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Abstract--The m-sequence pseudorandom signal has been 
shown to be a more effective probing signal than traditional 
Gaussian white noise for studying nonlinear biological systems 
using cross-correlation techniques. The effectiveness is evi- 
denced by the high signal-to-noise (S/N) ratio and speed of data 
acquisition. However, the "anomalies" that occur in the esti- 
mations of the cross-correlations represent an obstacle that pre- 
vents m-sequences from being more widely used for studying 
nonlinear systems. The sparse-stimulation method for measuring 
system kernels can help alleviate estimation errors caused by 
anomalies. In this paper, a "padded sparse-stimulation" method 
is evaluated, a modification of the "inserted sparse-stimulation" 
technique introduced by Sutter, along with a short m-sequence as 
a probing signal. Computer simulations show that both the "pad- 
ded" and "inserted" methods can effectively eliminate the 
anomalies in the calculation of the second-order kernel, even 
when short m-sequences were used (length of 1023 for a binary 
m-sequence, and 728 for a ternary m-sequence). Preliminary 
experimental data from neuromagnetic studies of the human vi- 
sual system are also presented, demonstrating that the system 
kernels can be measured with high signal-to-noise (S/N) ratios 
using short m-sequences. 

Keywords--Volterra-Wiener approach, Volterra and Wiener 
kernels, Random versus pseudorandom signals, Anomalies of 
kernel estimation, Inserted method, Padded method, EEG and 
MEG studies 

INTRODUCTION 

Several approaches to studying unknown biological 
systems consider the system initially as a "black box."  In 
one approach, knowledge of the input-output (I/O) behav- 
iors of the system are acquired by identifying the system's 
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I/O transfer function. For example, the Laplace transfer 
function of a linear system is directly related to the I/O 
relationship of the system described by a linear differential 
equation. Unlike analyses of simple linear systems, anal- 
yses for nonlinear systems present a greater challenge, 
since high-order transfer functions are required for full 
characterization of a nonlinear system's I/O behaviors. 
One method used to characterize a nonlinear system 
(which is generally time-invariant or stationary, causal, 
and continuous), expresses the I/O relationship in terms of 
Volterra or Wiener functional expansions (25,37,39,45, 
47,48). Such expansions are fully specified by a set of 
Volterra (or Wiener) kernels that can be estimated from the 
I/O measurements of the system under study. The system 
kernels provide a characterization of the system I/O relation- 
ship, and thus allow one to predict the response of a physical 
or physiological system to an arbitrary stimulus. (See, for 
example, 9,13,15,16,18,19,25,28,29,36,41,45,46 for phys- 
ical and physiological interpretations of system kernels.) 
Furthermore, the measured system kernels can provide 
information about the internal structure of the practical 
system under study (8,10,17), which suggests a number of 
potential applications in the areas of system modeling and 
identification, and system fault detection and diagnosis 
(see 10 for a detailed review). For example, we are inter- 
ested in characterizing the I/O relationship of populations 
of neurons in cortical areas of human brain, obtained from 
noninvasive electromagnetic measurements. Neuronal re- 
sponses can be modeled as circuitry, and nonlinear anal- 
ysis may ultimately allow one to characterize both the I/O 
relationship and the structure of neural system circuitry, 
using system kernels. 

As discussed above, accurate kernel measurements are 
crucial to studies of practical nonlinear systems. Although 
methods are well established for identifying lower-order 
kernels, the measurement of high-order kernels is time 
consuming, prone to noise contamination, and presents an 
obstacle to efficient system modeling. As pioneers in this 
area, Lee and Schetzen in 1965 developed a practical 
method for measuring the system kernels using Gaussian 
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white noise as the input signal (23). One practical disad- 
vantage of this method is the requirement of having a 
long record length as input to approximate true white 
noise. Since their seminal work, improved methods for 
measuring the higher-order kernels have been developed 
using deterministic or pseudorandom probing signals 
(6,7,11,12,19,21,22,27,28,43-46). For example, Sutter 
(43,44) has shown that deterministic binary m-sequences 
are quite effective for studying nonlinear visual systems. 
Benardate and Victor (6) have recently proposed an im- 
proved "hybrid" m-sequence technique using a sum of 
m-sequences as the input, which provides some control 
over anomalies in kernel measurements and permits the 
measurement of the main diagonal slice of the second- 
order binary kernel. 

In this paper, a refinement of Sutter and Klein's (19,44) 
approach ( i . e . ,  the "inserted" sparse-stimulation method 
and a relatively long m-sequence as a probing signal) is 
presented, which uses the "padded" sparse-stimulation 
method for measuring system kernels and a short m-se- 
quence as a probing signal. The advantages for using short 
input signals are: (a) fast kernel calculations and (b) short 
data acquisition times. The present simulation results 
demonstrate (a) when short m-sequences are used as prob- 
ing signals (a 1023 length for binary and a 728 length for 
ternary), both the padded and inserted sparse-stimulation 
methods can help alleviate the estimation errors, caused 
by anomalies, by increasing the anomaly-free area (AFA) 
of measured second-order kernels; and (b) when using 
sparse-stimulation, within the AFA, the errors of kernel 
measurements using the simpler, traditional cross- 
correlation method, are as low as those using the inverse- 
repeat method. 

Preliminary experimental data from neuromagnetic 
studies of the human visual system are presented, demon- 
strating an application of this approach in basic biological 
research. Neuromagnetic responses were evoked by light- 
modulated, binary short m-sequences (1023 length) and 
were measured using highly sensitive SQUID (supercon- 
ducting quantum interference device) sensors placed 
around the head surface. Preliminary analyses show that 
cross-correlations with high S/N ratio can be obtained us- 
ing this method. Since the experimental recording period 
is short (20-30 s), using short m-sequences, this approach 
may be useful for studying mild nonstationary systems and 
systems that can be considered stationary only within a 
certain brief period of time [ e . g . ,  short recording sessions 
are preferred for human subjects in EEG (electro- 
encephalography) and MEG (magnetoencephalography) 
studies to avoid artifacts such as eye and head movements, 
e t c . ]  

The results of this paper are organized into four sec- 
tions: the m-sequence pseudorandom signal, sparse stim- 
ulation, experimental results of visual MEG studies, and 
general discussion. 

THE M-SEQUENCE PSEUDORANDOM SIGNAL 
The  V o l t e r r a - W i e n e r  A p p r o a c h  a n d  P r o p e r t i e s  o f  M - S e q u e n c e s  

The Volterra-Wiener approach characterizes the I/O be- 
haviors of a nonlinear system using functional expansions. 
The system under study is generally time-invariant, cau- 
sal, and continuous, and can have single-input single- 
output (SISO), multi-input single-output (MISO), or 
mult i - input  mul t i -output  (MIMO) conf igura t ions  
(10,25,37,39,45,47,48; see also 35, pp. 126-130, for a 
tutorial introduction of the Volterra -Wiener approach and 
its applications for EEG studies). For example, given an 
SISO nonl inear  system with cer ta in  rest r ic t ions 
(25,37,39), Volterra theory (47) enables one to express 
the relationship between the system input x ( t )  and output 
y ( t )  as a series of multiple convolution integrals: 

y(t)  = ko + fo x k~('Ox(t - "r)d.: + 

f0  :c f 0  ~c k2(T1,T2) x ( t  - -  TI)X(t  - -  T 2 ) d x l d ~ 2  + �9 �9 " 

n 

+ j o  . . . j o  �9 . 

x ( t - ' r n ) d " q  �9 �9 " dx, ,  + �9 �9 �9 , (1) 

where the function k,(x~, �9 - �9 ,'rn) is the nth-order Volterra 
kernel, which can be assumed to be symmetric without 
loss of generality (25,37,39). The arguments "r~, �9 - - , xn 
are in time units (same as t). The Volterra functional ex- 
pansion represents a linear system as a special case when 
all of the kernels higher than the first-order are identically 
zero. In this case, the first-order kernel represents the 
impulse response function of the linear system. Sandberg 
(38) has recently proved that a Volterra or Volterra-like 
I/O functional expansion exists for an important large 
class of nonlinear systems. 

In general, the Volterra kernels are difficult to measure, 
since the Volterra functionals of different orders are 
nonorthogonal to one another. Wiener (48) proposed an 
orthogonalization procedure for the Volterra functionals 
using a Gaussian white noise as the system stimulus. 
Based on Wiener's results, Lee and Schetzen (23) devel- 
oped a practical cross-correlation technique for measuring 
the Wiener kernels using Gaussian white noise as the input 
signal. They have shown that the nth-order cross- 
correlation between the output y ( t )  and the input x ( t )  of a 
nonlinear system is proportional to the nth-order Wiener 
kernels and thus the stimulus-response cross-correlations 
can be used as the measurements of the Wiener kernels. 

In practice, analog experimental data are digitized, and 
thus it is more convenient to express the auto- and cross- 
correlations in discretized forms: 
6 ~  . . . .  ( ' r l ,  �9 �9 �9 , T . )  = 

M-1 
1 

2 a  x ( i  - "rl) �9 �9 �9 x ( i  - "rn), (2) 
2 M  1 l 

/ = - ( M - l )  
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and 

fJ)yx...x(T1, " " " ,T,) = 

M-1 
1 

~_~ y( i )x( i  - . q ) .  �9 .x(i - "rn), ;t 
i=0 

where M is the length of data set y(i)  or x(i) .  In addition, 
one may only need to calculate half of the symmetrical 
auto-correlation; and for stationary processes, the second- 
order autocorrelation can be reduced to a one-dimensional 
(1D) function, i .e . ,  

M-1 
1 

d#xx('r) = ~ , ~  x( i )x( i  - .r). (4) 

i=0 

Practically speaking, one cannot obtain true white 
noise of infinite length. Therefore, one major disadvan- 
tage of the Lee-Schetzen method is the requirement of 
having a long record length as input to approximate true 

white noise. The second-order autocorrelation of a true 
white noise would be a ~ function. An ideal 6 function 
would have a large value at t = 0, and identical zeros at 
all other points along the time axis. Fig. la shows how the 
record length of the Gaussian white noise influences the 
measurements of the second-order autocorrelations that 
were calculated using Eq. 4 with 50 shifts along the -r axis. 
The Gaussian white noise with variance (r 2 = 1.6 was 
generated using the function "gasdev"  supplied in the 
book N u m e r i c a l  R e c i p e s  in C (33). The results show that 
when the record length M of the Gaussian white noise is 
20,000, the measured autocorrelation is a good approxi- 
mation of a ~ function. However, when M was reduced to 
728, large nonzero values of the autocorrelation at "r ~ 0 
resulted, which can cause estimation errors [the so-called 
nonorthogonal errors (19,25,44)]. The nonorthogonal es- 
timation errors caused by the imperfections of the auto- 
correlation vary inversely with the square root of the rec- 
ord length (25). 

