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ABSTRACT. We show that uniqueness and existence for signal reconstruction from multiscale 
edges in the Mallat and Zhong algorithm become possible if we restrict our signals to Paley- 
Wiener space, band-limit our wavelets, and irregularly sample at the wavelet transform (absolute) 
maxima--the edges--while possibly including (enough) extra points at each level We do this in a 
setting that closely resembles the numerical analysis setting of Mallat and Zhong and that seems to 
capture something of the essence of  their (practical) reconstruction method. Our work builds on a 
uniqueness resuh for reconstructing an L 2 signal from irregular sampling of  its wavelet transform 
of GrOchenig and the related work of  Benedetto, Heller, Mallat, and Zhong. We show that the 
rate of  convergence for this reconstruction algorithm is geometric and computable in advance. 
Finally, we consider the effect on the rate of convergence of  not sampling enough local maxima. 

1. Introduct ion 

We begin by informally discussing the general framework we will use for a version of the 
Mallat-Zhong signal reconstruction algorithm introduced in Mallat and Zhong [MZ1, MZ2]. 

We consider a signal f ~ L 2 = L2(R) .  Next we introduce a scaling or smoothing function ~p, 
with corresponding wavelet ~, about which we will say more soon. (See Figs. 2 and 3 for our main 
examples.) Throughout this paper, for any function u : R ~ C, we define us(x) :=  (1/s)u(x/s) for 
all x ~ R, and all s > 0. We smooth f at level 1 by ~p to get f * ~Pz and then decompose f into J + 1 
levels ( J  >_ 1): f * ~/'2, f * 1//22 . . . . .  f * ~2~, f * (f12 J , which are the details of  the signal at J coarser 
and coarser levels, followed finally by the resulting low resolution signal corresponding to f .  

Define W f  : =  ( f  • ~2, f * ~2 2 . . . . .  f * ~2 ~ , f * ~o2J), for all f e LE(R). We call W f  the 
wavelet  t ransform of  f ,  and W the wavele t  t ransform. We have 

IlWfll~2(L2) = I I f  * ~oI1~. 
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This follows because we may arrange, and will always assume, that ~0 and ~ satisfy, for almost all 
~ R ,  

I~(~)12 = 1@(2~)12 + 1~(2~)12. 

We remark that an orthonormal wavelet pair (~o, ~p) arising from a multiresolution analysis always 
satisfies this property, although the converse does not hold. We will discuss this again in §5. 

The aim of the Mallat-Zhong algorithm is to record a discrete set of data, the local maxima of 
the functions I f  * ~P2J I, which contain edge information of certain dyadic frequency ranges of the 
signal, and iteratively reconstruct the signal via the method of alternating projections onto convex 
sets in Hilbert space. Mallat and Zhong [MZ1, MZ2] use various convex sets and settle on the Hilbert 
space H 1 (R) of L 2 signals f whose distributional derivative f '  also belongs to L 2. A key feature of 
their method is the use of dilation equations for ~o (with a finite number of nonzero coefficients, or 
with coefficients that decrease rapidly at c~ and - c ~ )  to allow fast numerical implementation of the 
wavelet transform on a discrete and finite domain of regularly spaced sample points. They obtain 
a computationally fast numerical algorithm, which seems to converge geometrically in [MZ1] and 
[MZ2], with theoretical calculations pointing to the reason for this: A certain family of functions 
related to the sampling at local maxima should be a frame (see Duffin and Schaeffer [DS], Benedetto 
[Ben]). 

At this point, let us remark that a variation on the theme of the Mallat and Zhong algorithm 
has recently been introduced and successfully numerically implemented by ~etin and Ansari [CA]. 

The theoretical method in [MZI, MZ2], uses a wavelet transform with an infinite number 
of levels. A counterexample of Meyer [Me2, Me3] shows that the theoretical Mallat and Zhong 
algorithm need not converge to the original signal; that is, two different signals f ~ H 1 may have 
the same local extrema at all levels f • O2s, where j ~ Z, of their wavelet transform. Berman [Berl, 
Ber2] showed that also in the case of the (finite number of levels) numerical Mallat-Zhong algorithm, 
uniqueness of reconstruction is not generally assured. 

