operating conditions yielding the different respec- 
tive kernels" (85). 

Another possible explanation is that the pupillary sys- 

tem cannot be approximated accurately by only the first 
two terms of the Volterra expansion for the inputs used by 
Stark, and, therefore, neither of the two procedures pro- 
vided reliable estimates of the Volterra kernels. In other 
words, if Stark's approximation of the system had con- 
tained more terms of the Volterra expansion, then this well 
might have changed the expressions obtained for the first- 
and second-order Volterra kernels. 

Krenz and Stark (49) provide an excellent discussion of 
kernel approaches to the pupillary control system, includ- 
ing some issues raised herein. Hung and Stark (23) have 
considered the relation between the intemal structure of a 
system and the shape of the system kernels, in particular, 
in connection with the human pupillary system. More gen- 
erally, the relation between system structure and kernels is 
examined in References 12, 26, 32-36, 46, and 47. 

By using a kernel estimation technique based on Vol- 
terra's original definition of kernels, Korenberg (31) in- 
vestigated the phenomenon of pupillary contraction after 
both light and dark brief pulses of light (14). Korenberg 
(31) showed that, if the pupil exhibits a contractile re- 
sponse for a fixed interval after any positive or negative 
brief pulse of light, then the first-order Volterra kernel is 
identically zero in this interval and the second-order kernel 
is nonpositive along its diagonal. This, of course, assumes 
that the pupillary control system can indeed be represented 
by a Volterra series. 

Another approach to dealing with system nonlinearities 
is the use of the describing function (81), which involves 
expressing the system frequency response as a function of 
input amplitude. This approach has been used successfully 
by Stark et al. (86) to analyze a representation of the 
human lens control system having a Hammerstein model 
in the forward loop. 

A very interesting application of the kernel approach 
was made by Litt (52), who studied medical imaging tech- 
niques, such as magnetic resonance imaging (MRI) and 
computed tomography (CT). Considering them to be non- 
linear systems, he used the fast orthogonal algorithm 
(38,43) to calculate kernels for four cases: 1) photo to CT; 
2) photo to MRI; 3) CT to MRI; and 4) one MRI to another 
MRI system having different adjustments for some of the 
acquisition parameters. In the first case, for example, the 
input was a photograph of a two-dimensional phantom 
containing barium-loaded agarose, while the output was 
the CT image corresponding to the same phantom. In each 
of the cases, both the input and the output were two- 
dimensional spatial images obtained by an imaging device 
from the same phantom. Hence spatial rather than tempo- 
ral kernels up to second-order were estimated for the non- 
linear system transforming the input image into the output 
image. Since both input and output images were outputs of 
imaging devices which can introduce distortions, this was 
an example of when the input could be measured but not 
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in general manipulated to follow precisely a multi-level 
sequence. Thus the fast orthogonal algorithm (38,43), 
which yields accurate kernel estimates for a very wide 
class of inputs, proved advantageous in this application. 
Litt (52) found second-order nonlinearities "in both CT 
and MRI related to spatial factors such as geometric dis- 
tortions and edge-effects, and grey map transformations 
between modalities." 

In the case of comparing different MRI systems, Litt 
(52) for example estimated the zero-, first-, and second- 
order spatial kernels when the input image, obtained using 
a short repetition time and a single acquisition, was much 
noisier than the output image, obtained using a repetition 
time six times longer than that for the input image and four 
acquisitions. The estimated kernels then may be applied to 
new noisy images to transform them into better ones. In 
suggesting this method of improving the MR images, Litt 
(52) was motivated by the work of Sunay and Fahmy (88), 
who used fast orthogonal search, proposed by Korenberg 
(40), to obtain spatial nonlinear difference equations when 
the input image was a noise-corrupted version of the out- 
put image. The identified difference equations then served 
as two-dimensional nonlinear filters capable of dramati- 
cally reducing the noise corruption of both the original 
noisy image and new test images (88). 