2nd-order autocorrelations 
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FIGURE 1. (a) Second-order autocorrelations of Gaussian white noise. Solid line: length 728. Dashed line: length 20,000. (b) 
Second-order autocorrelations of short m-sequences. Solid l ine: ternary m-sequence w i th  length 728, Dashed line: binary m-se- 
quence wi th  length 1023. (c and d) The first-order binary and ternary kernels using Methods 1 and 2. Solid lines: theoretical 
first-order kernels. Dashed lines: estimated first-order binary kernels. Dash-dotted lines: estimated first-order ternary kernels. 
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Properties of m-Sequences. M-sequences, also called 
maximum length sequences (14), can be generated easily 
by a shift-register with an "exclusive OR" feedback con- 
figuration. The m-sequence can have multiple levels, bi- 
nary (two levels) and ternary (three levels) sequences are 
used most often. For a binary m-sequence, each stage in 
the register has two states (0 or 1), and the state of each 
stage shifts to its neighboring stage recursively by feeding 
back a modulo 2 sum of selected stages (14,25,44). For a 
ternary m-sequence, the stages in the register have three 
states (0, 1, or 2), and the states of the register are shifted 
by feeding back a modulo 3 sum of selected stages (14, 
pp. 111). When the locations of the feedback stages are 
selected appropriately, the generated sequence will reach 
maximum length before repeating. That is, within the 
maximum length (a full cycle of m-sequence), the state 
string of stages in the register will never repeat. This is 
why the deterministic m-sequence is more efficient and 
less redundant than stochastic white noise. The maximum 
length is 2 n - 1 for a binary m-sequence, and 3 n - 1 for 
a ternary m-sequence, where n is the number of stages in 
the register. 

The second-order autocorrelations of a binary m-se- 
quence with length 1023 (21~ - 1) and a ternary m-se- 
quence with length 728 (36 - I) are shown in Fig. lb. 
For satisfying the zero-mean condition, the 0 and 1 values 
in the binary m-sequence are converted to - 1  and 1, 
respectively, and the 0, 1, and 2 values in the ternary 
m-sequence are converted to - 1, 0, and 1, respectively. 
The mean value is 0.00097 (=  1/1023) for the binary 
m-sequence, and 0.0014 (=  1/728) for the ternary m-se- 
quence. The results in Fig. lb show that the autocorrela- 
tion functions are good approximations of the ~ function 
even for short m-sequences. To quantitatively evaluate the 
deviations of the autocorrelations from the true ~ function, 
we introduce a percentage mean-square-error index 
(MSEI) as defined below: 

L 

' r=l  

MSEI = qb~(0) ' (5) 

where L is the shift along the "r axis. Note that different 
values of L may result in different MSEI values, even for 
the same sequence. In general, the length L should be 
larger than the system memory m (See Eq. 8a for the 
definition of m). It is obvious from Eq. 5 that for a true 
function MSEI = 0; the larger the MSEI value, the more 
the autocorrelation deviates from the true ~ function. At 
L = 50, the MSEI value is 4.35% for Gaussian white 
noise with a length of 728 (solid curve in Fig. la); the 
MSEI value is 0.65% for Gaussian white noise with a 
length of 20,000 (dashed curve in Fig. la); the MSEI 

value is 0.65% for ternary m-sequence with a length of 
728 (solid curve in Fig. lb); and the MSEI value is 0.57% 
for binary m-sequence with a length of 1023 (dashed curve 
in Fig. lb). Given the equivalence of MSEI values for 
short m-sequences (728 samples) and long stochastic 
Gaussian white noise (20,000 samples), a full-cycle short 
m-sequence can effectively eliminate the autocorrelation 
noise. It is important to use a full-cycle m-sequence, since 
the autocorrelation of a sequence of 1023 samples ex- 
tracted from a full-cycle m-sequence with length 2047 or 
longer will be much worse than a full-cycle m-sequence 
with length 1023. 

The Anomalies 

The properties of autocorrelations with different orders 
for Gaussian white noise are the basis for measuring the 
Wiener kernels using cross-correlation techniques 
(6,23,25). The property of the second-order autocorrela- 
tion is related to the identification of linear systems and 
the first-order kernel of nonlinear systems (6,14,23,25), 
whereas the propert ies  of the higher-order  auto- 
correlations are related to the identification of the second- 
and higher-order kernels of nonlinear systems (6,23,25). 
Since m-sequences have second-order autocorrelations 
that are similar to those for real white noise, as shown in 
Fig. lb, they are widely used for identifying linear sys- 
tems. However, higher, even-order autocorrelations of 
m-sequences are quite different from those of Gaussian 
white noise. Serious "anomalies" (estimation errors) re- 
sult in the second- and higher-order kernels using m-se- 
quences as system inputs. The anomalies manifest as bi- 
ases in kernel estimation. For example, spurious bumps 
(I-spikes) may appear in the estimated kernels (see the 
simulated examples in Fig. 3, c and d). Previous studies 
(3,4,6,24,25,34) have attributed these estimation errors to 
the anomalies and imperfections in the higher-order auto- 
correlations of the m-sequence. For example, Srebro and 
Wright (40) have shown serious anomalies when using 
short ternary m-sequences for VEP (visual evoked poten- 
tial) studies; Benardete and Victor (6) have quantitatively 
shown how the higher-order autocorrelations of m-se- 
quences cause anomalies. Recently, Sutter (43,44) pro- 
posed a more detailed explanation for the occurrence of 
these estimation biases for the binary m-sequence case. 
Based on the useful deterministic property of the binary 
m-sequence, i.e., that all of the auto-products of a binary 
m-sequence are still the same sequence up to a shift, Sutter 
proposed a method to calculate the higher-order binary 
kernels using only a first-order cross-correlation with a 
long shift. Sutter suggested that the origin of the anomaly 
problem for the binary m-sequence is caused by the over- 
lap of higher-order kernel slices. He demonstrated the 
quantitative condition under which anomalies will not 
o c c u r :  
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n />  m - d, (6a) 

where n is the stage number of the register generating the 
m-sequence (i.e., the sequence length is 2 n - 1); m is the 
system memory number (e.g., if the system memory is 
300 ms, the sampling interval of the response is 20 ms, 
then m = 300/20 = 15); and d is the system delay [Sut- 
ter (44) refers to m - d as the "input window"]. There- 
fore, the condition in Eq. 6a is quite restrictive. For ex- 
ample, to study a system with a system memory number 
m = 30 and a delay d = 5, one would have to use an 
m-sequence with a length of 2 z5 - 1 = 33,554,431. Ob- 
viously, increasing the sequence length is not a practical 
way to avoid the anomalies. In the next section, we will 
demonstrate that the sparse-stimulation technique can ef- 
fectively reduce the anomalies even for short m-se- 
quences. It is also worth noting that Eq. 6a was derived 
using a deterministic binary approach with Walsh trans- 
forms, which is only suitable for binary sequences. In this 
paper, we also examine ternary sequences and thus use the 
cross-correlation approach with short input m-sequences. 
When the computation is within the size of the Walsh 
array, the deterministic binary approach and the cross- 
correlation approach are almost equivalent to one another 
(see 44 for a detailed discussion comparing these two ap- 
proaches). In the deterministic binary approach, the sys- 
tem delay d has to be chosen in advance so that the Walsh 
array only needs to cover the input window. In the cross- 
correlation approach, one does not need to know the sys- 
tem delay in advance and thus Eq. 6a should be modi- 
fied as 

n /> m. (6b) 

Simulation Results 

In this section, we use computer-simulated examples to 
show: (a) how well one can measure the first-order kernel 
for single-input and multi-input nonlinear systems using 
short m-sequences; (b) the seriousness of the anomaly 
problems when measuring the second-order kernel; (c) a 
comparison of two methods for kernel calculations [one is 
the traditional Lee-Schetzen cross-correlation method 
(Method 1), and the other is the inverse-repeat method 
(Method 2)]; and (d) a comparison of measured binary and 
ternary kernels. Simulation results comparing Method 1 
with Method 2 are shown in Fig. 1, c and d. System 
simulations were performed with an IBM compatible PC 
486 computer using Personal VisSim (Visual Solutions, 
Inc. Westford, MA, USA), a commercial software pack- 
age. The accuracy of the measured kernels were evaluated 
using a simple LN (Wiener) model whose theoretical first- 
and second-order kernels are readily available for compar- 
ison. For example, the first-order kernel of an LN model 
is proportional to the impulse response function of the 

linear subsystem in this model, and the second-order ker- 
nel is proportional to the outer product of the impulse 
response function. The block diagram programming chart 
for simulating an LN model is illustrated in Fig. 2. A 
half-square nonlinearity was used for the N operator (the 
half-square box in the chart), the same as the simulation in 
(10): 

Y(t)=N[u(t)]=[lu(t)l+u(t)] 2 ' 2  (7) 

where u(t) and y(t) are the input and output of the N 
operator, respectively. The half-square is neither an even 
nor an odd function, therefore, the system has both even- 
and odd-order kernels. The linear subsystem (the h(t) box 
in the chart) can be chosen either in discrete form using a 
Z transfer function (as used in the simulation in 10), or 
in continuous form using a Laplace transfer function. The 
two forms result in similar accuracy, with the discrete 
form being slightly better when using discrete inputs. The 
continuous form will be more suitable when using contin- 
uous inputs, as shown in the simulation cases in the 
next section. The linear subsystem in Fig. 2 is in con- 
tinuous form, with parameters h(t) = 4 e  - 2 " 2 ( t - 0 ' 4 )  

sin[5.2(t - 0.4)] for t >/ 0.4 and h(t) = 0 for t < 0.4, 
whose Laplace transfer function is 

130e-~ 
H(s) = 2 . (8) 

s + 4.4s + 31.88 

The simulation was conducted using the Euler integra- 
tion algorithm with step size 0.01 s (Fig. 2). The input.dat 
box in Fig. 2 represents a binary m-sequence with length 
1023 (Plot 1 in Fig. 2). The input and output sampling 
intervals, At s and At r, were equal in this case (0.1 s); 
therefore the simulated duration was 102.3 s. The simu- 
lation took 21 sec in real time to finish. Two methods for 
measuring the system kernels have been discussed in (10). 
In Method 1, the original Lee-Schetzen method, the first- 
and second-order kernels were calculated by cross- 
correlating the input.dat and the output.dat data files. In 
Method 2, also referred to as the "inverse-repeat method" 
(6,19,44), the experiment is supposed to be conducted 
twice to obtain the two responses to inputs x(t) and -x( t ) .  
However, the simulation shown in Fig. 2 was conducted 
only once because two identical LN models were used. 
The second-order  kernel was calculated by cross- 
correlating the input.dat and the output_e.dat files, and 
the first-order kernel was calculated by cross-correlating 
the input.dat and the output_o.dat files. (Note that the 
main diagonal slice of the second-order binary kernel is 
not measurable using the cross-correlation technique, 
since in calculation of the diagonal slice there is a squaring 
of the binary input.) 