None of these counterexamples address band-limited signals with band-limited wavelets; al- 
though [MZ2] mentions the work of Gr6chenig. In addition, in [G2] Grtchenig suggests that the 
link between band-limited signals and the method of alternating projections should be explored. The 
important paper of Gr'6chenig [G3, Theorem 1] shows that for the wavelet transform of Mallat and 
Zhong with an infinite number of levels, any f e L 2 is uniquely determined by irregularly sampling 
every level of the wavelet transform sufficiently often, when ~ is bandlimited. Moreover, [G3, 
Corollary I] gives a frame algorithm with a computable geometric rate of convergence for recon- 
structing f from the irregular samples of W f .  And indeed, the generality of [G3] also allows for 
the irregular sampling of the levels of the wavelet transform, as well as including adaptive weights, 
so that only upper bounds (not lower bounds) of the sampling rates at each level are needed. 

Our reasons for choosing our setting are the following. We look only at the wavelet transform 
with a finite number of levels because this is all that is needed for practical image reconstruction. 
Our restriction to band-limited signals is because the discrete signals on an evenly spaced grid (e.g., 
those considered by Mallat and Zhong) may naturally be thought of, from the point of view of image 
reconstruction, as band-limited. In addition, band-limited signals often arise naturally. We stay with 
dyadic levels of the (continuous) wavelet transform for simplicity and ease of comparison to [MZ1, 
MZ2]. We ask for upper and lower bounds on our sampling rates at each level, again, for simplicity but 
also because once we restrict ourselves to discrete signals (using the pyramid algorithm to compute 
wavelet and inverse wavelet transforms), we will naturally have a lower bound on our sampling rate 
at each level. Moreover, gaining estimates on the convergence rate of the reconstruction algorithm 
in e2(P~) seems to depend on lower bounds on the sampling rates (see the proof of Theorem 4.2). 

Of course, Gr6chenig [G3] invites comparison of convergence rates of the frame algorithm 
versus the Mallat-Zhong alternating projections algorithm for signal reconstruction. Some calcula- 
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tions show that the convergence rates estimates of this paper (see Corollary 4.3 and §6) are much 
higher than are the actual rates gained in [MZ1, MZ2]. We mention that many other reconstruc- 
tion algorithms for band-limited functions are introduced or described and numerically compared 
in Feichtinger and Gr'rchenig [FG]. We will briefly discuss why the Mallat-Zhong algorithm is not 
a frame algorithm and related questions later (see Remark 3.2). Let us further remark that if the 
signal f is not band-limited, and the wavelet ~ is band-limited (as in [G3]), the convergence of the 
algorithm and the errors introduced in reconstruction (such as aliasing) require further study. 

We begin by recapitulating in our setting the essence of Grrchenig [G3, Theorem 1], using 
theorems of Benedetto and Heller [BH], Heller [He], Benedetto [Ben], and Grrchenig [G 1, G2]. We 
show that reconstruction of a band-limited signal by a Mallat-Zhong algorithm, with both existence 
and uniqueness, is possible. One should irregularly sample at the (absolute) wavelet transform 
maxima (the edges) while including enough extra points at each level to ensure that sampling is 
above the Nyquist rate of each level (which halves from one level to the next). Another advantage 
of this framework is that we are assured that (the real and imaginary parts of) our nonzero signals 
have a discrete family of positions where local extrema occur, possibly accumulating only at c~ or 
- c¢ ,  since they have an analytic extension to the whole complex plane. (See, e.g., Rudin [R] or 
Benedetto [Ben], for a discussion covering the Paley-Wiener theory that we will use.) 

We give a proof of a computable geometric convergence rate by using the theorems on irregular 
sampling of bandlimited functions of Benedetto and Heller [BH], Benedetto [Ben], and Grrchenig 
[G1, G2] and adapting the methods of [MZ2] to our framework. 

Next we give a variation on this theme for real-valued L 2 functions involving the Hilbert 
transform that allows for approximately quartering the previous sampling rates. 

Continuing on, we then investigate the discrete sampling case, starting with a signal consisting 
of time samples on an evenly spaced grid. Our variation on a theme, using the Hilbert transform, 
allows us to use the pyramid algorithm to easily compute discrete (though infinite) wavelet and 
inverse wavelet transforms. We show that all projections involved in the reconstruction algorithm 
may be computed in this setting. 