Another interesting application of the kernel approach 
was made by Marmarelis et al. (58), who modeled some 
renal data using a third-order Volterra series approxima- 
tion. Here arterial blood pressure was considered to be the 
system input and renal blood flow the output. They used 
the Watanabe-Stark method (96) of estimating the kernels 
via least-square fitting Laguerre expansions and found that 
only a few Laguerre functions were needed in the third- 
order Volterra series approximation to achieve a low 
mean-square error. Indeed, the most important finding in 
Reference 58 likely is that the renal blood flow can be 
approximated with high accuracy as an explicit functional 
of the arterial blood pressure by using only a relatively few 
parameters or coefficients. 

When Marmarelis et al. (58) used a second-order Vol- 
terra series approximation, only 45 parameters were used 
in expanding the kernels with Laguerre functions; they 
introduced 120 additional parameters in moving to the 
improved third-order series approximation (58). In the re- 
nal experiments, the record comprised 512 data pairs, 
whereas the assumed memory length (number of input 
lags) was 61. Therefore, a second-order Volterra series 
would have 1 + 61 + 61 • 62/2 = 1,953 distinct ker- 
nel values, whereas a third-order Volterra series would 
have 41,664. Therefore, in this application, the Watan- 
abe-Stark method (96) of expanding the kernels by using 
Laguerre functions proved to be efficient, because a few 
Laguerre functions and, therefore, relatively few coeffi- 
cients, were required for an excellent fit to the data. 

One significant conclusion of Reference 58 is that the 
third-order kernel plays an important role in explaining 
certain "depressions" in renal blood flow. Although this 
may well be true, it is not, in our opinion, substantiated by 
the study. This is because a second-order Volterra series 
with a memory length of 61 (having 1,953 distinct kernel 
values) could reproduce exactly the 512 point input-output 
record. Had such a second-order series actually produced 
the experimental record, then any conclusion of the im- 
portance of the third-order kernel clearly would be falla- 
cious. 

The reason Marmarelis et al. (58) had to use a third- 
order series approximation for an improved fit may have 
been because of the very smooth kernels that result from 
using only a few Laguerre functions. If more detail were 
allowed in the first- and second-order kernels, rather than 
the smooth shapes presented in the study (58), then the 
exact input-output record could be accounted for by a 
second-order Volterra series. The essential point is that 
there simply were not enough data points available to 
uniquely specify even a second-order Volterra series with 
memory length 61. Therefore, there is no way to know 
how well the kernels (up to third order) in the study (58) 
resemble the actual system kernels. 

Indeed, the paucity of data prevented Marmarelis et al. 

(58) from following the usual practice of splitting the rec- 
ord into a training set (for estimating kernels) and a testing 
set (for measuring mean-square error). Therefore, outputs 
from their obtained Volterra series approximations are not 
evoked by novel inputs and, therefore, are not real "pre- 
dictions." It is not surprising, therefore, that the power 
spectrum calculated from the obtained third-order Volterra 
series model is indeed much closer to the actual output 
power spectral density than is that from a lower-order 
model. Far more parameters were used to fit the third- 
order model, and the power spectrum was not predicted 
for a new input, so the validity of the model remains open 
to question. In a subsequent study, Chon et al. (13) used 
fast orthogonal search (40) to fit the same renal data very 
concisely and accurately by nonlinear difference equa- 
tions. (Note added in proof) 

CONCLUSION 

We have reviewed critically the use of Volterra series 
approaches in nonlinear biological and physiological sys- 
tems, and have mentioned a recent application to medical 
imaging systems. We have referred to a number of tech- 
niques that can be used to estimate kernels, such as 
Schetzen's multipulse method, the Watanabe-Stark utili- 
zation of least-square fitting in expanding the kernels via 
Laguerre functions, Sutter's innovative approach using 
multilevel inputs constructed using binary M sequences, 
and Korenberg's parallel cascade identification method. 
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Some guidelines were provided to indicate when it may be 
appropriate to use a particular method for kernel estima- 
tion. 

We have shown that a vast improvement of  the accu- 
racy in estimating the kernels in a Volterra series approx- 
imation for a system is attainable by using a technique 
(38,43) that implicit ly transforms the Volterra series into a 
series that is orthogonal over the actual data record (or the 
portion exceeding the sys tem's  memory),  determines the 
weightings of  the orthogonal terms, and then rapidly con- 
verts these weightings through an efficient formula into 
the kernels in the original Volterra series. 
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