The estimated first-order cross-correlations (the first- 
order binary kernel) using Methods 1 and 2 were plotted as 
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FIGURE 2. A block diagram program- 
ming chart simulating an LN model. The 
input.dat box represents a binary m-se- 
quence with length 1023, which is shown 
in Plot 1. The output.dat box represents 
the LN model's response (output) to the 
m-sequence input. The output_o, dat and 
output__e.dat boxes represent the odd- 
order and even-order output  compo- 
nents, respectively (Plots 2 and 3). The 
h(t) and half square boxes represent the 
linear subsystem and the half-square N 
operator of the LN model, respectively. 

dashed curves in Fig. 1, c and d, respectively. The ternary 
kernels were estimated using a ternary m-sequence with 
length 728 as the inpu t .da t  file in Fig. 2, and the system 
parameters were the same as the binary case discussed 
above. The sampling interval AT was 0.1 s and the number 
of samples along the a- axis was 30. The curve values are 
almost damped to zero at the end of the ~" axis (-r = 3). 
According to Eq. 6, the effective system memory number 
m can be approximated as 30, and the system delay d is 4. 
Each curve in Fig. 1, c and d, has been normalized to have 
a positive peak value of 100 units. It is obvious from Fig. 
1, c and d, that Method 2 (Fig. ld) results in smaller 
kernel estimation errors than Method 1 (Fig. lc). The 
advantage of Method 2 is that it eliminates leakage be- 
tween the even- and odd-order kernels. However, the 
drawback of Method 2 is that the experiment must be 
conducted twice. The results above were obtained using 
the usual white-noise approach ( i .e . ,  A t  s = Atr). In the 
next section, we will show that, when using the sparse- 
stimulation technique ( i .e . ,  Ats >Atr ) ,  these two methods 

result in similar estimation accuracy and thus the simpler 
Method I can be used for practical applications. 

Fig. 3, a and b, shows the theoretical second-order 
kernels with and without the main diagonal slice, respec- 
tively. The sampling interval A-q (or A%) was 0.1 s and 
the number of samples along the % and % axes was 30. 
The estimated second-order cross-correlations using 
Method 2 are plotted in Fig. 3c (using a 1023 binary 
m-sequence as input, n = 10) and Fig. 3d (using a 728 
ternary m-sequence as input, n = 6). Both plots (Fig. 3, 
c and d) show strong anomalies, i .e . ,  there are many spu- 
rious bumps (I-spikes) as compared with Fig. 3b. Accord- 
ing to Eq. 6b, we would need a binary m-sequence input 
with length 23~ - l to avoid the anomalies. In other 
words, the estimated second-order kernel can only have an 
anomaly-free area of (0 ~ % ~< nA%, 0 ~ % ~< nA'r2), 
which is satisfied by the measured second-order kernel in 
Fig. 3c, where no anomalies occurred within the area (0 ~< 
% ~ 1 s, 0 ~< % ~< l s). (We have tested this conclusion 
using other binary m-sequence lengths (e .g . ,  2047) and 
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ternary m-sequence as input (Method 2). 

other system parameters.) Note that the main diagonal 
slice of the estimated second-order binary kernel has near- 
zero values, i . e . ,  the main diagonal values of the second- 
order kernel cannot be obtained from the second-order 
cross-correlation. 

SPARSE-STIMULATION 

The  Z e r o - O r d e r  H o l d  

So far we have discussed m-sequences generated in a 
discrete form. However, in practice, many system inputs 
are applied in continuous form. The technique applied 
most frequently to convert a discrete input to a continuous 
one is the zero-order hold (14,25,40,41), which holds the 
discrete input values constant for a period of Ats (the sam- 
pling interval). The converted continuous binary and ter- 
nary m-sequences are shown in Plots 1 and 2 in Fig. 4, 
respectively. They are generated by cascading a zero- 
order hold to the output of the binary m-sequence (with 

1023 length, the b l O 2 3 . d a t  box in Fig. 4) or the ternary 
m-sequence (the t728.dat box in Fig. 4). The duration T of 
the hold was set at 0.1 s, the same as At s for the discrete 
m-sequences in Fig. 4. (Note: The computer-generated 
hold in Fig. 4 results in an ideal waveform with transition 
time between states ( - 1 ,  0, + 1) being zero, i . e . ,  

T t = 0. However, in practice, the hold's function is per- 
formed by physical digital-to-analog transducers, which 
will give rise to a certain transition time caused by some 
inevitable inertia of the physical transducers. Neverthe- 
less, the estimation errors may be negligible if 1 / T  t > fsystem, 
where fsystem is the frequency bandwidth of the system 
under study (25). See (14) and (25) for detailed evalua- 
tions of the estimation errors caused by reversible and 
irreversible transition times.) The Laplace transfer func- 
tion of the zero-order hold is (30,32) 

1 - -  e - T S  

H D ( s )  - - -  , (9) 
S 
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FIGURE 4. Block diagram programming 
chart simulating an LN model using con- 
t i nuous  m-sequences. The continuous 
m-sequences are generated by cascading 
a zero-order hold (the hold box) to the 
output of the binary m-sequence (with 
1023 length, the b1023.dat box) or the 
ternary m-sequence (the t728.dat box). 
The duration Tof  the hold was set to 0.1 
s ( the 0.1 box),  the same as ~ t  s for the 
discrete m-sequences (~ t  s = At,). The 
converted continuous binary and ternary 
m-sequences are shown in Plots 1 and 2, 
respectively. 

where T is the duration of the hold (and T = Ats). For 
s = joJ in Eq. 9, we obtain the Fourier transfer function 
for the zero-order hold: 

sin(toT/2) e_TJto/2" (10) 
HD(o)) = T ~oT/~  

As shown in Fig. lb, the autocorrelations of the short 
m-sequences are very close to a ~ function, the Fourier 
transfer function of which is a constant. Therefore, the 
frequency properties of the continuous m-sequence will be 
solely determined by Eq. 10. By taking the discrete Fou- 
rier transform of the two autocorrelations of the discrete 
m-sequences in Fig. lb, the power density spectra of these 
two short discrete m-sequences (with lengths of 1023 and 
728) were computed and plotted in Fig. 5a, which can be 
approximated as constants. The two ends of the x-axis 
(---0.5f~, where fs = 1/Ats) are the negative and positive 
Nyquist frequencies. The power density spectrum of a 
continuous m-sequence (a discrete m-sequence cascaded 

by a hold), which is also in discrete form, has been de- 
rived by Davies (14, pp. 67): 

*xxO r) _ a 2 ( N  + 1)[sin(,rrflfs)] 2 

Nfs [ ~f/fs ] ' 
(11) 

where N is the length of the m-sequence, a is the physical 
intensity unit of the m-sequence, i.e., the two levels - a  
and + a for the binary case; the three levels - a ,  0, and 
+ a for the ternary case. The function [sin(Irf/fs)/(~rf/fs)] 2 
was plotted in Fig. 5b, which shows that the zero-order 
hold has a low-pass filtering property. The power density 
spectrum reaches its first zero values at f = fs and has a 
value of a2(N + 1)Ats/N at low frequencies and falls by 
approximately 3 db at the frequency f = fJ3  Hz. There- 
fore, the effective frequency bandwidth of a continuous 
m-sequence is f r o m f  = fs/N t o f  = fs/3. It is obvious that 
the sampling interval At s ( =  1/fs) of the discrete m-se- 
quences (and thus the duration T of the hold) is a crucial 
parameter for determining the bandwidth of continuous 
m-sequences and the impact of low-pass filtering (by the 
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FIGURE 5. Discrete versus continuous m-sequences and effects of the zero-order hold. (a) Solid line: The power density spectrum 
of the discrete ternary m-sequence (728). Dashed line: The power density spectrum of the discrete binary m-sequence (1023). (b) 
Solid line: The function [s in(~f / fs) / (~f / fs) ]  2 of the power density spectrum of continuous m-sequences (Eq. 11}. The unit of the 
frequency axes is fs = ~ts Hz in (a) and (b). (c) Simulation showing the effect of low-pass filtering by the zero-order hold with 
different durations IT): dashed line: T = 0 (no hold); solid line: T = 0.1 s; and dash-dotted line: T = 0.3 s. (d) The solid line is 
replotted from the solid curve in (c), The dashed line is the estimated first-order kernel using Method 2 from the simulation in 
Fig. 4. 

hold) on the resulting system kernels. As shown in Fig. 
5b, iffs is chosen so thatfs/3 > fsystem, then the effect of 
low-pass filtering may be negligible. However, as dis- 
cussed later, sparse-stimulation techniques may be used to 
avoid anomalies occurring in higher-order kernel measure- 
ments. In this case, At s is chosen to be larger than Air; 
consequently, the frequency bandwidth may be narrower 
than that of the system under study. Therefore, it will be 
important to recover the true system kernels from the low- 
pass filtering caused by the zero-order hold. This config- 
uration can be considered as a linear subsystem (the hold) 
cascaded in front of the system under study. The simula- 
tion results in Fig. 5c show how different durations (T) of 
the hold can change the system's impulse response func- 
tion ( i .e . ,  effects of low-pass filtering). The curves are 

normalized and plotted in Fig. 5c for comparison as 
dashed (T = 0), solid (T = 0.1s), and dash-dotted 
(T = 0.3 s) curves. From Fig. 5c it was found that when 
increasing T (=  0, 0.1, and 0.3 s) the resulting impulse 
response shifts towards the right-hand side. 