Finally, we show that (again subsampling on an evenly spaced grid) there is an advantage to 
including the local maxima positions in our sample points. Indeed, by obtaining a lower bound on 
the convergence rate of the algorithm when started at zero in £2(p~), we show that not sampling in 
a way that makes the total sampled energy as large as practicable (compared with the total energy of 
the signal), may force the convergence to be slow. 

2 .  P r e l i m i n a r i e s  

The real and complex numbers are denoted by R and C, respectively; Z is the set of all 
integers; and N denotes the set of positive integers. Let 1 < p < c¢. We let L p = LP(R) denote 
the space of all (equivalence classes) of Lebesgue-measurable functions f : R -+ C for which 

tlfllp := (fR Ifl p dJk) lip < oo. Here ~. denotes Lebesgue measure on R. We have that (L p, II" lip) 
is a Banach space, as is (L ~,  ]l • II~), defined analogously, with I[fll~ := ess-supx~RIf(x)l. For 
any Lebesgue-measurable subset A of R, LP(A) denotes the analogous space to LP(R), with the 
domains of the functions f changed from R to A. For f 6 L 1, we define the Fourier transform f ' o f  
f by 

f ' ( ¢ ) : = f ~  f (x)  e -i~xdx for all ~ R  

and the convolution f • u of f,  u 6 L 1 by 

( f , u ) ( x )  : = /  f (y)  u ( x - y ) d y  forall x q R .  
JR 



66 c. J. Kicey and C. J. Lennard 

Also, uV(x) :=  (1/2~r)ff(-x) ,  x e R, gives the inverse Fourier transform of a function u ~ L 1. 
Further, we define ~'(t) :=  u ( - t ) ,  for all t ~ R and all functions u : R ~ C. 

Now, if f ,  u ~ L 1, then f • u ~ L 1 and ( f  • u)(~) = f ' (~)  ~(~), for almost all ~ ~ R. Also, 
for all f ~ L 1, f "  E Co = C0(R), the space of all continuous scalar-valued functions on R that 
vanish at ~ and -¢x~, with the supremum norm [[ . II~- In addition, l l f l [~  < [I f i l l .  Moreover, 
Plancherel 's theorem gives us that the Fourier transform extends from the dense subset L 1 N L 2 of 
L 2, to a constant multiple of  an isometry from L 2 onto L 2. Indeed, for all f ,  u ~ L 2, 

1 A 1 
Ilfll2 = Ilfl[2 and ~ -  (~,u~ = ( f ,u) .  

Here, (f ,  u) :=  fa f ( x )  u(x) dx, is the usual inner product on L 2. Note that for all f ,  u ~ L 2, f • u 
defined as above exists in L ~ and IIf  * ull~ < IJfllEl[Ull2. Moreover, by Plancherel's theorem, 

1 f~ f(~) u(x - ~ ^ ( ~ )  d~ ( f  • u)(x) = ~ eR 

I f~ T(~).~(~)eiX~d~=(~-..~)V(x), 

since T" u" ~ L 1. Thus we get that f * u ~ Co for all f ,  u ~ L 2. Now suppose that we have f ,  u a L 2 

and, moreover, that ~" ~ L ~ .  Then f ' .  ~" ~ L2; therefore (T"  ~.)v ~ L2" Thus f • u e L 2 tq Co, and 

we get the formula ( f  • u) ̂  = ~ -  ~, in complete analogy with the situation for L 1 functions. We 
think of f • u as a smoothing of f by u. 

We refer the reader to Rudin JR], Champeney [Cha], and K6mer  [K], for example, for more 
details on these and other standard facts about the Fourier transform, convolution, and Fourier analysis 
in general. We follow the above-mentioned papers of  Mallat and Zhong and of Gr6chenig in our 
definition of Fourier transform, but differ from both Rudin and Benedetto. 

Given 1 < p < ~x~, a set A, and a Banach space (X, II • I I x ) ,  we define eP(A, X) to be the set 
of  all families (functions) g = (gn)naa with values in X (i.e., each gn ~ X), such that 

Ilglle,(a.x) :=  Ilg, II p < oo. 

This function is a norm, turning eP(A, X) into a Banach space. We make the obvious modification 
to the definition above to get e~(A,  X). For us, the index set A usually is simply {1 . . . . .  N}, for 
some n ~ N. In this case, we write £~(X) (or just £P(X)) instead ofeP(A, X). If  (X, (., ")x) is a 
Hilbert space, then so is £2(A, X), with the inner product given by (g, h)ez(a.x) : =  ~-,nEa (gn, hn)x, 
for all g, h ~ £2(A, X). 

We use the notation Pv to denote the orthogonal projection (or nearest point map) onto a closed, 
convex subset V of  a Hilbert space. A sequence (yn), in a separable Hilbert space (X, (., ")x) is 
called a f rame  if there exist constants 0 < A < B < c~ such that 

A IIxll2 < ~"~. l(x, y~)12 < B llxll 2 fora l l  x ~ X. 
n 

The corresponding frame operator S : X ---> X is given by Sx : =  ~ ( x ,  y~) y~. Let eb(x) :=  e/xb, 
for all x and b ~ R. I f  T > 0 and (bn)~ is a sequence in R, then (eb~)~ is called a Fourier frame for 
L 2 [ - T ,  T] precisely when it is a frame for L 2 [ - T ,  T]. 

For any Lebesgue-measurable set E c R, X~ is the usual characteristic function of  E, which 
equals 1 at any t ~ E and 0 otherwise. We denote by s u p p f  the support of  a measurable function 
f : R ~ C, which is the closed set K := ~ F, where F is the collection of  all closed subsets C 
of  R satisfying f ( x )  = 0 for almost all x e R \ C .  Since the real line R is second countable, every 
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subset of  R is Lindelrf.  Therefore, K equals the intersection of only countably many members of  F, 
which implies that K itself belongs to F. In particular, f ( x )  = 0 for almost all x 6 K. We remark 
that the support of  f coincides with the usual definition of  the support of  the distribution generated 
by the locally integrable function f .  

Finally, we refer to elements of  f ~ L 2 that are real-valued as signals. We use x to denote 
the identity function on R. Also, 7-( denotes the Hilbert transform, which as a distribution is simply 
convolution by 1/rrx and is given by the usual principal value integral formula. Extended to an 
isometry on L 2, ~ may be given in terms of its Fourier transform as 

~ f ( ~ )  :=  - i  sgn(~) f ( ~ )  for almost all ~ ~ R. 

Here, sgn t :=  1, i f t  > 0; sgn t :=  - 1 ,  i f t  < 0; and sgn 0 := 0. 
For any A > 0, we define the Paley-Wiener space P Wzx = Pzx to be the set of  all f ~ L2(R) 

such that f ( ~ )  = 0 for almost all t~1 > ,x. We remark that from the Paley-Wiener theory (see, e.g., 
[R] or [Ben]), every f ~ PA agrees almost everywhere with the restriction to the real line of  an entire 
function F : C --* C such that IF(z)l < C e Alzl, for all z ~ C, for some C ~ (0, 00). The converse 
fact that all such analytic functions, with restriction to the real line in L 2, have the support of  their 
Fourier transform contained in [ - A ,  A], is an important theorem of Paley and Wiener [PW]. With 
the inner product inherited from L 2, Pzx is a Hilbert space. 

For any Lebesgue-measurable subset B of R, we also denote by PR(B) the Paley-Wiener 
space { f  ~ L 2 : supp f '_c  B and f is real-valued}. Fix 0 < }/ < {5 < oo and set A := ({5 - }/)/2. 
Let/z :=  (}/+{5)/2 and B := [-{5, -} / ]  U [}/, {5]. It is straightforward to verify that, as real subspaces 
of  L 2, PR(B) and PA are Banach space isomorphic under the mappings {I} and ~ - l  given by 

( ~ f ) ( t )  :=  e -it~ ( f ( t )  + i(7-[f)(t)) for all t E R and all f E pR(B) ,  

(~ - lu ) ( t )  : =  Re(e it~ u(t)) for all t E R and all u E Pzx. 

Indeed, q~ is an isometry, up to a multiplicative constant that is independent of  }/and {5. We finally 
introduce the modified Paley-Wiener space, PT"/zx, given by 

P ~ A  :----- { f  + iT-If : f ~ PA and f is real-valued}. 