According to the Volterra kernel expressions for cas- 
cade nonlinear systems (25, pp. 393, 37), since we know 
the Fourier transfer function of the hold as shown in Eq. 
10, the true first- and second-order Volterra kernels can be 
expressed as deconvolution relationships of the measured 
kernels and the hold: 

K'I(CO) K'2(oJI~02) 
KI(O) H D ( o )  ' and K2(o~1o~2) HD(o~I )HD(o2  ) , 

(12) 
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where K '1(to) and K~(tol,to 2) are the measured first- and 
second-order Volterra kernels, and Kl(to) and K2(~o1,~o2) 
are the recovered true system Volterra kernels. The results 
in Eq. 12 can be easily generalized for higher-order Vol- 
terra kernels. According to the results in Ref. 23, section 
10 (25,39), the results in Eq. 12 can be extended for 
Wiener kernels by simply substituting the Volterra kernels 
in Eq. 12 with the corresponding Wiener kernels. 

The simulation in Fig. 4 was designed to confirm the 
results in Eq. 12. The simulation settings were the same as 
those presented above (Simulation Results) (Fig. 2); the 
only difference was the additional hold (T = 0.1 s) cas- 
caded between the discrete binary 1023 m-sequence and 
the system. According to Eq. 12, the measured first-order 
kernel will be proportioned to the convolution of the hold 
(T = 0.1 s) and the true first-order kernel, i .e . ,  the solid 
curve in Fig. 5c. The measured first-order kernel using the 
inverse-repeat method (Method 2) and the solid curve in 
Fig. 5c were normalized and plotted in Fig. 5d as dashed 
and solid curves, respectively. These two curves are quite 
proportional to each other. 

Sparse-Stimulation 

All of  the simulations conducted above used a usual 
white-noise approach (25), i . e . ,  At s = A t r .  Sparse- 
stimulation refers to the situation when a stimulus is sam- 
pled less often than the response (19), i .e . ,  At~ > At r. The 
mathematical foundation of the white-noise approach us- 
ing the sparse-stimulation technique and its applications 
have been developed and presented in (19,44). There are 
several advantages to using sparse-stimulation: 

1. For many experimental situations there are fewer 
restrictions in choosing At r than At S. For example, in our 
own MEG studies discussed in the next section, the sam- 
piing rate of the data acquisition system for the responses 
can be as high as 40 kHz; however, the maximum rate of 
presentation for visual stimuli is 30 Hz because of the 
video card. The sparse-stimulation technique allows one 
to select Atr (independently of Ate) based on the frequency 
bandwidth of the responses and the required resolution for 
the measured kernels (the kernel resolution is determined 
by At 0. The choice of At s may be based on the limitations 
of the equipment. 

2. For a pseudorandom (or colored noise) input, such as 
a continuous m-sequence discussed above, the power 
level of the input may be low if the input covers a large 
frequency bandwidth. In this case, the input may not ef- 
fectively drive the system under study if the system has 
high thresholds, resulting in noisy measurements. As in- 
dicated in Eq. 11, if we increase At~ ( =  1/f~), the power 
level of the m-sequences will be higher, even though the 
frequency bandwidth will decrease. 

3. The most important advantage of sparse-stimulation 
techniques is the reduction of anomalies that occur in 
higher-order kernel measurements. As discussed in the 
last section, to increase the anomaly-free area, we have to 
increase m-sequence length, which is not a practical way 
to reduce anomalies. In this section, we will show that the 
anomaly-free area of the second-order kernel can be in- 
creased by increasing the sparse-stimulation ratio (SSR), 
even for short m-sequences. The SSR is defined as 
SSR = Ats /At  r. 

Simulations of sparse-stimulation have been conducted 
using the same simulation settings outlined above (The 
Zero-Order Hold) (Fig. 4), except for the duration of 
the hold. The hold duration was changed from T = 0.1 s 
to T = 0,3 s ( i .e . ,  At s = 0,3 s), while still using the 
same At r ( = 0 . 1  s). T h e r e f o r e ,  the s i m u l a t i o n  
time (1023 • 0.3 -- 306.9 s) was three times longer than 
that used for the simulation in Fig. 4. The length of the 
output files was 3069 (versus  the 1023 length of the input 
file). Figure 6 shows these differences graphically by 
comparing the traditional stimulation case (At s = At r) for 
a 1023 binary m-sequence (Fig. 6a) with the sparse- 
stimulation case (SSR = 3) for the same m-sequence 
(Fig. 6b). 

There are two methods for calculating the kernels from 
sparse-stimulation data (e .g . ,  the data obtained from the 
simulation discussed above (SSR = 3)), the previously 
proposed "inserted" method (19,44), and the "padded" 
method proposed in this paper. That is, these two methods 
are based on the same stimulus-response data (Fig. 6b). 
First we discuss the inserted method to demonstrate the 
advantages of the sparse-stimulation technique, which can 
help reduce the anomalies. A discussion of the padded 
method follows. The effects of low-pass filtering on the 
measured system kernels associated with these two meth- 
ods will also be discussed. 

The Inser ted  Me thod .  A binary m-sequence with a length 
of 1023 (input x(t))  was used to obtain the simulation 
results shown in Fig. 6b. The output tiles (y(t)) obtained 
had a length of 3069, as shown in Eq. 13: 

[1, - 1 , - 1 ,  1, 1, - 1 , "  �9 
x ( t )  = 

1023 

[dl,d2,d3, " " " d3069], 
y(t) = 

3069 

"]' and 

(13) 

where, t = 0, 1, 2, - �9 �9 . However, the traditional cross- 
correlation method (25) requires the same length for the 
input and output files. To satisfy this requirement, we can 
divide the output data tile y(t)  into three subfiles, each 
with a length of 1023. The first subtile yl(t) extracts data 
from the original output file at data numbers 1,4,  7, - �9 �9 ; 
the second subtile y2(t) extracts data from the original 
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FIGURE 6. T rad i t iona l  s t imu la t i on  and 
sparse-stimulation for a binary m-se- 
quence, (a) Tradi t ional  s t imu la t ion  using 
a 1023 binary m-sequence. Both inpu t  
(m-sequence) file and the output file are 
of 1023 leng th  (~ t  s = A t  r = 0.1 s); the 
stimulation time is 102.3 s, (b) Sparse- 
stimulation using the same m-sequence. 
The input f i le  is s t i l l  of 1023 l eng th ,  
but the o u t p u t  f i le  is of 3069 l eng th  
(~ t ,  = 3 • ~ t ,  = 0.3 s); t he  s imu la t i on  
time is 306.9 s. 

output  t i le f rom data numbers  2, 5, 8, �9 �9 �9 ; and the third 

subti le  y3(t) conta ins  data from 3, 6, 9, - �9 �9 , as shown in 
Eq. 14: 

[ d l , d 4 , "  �9 " ,  d 3 0 6 7 ] ,  
yl(t)  = y(3t) = - 

1023 

[ d ~ , d s , "  �9 " ,  d 3 0 6 8 ] ,  
y2(t )  = y ( 3 t  + 1) = - 10"23 

and 

[d3,d6, �9 " �9 , d3069]. 
y3(t) = y ( 3 t  + 2) = ~ -  1023 . (14) 

Therefore,  we can calculate three subkernel  sets ( e . g . ,  the 

first-order subkernels :  +y,x('r), +y~x('r), and +y~(T)) by  
cross-correlat ing each of  the three subfiles with the same 

input  file x( t ) .  Then we can insert  the three est imated 

subkernel  sets into one kernel  set. according to the relative 
order of  the sub files. For  example ,  for the first-order 

kernel,  let 

~by,x( ' r)  = [il,i2,i3, " " " ] ,  ~by2x(T) = [ j l , J 2 , j 3 ,  " " " ] ,  and 

~y~x("O = [k l ,kz ,k3 ,"  �9 "1. 

Then,  +y~x('r) will be placed at data numbers  1 , 4 ,  7, �9 " �9 , 

in the inserted first-order kernel  kl('r); and so on for +y~(-r) 
(at (2, 5, 8, �9 �9 ")) and +y~(r)  (at (3, 6, 9, �9 �9 ')), as shown 

in Eq. 15: 

k]('r) = [ i l , j l , k l , i2 , j2 ,k2 , i3 ,J3 ,k3 ,  " " "]. (15) 

Note that the resolution is At s for the three subkernels ,  but  

is At,  for the inserted kernel.  
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From the procedure (inserted method) discussed above, 
it is clear why sparse-stimulation can reduce the anoma- 
lies. As discussed in the last section, the anomaly-free 
area for each of the three subkernels is n = 10 for the 
input sequence length of 1023, and thus the anomaly-free 
area for the inserted kernels will be 3 • 10 = 30. There- 
fore, the sparse-stimulation technique can reduce the 
anomalies much more effectively than a method that in- 
creases the length of the input sequences. It is generally 
true that when using sparse-stimulation Eq. 6b can be 
modified as 

n />  m/SSR, or AFA = n x SSR, (16) 

where AFA denotes an anomaly-free area. The first-order, 
inserted kernel from the simulation of sparse-stimulation 
using the inverse-repeat method (Method 2) was calcu- 

lated and plotted in Fig. 7a as the dash-dotted curve. The 
theoretical first-order kernel was plotted in Fig. 7a as a 
solid curve. The inserted kernel shifted toward the right- 
hand side; this shift is mainly caused by the low-pass 
filtering effect of the hold. In the inserted method, the 
subkernels ((~ytx('1"), (I)y:,x('T), and qby~x('r)) are the convolu- 
tions of the true kernel and the holds for T are 0.3, 0.2, 
and 0.1 s, respectively. Therefore, the true kernels can be 
recovered using Eq. 12. As shown in Fig. 5c, the effect of 
the hold for T = 0.3 s on the subkernels related to the 
first subtile will be the strongest regarding the shift of the 
measured inserted kernels. The first-order inserted kernel 
and the dash-dotted curve in Fig. 5c (the hold with 
T = 0.3 s) are replotted in Fig. 7b as dash-dotted and 
solid curves, respectively. They have similar shifts toward 
the right-hand side. Although we can obtain the full first- 
order kernel (with the sampling interval Atr) using the 
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inserted method, this method does not permit us to obtain 
the entire second- and higher-order kernels. For example, 
let 