PT'/A is a closed (complex) subspace of Pzx. 

3 .  U n i q u e n e s s  o f  R e e o n s t r u e t i o n  i n  P a l e y - W i e n e r  S p a e e  

Throughout this section we fix f2 > 0. We also fix a function ~o ~ L 2 such that ~ ~ L °° and 
I > I~(~)1 >_ C > 0 on [-f2, f2]. We further assume that there are functions G and H in L °° such 
that ~(q) = H ( ~ / 2 )  ~(~/2)  and ]G(~)[ 2 + IH(~)[ 2 = 1, for almost all ~ ~ R. We then define 
v(~) :=  G(~ /2 )  ~(~/2)  for all ~ ~ R. Since v ~ L 2 A L °¢, it follows that ~b := v v belongs to L 2, 
with ~ ~ L °° and, moreover, for almost all ~ ~ R, 

I~'(~)12 = 1~(2~)12 + 1~(2~)12. 

We also fix an integer J ~ N. Just as in the Introduction, we introduce the (dyadic) wavelet transform 
W (of length J )  by defining 

W f  := ( f  • ~#2, f * ~P22 . . . . .  f * ~21, f * tpEJ ) for all f ~ P~. 

We remark that more information on wavelet transforms may be found, for example, in Chui [Chu]. 
We also note that in electrical engineering terminology, W f  is a decomposition of f with respect to 
an "octave filter bank." 

From §2, for all f E P~2, f * 9 ~ L2 fq C0, and I ( f  * ~0)^(~)l = If(~)~(~)l for all ~ ~ R. It 
follows, via Plancherel, that 

Cllfll2 < []Wflle~(L z) = [If  * ~0112 _< Ilfll2. 
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Therefore, W : Pn ~ e2(L 2) = e2+l (L 2) is an isomorphism. Define 1/f 0'j for j = 1 . . . . .  J and 
~o °'J by 

$°'-')(5) . -  ~(2J5------------~)) i f5  6 [ - f2 ,  f2], with lp0,-'-')(~):= 0 otherwise, 
1~(5)12 

o°'-'D (5) - -  ~(2J5) 1~(5)12 if5 ~ [ - f2 ,  ~2], with ~o°,J(5) :=  0 otherwise. 

Next, for all g = (g~ . . . . .  gs+t) ~ e2(L2), define 

J 
Mg := Z gJ * ~o,~j + gj+, , ~'UJ. 

j = l  

Fix f ~ Pn. Then M w U  = f • h, where h := Y~-:=I $o,'~j, ~t2~ + 9"~.J, ~o2~. Now, 

h'(5) -- i~(~)l 2 Iq~(2JS)i 2 + l~(2JS)t 2 = I for all 5 e [ - f l ,  a ] ,  
-= 

and h(5) = 0, otherwise. Therefore, M W f  = f .  
In the rest of the section, we fix fh  > f2 and suppose that supp ~ _ I-f21, i l l] .  Note 

that ~ and ~ both belong to L 2. We know that 5(5)  = G(5/2) ~(5/2) for almost all 5 ~ R and 
~'(5/2) = 0 for almAost all 151 > 2f2~. Therefore, supp ~ _c [-2f21,292]]. Again fix f ~ Pn. Then 
( f  * ~2,)^(5) = f (5)~P(25) = 0, for almost all 151 > f2~ A ~. Similarly, for all j = 1 . . . . .  J,  

f2x 
( f  * ~pv)^(5) = f f (5)~(2JS)  = 0 for almost all 151 > ~ / x  ~ ,  

while 

( f  * ~2,)^(5) = f f (5 )~(2Js )  = 0 for all 151 > -~- A f2. 

From above, if we define ~ j  :=  (~21/2 j -  l ) / ,  f2, for all j ~ { 1 . . . . .  J + 1 }, then 

W : P~ ~ [Pr, 6) Pr2 ~ " "  ~ Px, (~ P~,+,]2 =:  Y - X := eZ(en), 
and W is a Banach space isomorphism of Pn onto V := W(Pn).  Also; M : V --~ Pn and 
M W f  = f for all f ~ Pn; that is, M is a left inverse of W. Further, M is bounded. Indeed, fix 
g ~ g2(p~). Then 

Iligll2L= = ~--~11 gll~ 

1 f~ ~ Ix-J-'^ (-)  ~(2 j5)  .~, ~(2J5) 12 
2zr =-n j=] 1~o(5)1 dr- g 'J+l  d5 

1 f ~  J+l ( J 1~(2J~)l 2-1-1~(2J~)12) 
__ ~- =-9 ~ I~:-(~)12 ~J=~ i~(~)14 d~ 

- 2 z r C  2 = - g j = l  

I 1 J+] 1 J+' I 2 
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Since W takes Pa into e 2 ( P ~ ) ,  while M maps ~ 2 ( p ~ )  into P~, we see that W M  maps e2(Pa) 
into e2(Pa).  We now check that P :=  W M  is the orthogonal projection (in the Hilbert space 
X = e2(Pa))  of  e2(Pa) onto V; that is, P = Pv. We denote the Hilbert space adjoint of  a bounded 
linear operator L by L ' .  It is easy to see that Range W = Range P and that p2 = p. Now define 
A : Pa --+ P~ by A f  := f , ~ 0 ,  ~. Then A is an invertible linear operator on Pa, A is self-adjoint, and 
both A and A -1 are bounded. Moreover, for all f ~ P~ and g E g.2(Pn), (W f ,  g)e2(t,~) = (f ,  AMg) .  
Therefore, W* = AM and M* = WA -1 . Hence P* = (WM)* = M ' W *  = W M  = P. 

Now let E j  :=  (f21/2J-1)/x f2 for all j =-1 . . . . .  J + 1. Next fix a function f 6 Pn. Let 
t I = (t2)n~z be a sequence in R that is strictly increasing, l i m n ~  t2 = + ~ ,  limn~-oo t t = - ~ ,  

0 < ml := inf (tnl+l - tn 1) and sup (tnl+l - tn I) =:  MI < - - .  
ncZ n~Z El 

Choose E '  l 6 (El ,  zr/MO. Then, by Benedetto [Ben, Theorem 51], which depends on Gr6chenig 
[G2, Theorem 1 ], (e%,),  ez is a Fourier frame for L 2 [_  E't, Z'l ]; therefore, by a result of  Benedetto 

and Heller [BH] (see also [Ben, Theorem 46]), Px~ is determined by (t2),~z and the frame operator 
S for (e-t2)n~z- However, f • ¢2 ~ Px, = Pn- Therefore ql = f * ~2 is determined uniquely 

among the q in Prl by (t2),ez and also, via [BH] (see also [Ben, Algorithm 50]), by the sequence 
of sampled values (q(t2)),Ez. 

Moreover, the work of Heller [He] (see also [Ben, Lemma 47]), tells us that even if t t = (t~) 
is so oversampled that ml = inf,~z(t2+ 1 - t2) = 0, we may pass to a (constructable) subsequence 
of  (t2),, also denoted (t2),, so that (e- t , ) ,  is a Fourier frame. Therefore, f • ¢2 is still uniquely 

determined in Pz~ by ( t~)~z  and ( ( f  • ¢2)(tl))n~Z . 

Fix j ~ { 1 . . . . .  J}. Let t j = ( t J ) ~ z  be a strictly increasing sequence in R, with l i m . ~ ± ~  t j = 
4-cx~ and 

yf 
sup(4+~ - t.~) =:  g j  < - - .  
n~Z Ej 

Choose Zj  ~ (Z  j, ~r/Mj). Then by an argument similar to that for t l, f ,  ¢2J is uniquely determined 

in Pzj by (t ,J)~z and ( ( f  • ¢2J ) ( t J ) )~z .  Next, let t g+I = ( t~+ l )~z  be another strictly increasing 
real-valued sequence, such that limn~±o~ t, J+l = 4 - ~  and 

J + l  __ tnJ+l sup(t,+ l ) =:  Mg+m < • 
nEZ ~"] J +  1 

Then we also have that f,~02~ is uniquely determined in Pz~+, by (tff +l) .~z and ((f,~02~) (t~ J+~)).~z. 
For our fixed function f in Pn, we now introduce the set F := Ff c & ( p ~ )  given by 

I ' : = { g  ( - )~+~ = gj j=~ 6 e2(Pn): f o r a l l j  6 {1 . . . . .  J} 

gj(t~) = ( f  • ¢2~)(t, ~) =:  C~, for all n ~ Z 

and gg+~(tJ~ +~) = ( f  • ~02~)(t~ +~) =:  C~ +1, for all n 6 Z}. 