~ b y , x x ( T I , T 2 )  = i~,,T2, l ~ / ) y z r x ( T 1 , T 2 )  = jT~,~:, and 

d 0 y y r . x ( T 1 , T 2 )  ---- k.r,,.r2 , 

where "r 1 (and "ra) = 0,1,2, ' ' -  , and (by ,xx(~ , ' r2)  , 
(by~(T l ,T2), and (by3x~(xl ,T2) are the second-order subker- 
nels by cross-correlating each of the three subfiles (yl(t), 
y2(t), and y3(t)) with the same input file x( t ) .  Then, the 
second-order inserted kernel will be 

k 2 ( T 1 , T 2 )  = 

i0,1 

- -  J0,1 

- -  - -  k 0 , 1  

i0,2 - -  - -  

- -  J o , 2  - -  - -  j l , 2  - -  

_ _  - -  k 0 ,  2 - -  - -  

i 0 , 3 -  - -  i l , 3 -  - -  

i 1 , 0 -  - -  i 2 , 0 -  - -  i 3 , 0  

jl,0 - -  - -  j2,0 - -  - -  

kl,o - -  - -  kz,o - -  

i2 ,1  - -  - -  i3 ,1  

j 2 , 1  - -  - -  

k 2 , 1  - -  

il,2 i3,2 

kl,2 . . . .  

i 2 , 3  - -  - -  - -  

(17) 
where the symbols " - - "  indicate gaps. It is clear from 
Eq. 17 that we can only calculate reduced second-order 
kernel slices along the diagonal direction with the interval 
of At s, which may cause problems in acquiring sufficient 
information about the nonlinear system under study. (See 
44 for a detailed discussion on this issue.) 

T h e  P a d d e d  M e t h o d .  To demonstrate the padded method, 
the same input (x ( t ) )  (with a length of 1023) and output 
(y(t)) (with a length of 3069) data files used in the dem- 
onstration of the inserted method are used again. Instead 
of dividing the output file into three subfiles, we can pad 
the input file x( t )  (with length 1023; see Eq. 13) by 3, so 
that the input file will have a length of 3069, the same as 
the output files y( t ) .  That is, each datum in the original 
1023 file was repeated two additional times: 

xp(t)  = 
[ 1 , 1 , 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 , 1 , 1 , 1 ,  �9 �9 

30~9 

.]. 

(18) 

The resulting padded file xp(t) (length of 3069) will be the 
same as the data file sampled from the continuous m-se- 
quence curve in Fig. 6b with a sampling interval of 0.1 s 
(the solid triangle series). Therefore, all of the system 

kernels can be obtained (with the sampling interval Atr) by 
cross-correlating the output data file y( t )  with the padded 
input file Xp(t). The first- and second-order cross- 
correlations were calculated (using Method 2) and plotted 
in Fig. 7, a (dashed curve) and d, respectively. 

The padded input file is no longer a real m-sequence, 
and thus the autocorrelation of the padded m-sequence 
will not be a 5 function. The autocorrelations of the orig- 
inal m-sequence x( t )  (binary, 1023) and the padded m-se- 
quence Xp(t) (3069) are plotted in Fig. 7c as dashed and 
solid curves, respectively. The autocorrelation of the real 
m-sequence becomes zero at data point 2 (the discrete -r 
value of 1 in Fig. 7c), and the autocorrelation of the pad- 
ded m-sequence (3069) becomes zero at data point 4 (the 
"r value of 3). In general, for an autocorrelation of an 
m-sequence padded by l (=  SSR), the first data value 
reaching zero will be at the data number l + 1 ( i . e . ,  the 
base of the triangle-shaped autocorrelation will be in- 
creased when I increases). This fact has also been noted by 
Klein (19). The imperfection of the autocorrelation of the 
padded m-sequence will cause deviations of the estimated 
kernels from the true kernels using the cross-correlation 
technique. Therefore, it is important to find a tractable 
way to recover the true system kernels from the filtering 
caused by the padded effect. In their seminal work (23), 
Lee and Schetzen discussed measurements of Wiener ker- 
nels with nonwhite (colored) noise inputs. The padded 
m-sequence can be considered as a nonwhite input filtered 
by an equivalent linear system (representing the padding 
effect) cascaded in front of the system. According to 
(23,25,39), if the power density spectrum of a nonwhite 
input is factorable, we can always obtain the transfer func- 
tion of the cascaded equivalent linear system ~(to). Then, 
similar to Eq. 12, the true first- and second-order kernels 
can be recovered as 

Ki(to) K~(tol ,o32) 
Kl(~o) -- qb(to) ' and Kz(tol,O~2) - -  d p ( t o 1 ) d P ( ~ 2  ) . 

(19) 

(Note: The power density spectra of the nonwhite noise 
inputs with physical origin will always be factorable. The 
padded m-sequence may not have physical origin and thus 
their power spectra may not be factorable. Nevertheless, 
we may use a similar power spectrum that is factorable to 
approximate that of the padded m-sequence, or just simply 
conduct accurate simulations to estimate dp(o~) from the 
estimated and the true first-order kernels, as shown in Eq. 
19 .) 

It is interesting that the triangle-shaped autocorrelation 
of the padded m-sequence (Fig. 7c) is the same as the 
impulse response function of a first-order hold. The asso- 
ciated transfer function is given by (32, pp. 525) 

1 [ sin(o~T/2)] 2 
H(to) : ~ [  o)/2 ] '  (20) 
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where T is equal to half of the triangle base of the auto- 
correlation, i .e. ,  T -- SSR x At r. (For example, for the 
padded m-sequence  au tocor re la t ion  in Fig. 7c, 
T = 0.3 s.) We have used H(o~) as ~(~o) in Eq. 19 to 
recover the true system kernels. The results show that the 
true kernels can be recovered from the estimated padded 
kernels. These results will be examined further in the Gen- 
eral Discussion. 

In the padded method, there is a low-passing filtering 
effect caused by the zero-order hold, in addition to the 
padded ef fec t  dp(o~) (see Fig. 6b). Even though 
At s = 0.3 s, the discretized interval of the padded m-se- 
quence is essentially At r (or 0.1 S in this case). The hold 
converts the discrete padded m-sequence to a continuous 
one with a duration of Atr. As discussed above, in prac- 
tice, At~ can be chosen to be short enough to cover the 
frequency bandwidth of the system. In this case, the fil- 
tering effect, caused by the hold, may be negligible com- 
pared with the padding effect. The estimated first-order 
padded kernel, using Method 2, is shifted to the right less 
than the first-order inserted kernel (compare the dashed 
curve (the padded kernel) with the dash-dotted curve (the 
inserted kernel) in Fig. 7a). That is, the padded kernel has 
less estimation deviation than the inserted kernel for a 
short m-sequence input. From our quantitative analysis 
based on simulation results, for SSR = 3 the PMSE (per- 
centage minimum squared error) is 14.61% for the first- 
order inserted kernel and is 6.51% for the first-order pad- 
ded kernel. For SSR = 6 the PMSE is 22.96% for the 
first-order inserted kernel and is 9.64% for the first-order 
padded kernel. 

The second-order padded kernel using Method 2 was 
calculated and plotted in Fig. 7d. This figure indicates that 
all of the spurious bumps that occurred in Fig. 3c are no 
longer in the system memory area (system memory num- 
ber m = n x SSR = 30). Therefore, Eq. 16 appears to 
hold for the padded method using binary m-sequences. 
Intuitively, since At s of the m-sequence has been increased 
three ( = SSR) times, the AFA related to the system mem- 
ory will also be increased by 3. Accordingly, from Eq. 16, 
a practical criterion for selecting n and At s is expressed as 

nAts >>- m a t t ,  (21) 

where m a t  r is the effective memory of the system under 
study. 

In summary, both the inserted and padded methods are 
compared using the same simulated data set. The padded 
kernels may be easier to calculate or may have lower 
estimation errors for short m-sequences. It is important to 
note, as suggested by one of the reviewers, that the padded 
kernels may not contain more information than the in- 
serted kernels, since the padding effect may be similar to 
a smoothing operation applied to the inserted method. 

Method  1 vs Me thod  2. As shown in Figs. lc and ld, for 
cases where Ats --- Atr, the kernel estimated using Method 
2 (inverse-repeat method) is more accurate than that using 
Method 1 (original Lee-Schetzen method). The estimated 
first-order padded kernels using sparse-stimulation for 
Methods 1 and 2 are plotted in Fig. 8a as dashed and 
dash-dotted curves, respectively. They are almost identi- 
cal to each other ( i .e . ,  they appear as a single curve). The 
estimated second-order padded kernel using Method 1 is 
plotted in Fig. 8b, which is also similar to the one in Fig. 
7d using Method 2, except for the few spurious bumps 
occurring at the edge of the system memory (m = 30). 
These anomalies may be caused by the odd, higher-order 
kernels (e .g. ,  the third-order). The results in Figs. 7d, 8a, 
and 8b indicate that within the anomaly-free area, method 
2 has no advantage over Method 1 when using the sparse- 
stimulation technique. This suggests that in practice, we 
can use the simpler Method 1. This conclusion is corrob- 
orated by the Experimental Results in the next section. 
(Note that in Figs. 7d and 8b small bumps remain along 
the sides of the main diagonal, which may be caused by 
the discontinuity of the main diagonal slice with its 
neighboring slices.) A simulation with parameters similar 
to those in Figs. 4 and 6b was also conducted using a 
ternary m-sequence (728 length). The first- and second- 
order padded kernels (by 3) were calculated and plotted 
in Figs. 8c and 8d (the solid curve). The dashed curve in 
Fig. 8d is the first-order padded kernel using the binary 
m-sequence (1023 length) as the system input, which was 
previously plotted in Figs. 7a and 8a. The two curves in 
Fig. 8d are quite similar to each other, suggesting 
that the padded effect has the same impact on binary 
and ternary m-sequences. In Fig. 8c a few small spurious 
bumps occurred at about "r 1 (or n-2) = 2 s ( i .e . ,  m = 20), 
suggesting that Eqs. 16 and 21 may also hold true 
for the padded method using ternary m-sequences ( i .e . ,  
AFA = n x SSR = 6 x 3 = 18.) 

EXPERIMENTAL RESULTS OF VISUAL 
MEG STUDIES 

Stimuli utilized in EEG and MEG studies have typi- 
cally been classified as "transient" or "steady-state" (35, 
Section 1.3). Transient stimuli are presented at rates that 
allow the response to return to baseline levels before the 
presentation of the next stimulus. Steady-state stimuli are 
presented at a single frequency or rate that is typically 
much faster than rates utilized for transient stimulation. 
Consequently, steady-state stimulation offers certain ad- 
vantages over transient stimulation in terms of speed of 
data acquisition and good signal-to-noise ratio. However, 
if the neural response is nonlinear and does not have an 
opportunity to retum to baseline levels before the presen- 
tation of the next stimulus, the temporal dynamics of the 



Kernel Estimation Using Sparse-Stimulation Techniques 527 

100 

50 

0 

-50 

/ 

/ \ 
/ / / 

/ / 
t \ 

/ 

(a) 

f .  

0 1 2 3 
tau (sec.) 

Binary, 2nd-order 

2 

0 

-2 

tau 2 (sec.) 0 0 

(b) 

tau 1 (sec . )  

Ternary, 2nd-order 

(c) 

-2 

tau 2 (sec.) 

2 ~ " ' ~ ' ~ ~ 1 1  2 
0 0 tau 1 (sec.) 

100 

50 

-5C 
0 

i 

2 
tau (sec.) 

FIGURE 8. Binary and ternary padded kernels. (a) The estimated first-order binary padded kernels using Methods 1 (dashed line) 
and 2 (dash-dotted line) from the simulation of sparse-stimulation. (b) The estimated second-order binary padded kernel using 
Method 1 from the simulation of sparse-stimulation. (c) The second-order ternary padded kernel using a ternary m-sequence with 
length 728 as the input. (d) Solid line: the estimated first-order ternary padded kernel. Dashed line: the estimated first-order binary 
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response may become lost altogether (i.e., the resulting 
composite response may contain components from several 
cycles of the stimulus). The m-sequence pseudorandom 
stimulus is a more general form of steady-state stimuli 
with broad-band frequencies. Its frequency bandwidth is 
from fs/N to fs/3, where fs and N are the sampling fre- 
quency and the length of the m-sequence, respectively. 
Therefore, theoretically, if the frequency bandwidth of the 
m-sequence stimulus is a superset of the frequency band- 
width of the system under study, the temporal dynamics of 
the system's response will not be lost. 

A number of VEP studies have applied m-sequence 
stimuli to evoke electrical responses in humans (5,44). 
These studies, as discussed previously, used inserted 
sparse-stimulation techniques and relatively long m-se- 
quences (e.g., 215 - 1). They demonstrated that the 
sparse-stimulation technique can reduce second-order ker- 
nel estimation errors caused by anomalies. The simulation 

results presented in this paper suggest that the padded 
sparse-stimulation method can also aid in alleviating esti- 
mation errors caused by anomalies, even for short m-se- 
quences. The primary goal of the experimental studies is 
to assess the utility of using the padded sparse-stimulation 
method and short m-sequence stimuli in visual evoked 
MEG studies. Three reasons for examining m-sequences 
as stimuli, in general, are: (a) m-sequences are statistically 
independent of (random or periodic) output noise and may 
therefore enhance the S/N ratio; (b) because different 
m-sequences are orthogonal to one another, responses to 
each stimulus component of simultaneous multi-input 
stimuli may be recovered, thereby allowing faster data 
acquisition; and (c) results from m-sequence studies, 
along with nonlinear systems analysis, may provide infor- 
mation about the system's nonlinear dynamics. Thus far, 
m-sequences have been shown to be effective for studying 
linear and nonlinear dynamics of the VEP using EEG mea- 
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surements (5,40,41,43,44). In this section, we present 
preliminary experimental MEG data using short m-se- 
quence stimuli and padded sparse-stimulation techniques. 
The S/N enhancement is evaluated in this section by com- 
paring the S/N ratio per unit time for both transient and 
m-sequence methods. 

Methods 

Evoked neuromagnetic fields were recorded with a BTi 
7-channel SQUID-coupled gradiometer system in a mag- 
netically shielded chamber. Three subjects with normal 
vision participated in this study. They viewed computer- 
generated visual displays projected (by a Sharp XG- 
2000U LCD projector, Japan) on a rear-projection screen 
via a system of mirrors. A circular achromatic patch of 
light, 1 ~ in size, was located 3 ~ from the point of fixation 
in the lower-right visual field. This stimulus was modu- 
lated at 30 Hz above and below the background mean 
luminance (0.85 I~W/cm 2) by a short m-sequence. The 
highest (or lowest) intensity of the stimulus was at its 
center, with intensity varying radially as a sine function 
(0.25 cycles) from the central point; consequently, the 
edge of the stimulus had the same intensity as the back- 
ground mean luminance (reducing the edge effect). The 
modulation depth (contrast) at the center of the stimulus 
was about 100%. The m-sequence length was 1023 (bi- 
nary) for each trial, and thus the duration of each trial was 
1023 • At S ( = 34.1 s). Subjects rested for 10s after each 
of 10 binary m-sequence trials. The MEG responses were 
digitized at 200 Hz. The sparse-stimulation ratio (SSR) 
was 6.667 (=200/30). In the previous section,we only 
discussed the situation where SSR was an integer number. 
In the case where SSR is not an integer number, portions 
of the original m-sequence data values will be repeated 
(padded) six times, whereas others will be repeated seven 
times, according to the occurrence of the input data sam- 
ples (with interval Ats) related to the occurrence of the 
output data samples (with interval Atr). (Note that our data 
acquisition system can only digitize the response at dis- 
crete rates: 100 Hz, 200 Hz, 500 Hz, 1 kHz, etc., which 
results in the use of a noninteger SSR (6.67). It would be 
better to use an integer SSR, if possible, to avoid some 
possible artifacts due to beating.) 

For comparison, a transient stimulus (circular sinusoid) 
in which image intensity varied radially as a sine function 
from a central point (1,2), was presented at the same lo- 
cation as the m-sequence stimuli. The size of the stimulus 
was also equated (1~ Stimulus duration was 266 ms, with 
an average presentation rate of 1 Hz. Each block of trials 
contained 25 stimulus presentations. Subjects rested for 
about 10 s after each three blocks of trials. Data were 
digitized from 100 ms before stimulus onset to 500 ms 
after stimulus onset. 

The seven sensors, spaced 2 cm apart, were arranged in 
a hexagonal array (sensor 1 was in the center, with the 
other six surrounding it). Responses were recorded from 
one dewar location (seven-sensor array), the location that 
produced a maximum response to the transient stimulus 
between 100-150-ms poststimulus. Once the location of 
the maximum response was determined, responses to 
m-sequences were also recorded. (For one subject (CA), 
we recorded responses evoked by transient and m-se- 
quence stimuli from 13 different dewar locations to obtain 
neuromagnetic field distributions spanning occipital, tem- 
poral, and parietal cortex.) 

Resul~ 

A comparison of MEG responses evoked by binary 
m-sequences and transient stimuli is presented in this sec- 
tion. In the transient studies, neuromagnetic responses 
evoked by the transient stimulus are shown for one subject 
(HWC) in Fig. 9. Averaged waveforms (105 individual 
neural responses) from each of the seven sensor locations 
are shown, along with a graph showing the digitized stim- 
ulus values (the lower right portion in Fig. 9). The phys- 
ical unit of the responses is magnetic field intensity in 
femtoTesla (IT). In the m-sequence studies, the first- and 
second-order (the eighth subdiagonal slice) binary kernels, 
calculated by cross-correlation techniques from each trial 
using the padded method, are shown in the first and sec- 
ond columns of Fig. 10, respectively (only results from 
four sensors are shown). As discussed previously (25), 
the physical units for the first- and second-order kernels 
are, respectively, 

Unitresponse Unitresponse 
Unitstimulus' and (Unitstimuius) 2 �9 (22) 

The physical units for the estimated first- and second- 
order kernels for the MEG data are 0.85 IT/(ixW/cm 2) and 
0.852 IT/(ixW/cm2) 2. The number 0.85 is the calibration 
factor, since we used the values - 1 and + 1 as the two 
states of the binary m-sequence for calculating the kernels. 

As can be seen in Fig. 10 (columns 1 and 2, averages 
of 10 trials), the measured first-order cross-correlations 
are weak compared with the second-order  cross- 
correlations (similar results were obtained for all three 
subjects), suggesting that the measured visual magnetic 
responses are strongly nonlinear for the present type (un- 
patterned) of m-sequence stimulus used. (It is worth not- 
ing that our recent results show that both strong first- and 
second-order kernels can be measured when using in- 
phase sinusoidal target stimuli modulated by m-se- 
quences.) One way to evaluate the noise level for the 
cross-correlation results is to use a noncausal cross- 
correlation method (17). The noncausal cross-correlation 
was obtained by cross-correlating the stimulus and the 
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FIGURE 9. Experimental results using a 
transient stimulus. Averaged neuromag- 
netic responses recorded from one sub- 
ject using a seven-sensor array. The time 
course of the stimulus was digitized and 
is shown in the lower-right hand corner 
(from - 1 0 0  ms to 500 ms, subject HWC). 

response by allowing the response to precede the stimulus, 
as shown in Fig. 10, for the duration from - 100 ms to 0 
ms. This duration is equivalent to the prestimulus period 
for the transient study shown in Fig. 9. Another way to 
evaluate the noise level is to conduct control experiments 
occluding the m-sequence and transient stimuli from the 
subject's view. Fig. 10 (column 3) shows results from 
such a control experiment for one subject (HWC). In the 
control experiment, the subject looked at the fixation point 
on a blank mean luminance screen (without the stimulus). 
All other variables were constant across studies. Fig. 10 
(column 3) shows second-order (the eighth subdiagonal 
slice) binary kernels (averages of 10 trials) for the four 
sensors computed from the control data. Noise levels ob- 
tained from this method (occluded stimuli) were similar to 
those determined using the noncausal cross-correlation 
shown in Fig. 10 (columns 1 and 2, from - 100 ms to 0). 
The control data shown in Fig. 10 (Column 3) also con- 
finn that the response signals evoked by the m-sequence 
stimuli in column 2 of Fig. 10 cannot be attributed to 
equipment artifacts or environmental noise. 