It is easy to see that Fis an affine closed subspace of e2(P~), which from the definition above satisfies 

r ~  V = {W f}.  

Using the notation for projections from §2, let us now define T : & ( P n )  ~ e2(p~) by T :=  PvPr .  
Then T is nonexpansive, and by a result of  Youla and Webb [YW] (using the work of Opial [O]), for 
all g ~ e2(pn),  the sequence (T"g),~N converges weakly in e2(pn) to a member  of  F ~  V that is, 
to W f .  However, Fis affine. By a result o fvon  Neumann IN] (or see, e.g., [YW], [Hu]), (T"g),~N 
converges in norm to W f  (Fig. 1). 

We summarize the discussion of this section as a theorem. 
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3.1. T heor em  
Let f2 > 0 and f E P~. Let J, f21, W and V be as described previously. For each j E 

{1 . . . . .  J + 1}fix a strictly increasing sequence t j of  real numbers, accumulating at cx~ and -cx~ 
and with Mj  := supnez(t~+ l - t~) < zr /Ej ,  where each Ej = (~21/2 j - l ) / x  f2. Let the affine set 
F _  £2(p~) be defined in terms of  each t j, as above. Also let T := PvPr. Then, for all g ~ £2(p~). 
(Tng)~eN converges in norm to W f . 

3.2. R e m a r k .  In the limiting case of the main wavelets of this paper, to be introduced in 
§5 (see Figs. 2 and 3), when f21 = f2, (~0, ap) is the Shannon or sine wavelet pair, corresponding 
to the ideal low and high pass filters on the frequency range [ - f2 ,  f2]. In this case the formulas 
for M and W in §3 show that Pvg = WMg,  for g ~ £2(p~), projects each coordinate gj o f g  into 
the Paley-Wiener subspace Pzj. Consequently, the Mallat-Zhong reconstruction algorithm proceeds 
in parallel on each level. However, when f21 > f2, the algorithm introduces partial mixing of 
information from different (adjacent) levels on each application of Pv, and therefore each iteration 
of T = PvPr .  Thus each level of W f  is not recovered independently of the others. Moreover, the 
algorithm is not a frame method, even in the sine case. The frame method iterates an operator of the 
form I - pS, where p is a positive constant defined in terms of the frame bounds and S is the frame 
operator, which is positive and self-adjoint. Consequently, I - p S is a self-adjoint, linear operator. 
On the other hand, the Mallat-Zhong operator T = PvPr,  is the product of a linear and an affine 
projection, which is not generally linear. Even if 0 ~ F, so that T is linear, T can only be self-adjoint 
if Pv and P r  commute. This means that T = Pvnr, which is generally not true. Hence, we can see 
that the Mallat-Zhong algorithm is not a frame algorithm. 

4 .  Geometric Convergence w i t h  a C o m p u t a b l e  

Convergence Rate 

We begin by recalling some general facts about Hilbert space geometry. Let (X, {., .)) be a 
complex Hilbert space with corresponding norm II • II- Suppose that V and S are closed subspaces 
of  X such that 

I(s, v)l 
Ks, v:---- sup ~ <  1. 

s~s ,~v  Ilsll Ilvll 

It is easy to verify that IIPvs[I < Ks, vllsll and IIPsvll _< gs, vllvll, for all s ~ S and v ~ V. 
Thus for U := PvPs,  we have that IIUvU < K 2 - s,v Ilvtl, for all v E V. 

Next, suppose F is a closed affine subspace of X; that is, F is a translation of a closed subspace S 
of X. Suppose that there exists q E Ff'IV. Then S = F - q  andPr  h = Ps h + q - P s  q, for all h E X. 
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Let T := PvPr. Again assume that Ks.v < 1. It follows readily that IIT"o - q II ~ (Ks 2 v) n [v - q II, 
for all v 6 V. 