S/N ratios were calculated from m-sequence and tran- 
sient responses using the ratio between the peak-to-peak 
(maximum-to-minimum) signal value and the standard de- 
viation (STD) of the noise. For the noncausal cross- 
correlation method, the noise level was estimated using 

the data in the noncausal duration (t < 0), and both causal 
and noncausal periods were used for estimating the noise 
level for the control method. For example, for m-sequence 
stimuli, the STDs of the noise calculated from a single 
trial recorded by sensor 3 for two different intervals of 
time were 2.87 (column 4 of Fig. 10, from - 100 ms to 
0), and 2.95 (column 3 of Fig. 10, from - 100 ms to 400 
ms). For transient stimuli (Fig. 9), data in the prestimulus 
period (from - 1 0 0  ms to 0) were used to estimate the 
noise level. For example, for one block of trials (35 re- 
peated presentations), the STD across the prestimulus pe- 
riod was calculated (ensemble averaging). The resulting 
S/N ratios (average of 35 presentations, running time 
T ~ 35 s) were 7.77, 5.17, and 5.02 for the three subjects 
(HWC, WEN, and CA), respectively, whereas the S/N 
ratios calculated from m-sequence responses (one trial us- 
ing a binary m-sequence with length 1023, running time 
T = 34.1 s) were 16.34, 17.52, and 10.46 for the same 
subjects using the noncausal method. Therefore, the S/N 
ratio from the m-sequence study was 2-3 times higher 
than the transient study, given similar lengths of total 
stimulus presentation time. Regan (35) reports typical S/N 
ratios for averaged VEPs ranging between 2 and 6. The 
results discussed above demonstrate that cross-correlation 
techniques can significantly increase the S/N ratio for 
MEG studies. 
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FIGURE 10. Experimental results for subject HWC using m-sequence stimuli (padded method). Column 1: the first-order cross- 
correlations (average of 10 trials) between the neuromagnetic responses of the seven-sensor array and a short binary m-sequence 
(1023) stimulus (from - 1 0 0  ms to 500 ms). Results from four sensors are shown. Column 2: the eighth subdiagonal slices of the 
second-order cross-correlations (average of 10 trialsl for a short binary m-sequence (1023) stimulus (from -100  ms to 500 ms). 
Column 3: results from a control experiment evaluating noise levels. The eighth subdiagonal slices of the second-order cross- 
correlations (average of 10 trials). Column 4: the second-order cross-correlation slices for one of 10 experimental trials, the 
averaged data of which were shown in column 2. 

The calculated S/N ratios from this study were esti- 
mated from one m-sequence trial (column 4 of Fig. 10) to 
match total stimulus presentation time between m-se- 
quence and transient studies. Clearly, S/N ratios will be 
higher for data averaged across 10 trials (column 2 of Fig. 
10) than for one trial (column 4). But, the waveforms in 
column 4 from one of the individual trials were surpris- 
ingly similar to those in column 2, although they were 
noisier. Similar trends were noted for the nine other trials. 
In general, an average of five to six (repeated) trials has 
S/N ratios similar to those obtained from the average of 10 
trials; therefore, we have been routinely acquiring six re- 
peated trials for ongoing studies. Figure 11 shows the 
second-order (the eighth subdiagonal slice) binary kernels 
(averages of 10 trials, from - 2 5 0  ms to 750 ms for all 
seven sensors) from another subject (CA). As discussed in 
the last section, the padded method allows one to obtain 
the entire second- and higher-order kernels. The entire 
second-order padded kernels for subject CA, obtained 
from sensors 4 and 5, are plotted in Fig. 12, a and b, 

respectively. According to Eq. 16, the anomaly-free area 
for this case will be AFA = 10 • 6.67 = 66.7 (•  ms) 
(=333.5 ms). Figure 13 displays empirical neuromag- 
netic field distributions at a single instant in time for sub- 
ject CA, evoked by transient (Fig. 13a) and m-sequence 
stimuli (Fig. 13b). (A time series of field distributions was 
constructed by measuring field amplitudes, relative to the 
prestimulus baseline, at 5-ms intervals across all sensor 
locations (7-sensor array • 13 dewar positions = 91 sen- 
sor locations).) Note that the lower portions of the two 
field distributions have similar features. 

Discussion 

The experimental results show that relatively strong 
evoked neuromagnetic responses can be measured using 
padded sparse-stimulation techniques and short m-se- 
quence stimuli. The time courses of the waveforms in Fig. 
9 (or the cross-correlations in Figs. l0 and 11) across the 
seven different sensor locations are not proportional to one 



Kernel Estimation Using Sparse-Stimulation Techniques 531 

M-sequence Responses (Subject: CA) 
S e r l s o r  # 1 ( m e g )  

~ o  . . . .  ' . . . . . . . .  1 .  
l o  

5 

- l o  

S ~ n m o r  # 5 ( r r a e ~ )  
2 0  . . . . . .  " - , " 

_Z 
- l o  

S e n s o r  # 2 ( m e g )  
~ o  , , ' 

l o  

5 

- l O  

S e n B o r  # 3 ( m e g )  
2 o  . . . .  

l O  

5 

-1~ 

S e n s o r  # 4 ( m e g )  
2 o  . , ' 

_?o 
o 

- 2 5 0  0 2 5 0  5 0 0  7 5 0  

S e n s o r  # 6 ( m e g )  
2 o  . . . . .  

l o  

s 

S e n s o r  # 7 ( m e g )  

1 5  

1 0  

_2 
l O  

- 2 5 0  0 2 5 0  5 0 0  7 5 0  

FIGURE 11. Experimental results for sub- 
ject CA using m-sequence stimuli (pad- 
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tions (average of 10 trials) between the 
neuromagnetic responses of the seven- 
sensor array and e short binary m-se- 
quence (1023) stimulus (from - 2 5 0  ms to 
750 ms). Subject CA. 

another, suggesting multiple sources. (Five sources were 
identified during the initial 80-165-ms interval poststim- 
ulus in previous studies using transient stimuli (1,2)). As 
shown in Figs. 9 and 10 (column 2), the amplitude distri- 
butions among the seven SQUID sensor recordings agree 
well between the studies ( i .e . ,  transient and m-sequence) 
for subject HWC. For example, both studies showed the 
highest response amplitude in sensor 3. Similar results 
were obtained from the other two subjects. However ,  
there are several discrepancies between the waveforms in 
Figs. 9 and 10. First, the maximum peaks in Fig. 9 oc- 
curred later than those in Fig. 10, presumably because of 
the long duration of the transient stimuli (266 ms). This 
shift is equivalent to the low-pass filtering effect caused by 
a zero-order hold (see Fig. 5c). Second, the onset latencies 
of the maximum peaks noted in Fig. 10 are shorter than 
those in Fig. 9, which was most likely caused by the 
low-pass filtering of the padding effect, as evidenced by 
the simulated results in Fig. 7a (see the dashed and solid 
curves in Fig. 7a). (Note: both low-pass filtering effects 
can also produce changes in peak widths, as shown in 
Figs. 5c and 7a.) Futhermore, differences in the wave- 
forms (Fig. 9 vs 10) are also likely due to the fact that the 
waveforms of the transient responses (Fig. 9) contain 

higher-order nonlinearities, rather than the second-order 
kernel (the second-order nonlinearity) as in Fig. 10. Nev- 
ertheless, the low-pass filtering effects should not have a 
differential effect on the neuromagnetic field distributions 
evoked by m-sequence stimuli. In other words, the low- 
pass filtering effects may affect the temporal waveforrns 
across sensors, but these effects should not have a differ- 
ential affect on the spatial source parameters (i.e., location 
and orientation) derived from the field distributions, using 
nonlinear minimization techniques. As shown in Fig. 13 
(a and b), the lower portions of the two field distributions, 
in the occipital region of visual cortex, are quite similar to 
each other. Some discrepancies between the field distri- 
butions, however, are expected, since the second-order 
kernels calculated from m-sequence stimuli should repre- 
sent only a portion of the total distribution evoked by 
transient stimuli. 

The results from the MEG experimental section indi- 
cate that the S/N ratio of responses evoked by m-se- 
quences can be 2-3 times higher than responses evoked by 
transient stimuli. The reasons for this enhanced S/N ratio 
are twofold: 

1. Since m-sequences, generalized steady-state stimuli, 
do not allow the response to return to baseline levels, more 



FIGURE 12. Second-order cross-correla- 
tions for subject CA. (a) The second-order 
cross-correlation from sensor 4. (b) The 
second-order cross-correlation from sen- 
sor 5, 

stimuli may be presented during an interval equivalent to 
that used in acquiring responses to transient stimuli. For 
example, responses were acquired for 34.1 s for a 1023 
binary m-sequence. For an equivalent acquisition interval 
for transient stimuli, only 9.31 s (=0.266 x 35 for a 
block of 35 trials) of this interval is actually used in data 
acquisition. 

2. In addition, m-sequences are statistically indepen- 
dent of output noise; consequently, the noise is filtered out 
by the cross-correlation process. 

In EEG and MEG studies, a portion of the output noise 
may be associated with periodic spontaneous responses in 
addition to random noise. The orthogonal property of 
m-sequences may help separate the evoked component 
from the spontaneous component of the response (e.g., the 
evoked response may be estimated by convoluting the 
measured system kernels with the input m-sequence, and 
the spontaneous response may be obtained by subtracting 
the estimated evoked response from the system response). 
We are currently investigating this property. 

GENERAL DISCUSSION 

One useful property of m-sequences is that different 
m-sequences are orthogonal to one another. This property 

allows for the separation of response components related 
to each individual input evoked by the simultaneous multi- 
input stimulation, thereby permitting faster data acquisi- 
tion times. The greater the number of stimulus presenta- 
tions (multiple inputs), the greater the savings in experi- 
mental time. For example, the VEP study (5) used 64 
orthogonal m-sequences simultaneously at different visual 
field locations to stimulate the retina. Much longer exper- 
imental times would be required if the retina were stimu- 
lated sequentially. Another advantage of using simulta- 
neous stimulation is that one can measure the cross- 
kernels (also called mutual-kernels in 44), which reflect 
the nonlinear interaction between the different input path- 
ways (9,10,25). 

The traditional Lee-Schetzen approach (23) uses Gaus- 
sian white noise as the input signal; therefore, long record 
lengths of the input are required to approximate the true 
white noise. The primary disadvantages of the Lee- 
Schetzen approach in practice are twofold: (a) experimen- 
tal studies with longer data records will require much 
longer times to calculate the higher-order kernels; and (b) 
this approach cannot be applied to physiological systems 
and biological preparations, which can be considered sta- 
tionary only within certain short periods of time. In the 
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FIGURE 13. Neuromagnetic field distri- 
butions for subject CA. These maps are 
Y-Z surface projections viewed from the 
back of the head. The midline is at y= 0; 
negative y values represent the left hemi- 
sphere. The posit ive (solid) contour 
curves represent flux emerging from the 
head and negative (dashed) curves repre- 
sent re-entering flux. The black dots rep- 
resent sensor locations. (a) Responses (of 
latency 115 ms) to transient stimuli. (b) 
Second-order cross-correlations (latency 
105 ms, eighth subdiagonal slices, aver- 
age of six trails) calculated from re- 
sponses to binary m-sequence stimuli. 
The latencies were chosen at around the 
maximum peak of the waveforms. Differ- 
ences in the peak values (10-20 ms) were 
caused by the low-pass filtering effects, 
as examined in the text (Discussion). 

present study, short m-sequences were used as input sig- 
nals, which significantly reduced the experimental time 
(e.g.,  the presentation of a 1023 binary m-sequence at a 
rate of 30 Hz took 34.1 s, which can be further reduced to 
one-half when presented at a rate of 60 Hz). The combi- 
nation of short m-sequence techniques with short record- 
ing periods may also allow one to study mild nonstation- 
ary nonlinear systems by measuring the system kernels at 
different periods to investigate the time-variant properties 
of the kernels (see 26 for a discussion of time-variant 
kernels). Furthermore, the 20-30-s recording period for 
short m-sequences is quite suitable for EEG and MEG 
studies using human subjects where short trial periods are 
preferred to avoid potential artifacts caused by eye blink, 
fatigue, and body (muscle) movements, etc. If long m-se- 
quences (e.g. ,  215 - 1 = 32,767) are used, as in (5), then 
the long m-sequence should be parceled into smaller seg- 

ments (e.g., 16), which must be linked together later using 
linear interpolation techniques for kernel calculations (5). 
Another advantage for using short m-sequences is that one 
can repeat the same m-sequence several times but still 
keep the experiment within a reasonable duration, as dem- 
onstrated in the experiments in this paper. The averaged 
kernels may provide additional statistical measures for 
evaluating the experimental data (e.g. ,  the standard devi- 
ation of the averaged data). It is worth noting that for a 
multi-input system with a large number of inputs (e.g. ,  64 
inputs were used in (5)), one must use long m-sequences 
to ensure the orthogonality between inputs, as discussed in 
detail in the next paragraph. 

From an experimental standpoint, the shorter the stim- 
ulus sequence, the better. However, short m-sequences 
may not reveal all of the system properties, if the system 
under study has long memory and many higher-order ker- 
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nels as discussed in (5,19,43-45). Although a long m-se- 
quence was used for the VEP study (5), all 64 visual 
inputs used the same m-sequence with a time delay of 512 
(=  215/64) between each input. Therefore, the equivalent 
sequence length is 512 for each input. As discussed pre- 
viously (5,19,44), for the memory range of typical VEP 
responses, a length of 512 is adequate for measuring the 
first- and second-order self kernel slices as well as some 
cross-kernel slices if the third- and higher-order kernels 
are negligible. For two m-sequences (1023 length) with a 
time delay of 512, the equivalent sequence length is 512 
for each input. The simulation shown in Fig. 4 and the 
experimental results using single inputs (Figs. 10-12) 
used an m-sequence with length of 1023 for the single 
input, and thus the equivalent sequence length is also 
1023. Since the memory range of MEG responses is sim- 
ilar to that of EEG responses, a binary m-sequence with 
length 1023 should be sufficient for measuring the first- 
and second-order kernel slices from MEG responses. Note 
that Sutter (44) presented a practical method for calculat- 
ing the size of the anomaly-free area (average "distance" 
between kernel slices; (44)) for binary m-sequences. For 
example, consider a system with a first-order kernel and a 
second-order kernel with 20 slices, i .e. ,  a total of 21 ker- 
nel slices for this system. For a binary m-sequence with 
1023 stimulus epochs, the average "distance" is about 
1023/21 = 48. However, when the system has a higher- 
order nonlinearity such as the third and fourth order, the 
size of the AFA will be much smaller, as evidenced by the 
simulated results in Fig. 3, c and d. (The system simulated 
in Fig. 3, c and d, has a half-square nonlinearity that 
contains a strong third-order kernel (10).) In general, the 
third-order nonlinearity may contaminate the first-order 
kernel, and the second- and fourth-order nonlinearities 
may contaminate the second-order kernel (6,44). Never- 
theless, when using sparse-stimulation, as shown in Eq. 16 
and Fig. 7d, the size of the AFA can be increased by a 
factor of SSR. 

The simulation results shown in Fig. 8b indicate strong 
spurious spikes occurring outside the anomaly-free area, 
caused by the third- and higher-order kernel slices. How- 
ever, such spikes were not evident in the MEG responses 
evoked by stimuli located 3 ~ from the fovea. For example, 
as shown in Fig. 11, there were no strong bumps outside 
the anomaly-free area (from 333.5 ms to 750 ms). These 
results suggest that the measured MEG responses may be 
dominated by the second-order nonlinearity, whereas the 
third and higher orders may be weak and negligible. 

As d i scussed  p r e v i o u s l y ,  spa r s e - s t imu la t i o n  
(At s > At r) has several advantages over the usual ap- 
proach (At s = Atr). For example, At r can be selected in- 
dependently of Ats; a higher power level of the input may 
be selected by increasing Ats; and most importantly, the 
anomalies may be reduced. As discussed previously, there 

are two methods for calculating the system kernels from 
sparse-stimulation data: the inserted method and the pad- 
ded method. The estimated kernels derived from both 
methods deviate from the true kernel values because of the 
low-pass filtering (blurring) of the zero-order hold and the 
padding effects as shown in Fig. 7a. As discussed above 
(The Padded Method), the measurement errors caused by 
the low-pass filtering effects are low when the SSR is 
small (e.g.,  the PMSE is 6.51% for the first-order padded 
kernel when SSR = 3). Therefore, depending on the re- 
quired estimation accuracy for the system under study, the 
estimated kernels may be used as approximations of the 
true kemels when SSR is small. For a large SSR, the true 
kernels should be recovered from the estimated kernels 
using inverse-filtering (deblurring) techniques, as shown 
in Eqs. 12 and 19 (also see the next paragraph for a more 
detailed discussion on this issue). Nevertheless, in some 
cases, even for a large SSR, the blurred inserted and pad- 
ded kemels may still be used as substitutes for the true 
kernels. For example, the blurred inserted and padded 
kemels could theoretically be used without bias to localize 
different neural sources for EEG/MEG studies, since the 
blurring effects should have an equal affect on the gener- 
ators of the signal. 

Although theoretically the true kernels can be recov- 
ered by using Eqs. 12 and 19, the development of tractable 
inverse-filtering techniques presents a great challenge, 
since the deblurring process can introduce significant 
noise. Our preliminary results show that the true first- 
order kernel can be recovered from the estimated first- 
order padded kemel by using both Eqs. 12 and 19, i .e. ,  
Kl(~o ) = K'l(o~)/[HD(o)cb(to)], where HD(o~) and ~(to) 
are described in Eqs. 10 and 20, respectively. The dura- 
tion of the hold (Eq. 10) is T = At r. For example, based 
on the estimated first-order padded kernel of a simulation 
using the inverse-filtering technique, the PMSE was re- 
duced from 6.51% to 1.64% for an SSR = 3, the PMSE 
was reduced from 9.64% to 2.36% for an SSR = 6, and 
the PMSE was reduced from 16.05% to 3.10% for an 
SSR = 10. However, the algorithms did not work as well 
for the second-order binary kernels, since the gap along 
the main diagonal slice of the binary kernel introduces 
significant high-frequency noise. Further work is needed 
for developing tractable ways to deblur higher-order 
kernels. 

Many applications of the Volterra-Wiener approach 
have been devoted to studying nonlinear dynamics of 
physiological and biological systems using invasive single 
neuron electrophysiological recording techniques. For ex- 
ample, the first-order kernels have been used to study 
color processing in lateral geniculate nucleus (36) and to 
study spatial information processing in cortical simple 
cells (9,18). The second-order kernels have been associ- 
ated with nonlinear contributions to spatial information 
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processing and motion selectivity by retinal ganglion cells 
(13) and cortical complex cells (15,16), and have been 
associated with binocular filtering by complex cells (31). 
However,  the invasive recording techniques are mainly 
applied in animal studies, not human studies. We hope 
that the Volterra-Wiener approach can be successfully ap- 
plied to studying the nonlinear dynamics of  human neural 
systems using noninvasive EEG and MEG techniques. 
However ,  there are important differences between the sin- 
gle-unit studies and the EEG/MEG studies. In single-unit 
studies, the location of  the recording neuron in cortex is 
known. But with EEG/MEG studies, one is dealing with 
a more ambiguous problem, since the signals represent an 
unknown composi t ion  of  neural sources (generators),  
weighted by their distance,  orientation,  and temporal  
properties,  etc. We are continuing to investigate the value 
of  nonlinear systems analysis for noninvasive EEG and 
MEG recordings. 
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