The following result is well-known and can be proven in a straightforward manner. Mallat and 
Zhong [MZ2] use a variation of  this result to show that under certain circumstances their algorithm 
converges geometrically. Our work follows their lead. When combined with the band-limited 
notions of  [G2] and [Ben], we will get that our algorithm always converges geometrically, with a 
computable estimate for the rate of  convergence in terms of the irregular sampling rates at each level 
of  the wavelet transform. 

4.1.  L e m m a  
Let (X, (., .)) be a complex Hilbert space with corresponding norm II • II. Suppose that V is a 

closed subspace of X and I ~ is a translation of a closed subspace S of X, with q ~ F N V. Then the 
following are equivalent: 

1. There exists C ~ (0, 1] such that Ilh - g l l  > C Ilq - g l l , f o r a U  h ~ F and g ~ V. 
2. K s . v < l .  

Moreover, if C is given as above, then Ks.v < ~/1 - C 2. 

We refer the reader to Bauschke and Borwein [BB] for recent work on von Neumann's  alter- 
nating projection algorithm. For the remainder of  this section we use the setting and notation of  §3. 
Our next result is an analogue of  [MZ2, Appendix F]. 

4.2. Theorem 
Let f2 > 0 and f E P~. Let J, f21, W, V, and Ej be as in Theorem 3.1. Let q :=  W f .  For 

each j E {1 . . . . .  J + 1}, fix a strictly increasing sequence t ) of real numbers, accumulating at oo 
and -c~,  with Mj :=  supn~z(t,i+l - t~) < z r /E j  andm:  :=  inf,~z(t~+ 1 - tin) > O. Let the affine 
set F c g2(p~) be defined in terms of each tY as above. Then there exist positive constants C1 and 
C2 such that for all h E F and g E V we have that 

J + l  

Ilh - gll 2 > C1 Z ~ IC~ - gj(t~)l 2, (1) 
nEZ j = l  

while 
J + l  

Ilq - gl[ 2 < C2 Z Z IcY - gj(tJ)[2" 
nEZ j = l  

Proof. 
§2.2.3], [Ben, Lemma 42(b)]), since hj - gj ~ Pn, it follows that 

IIh: - gill 2 > ffj Y~ I(hs - gj)(tJn)l 2, 
nEZ 

where 

Fix j ~ { 1 . . . . .  J + I }. By a result of  Plancherel and P61ya [PP] (see also, e.g., [Y, 

8 (e ~1/2) n " j  - 1)" 

Ilhj - g:ll  >__ I c .  - g j ( t . : ) t  2. 
nEZ 

On the other hand, qj - gj ~ P~j. By Benedetto [Ben, Theorem 51], which uses Gr6chenig [G2, 
Theorem 1 ], 

]]qj - g i l l  2 < rIj Z I(qj -gj)(tJ,)] 2, 
nEZ 

Therefore, 

(2) 

~j : ~  
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where 

Consequently, 

~Tj--- 

Ilqy - gyllZ~ 5 fly ~ IC~ - gj(tJ)[ 2. 
n~Z 

Let C~ := minl<j_<~+~ ffj and C2 := max~_<j~s+~ rlj. Then Ct, C2 6 (0, ~ ) ;  and statements (1) and 
(2) of  the theorem now clearly follow. [ ]  

The proof of  Theorem 4.2, together with Lemma 4.1 and the discussion preceding it yield the 
following corollary. 

4.3.  Corollary 
Under the hypotheses of Theorem 4.2, with ~ j and O j defined as in the proof of Theorem 4.2, 

let fi :=  min~<_y<_s+~(~ffO;). Then for all h ~ Fand g ~ V, I l h -  gllez(e,) > 4 ' ~  I l q -  glle2(~,~). 
Moreover, for T :=  PvPr ,  for all v ~ V and n ~ N, we have that 

IlT"v - qlle~(e,~ < (1 - / ~ ) "  Ilv - qlle2(en). 

We remark that there is only a small loss of  generality in starting the alternating projections 
algorithm in V, rather than in eZ(Pn). Indeed, if we start at g 6 e2(Pa),  then v = Tg  belongs to V. 
Further, since 0 ~ V, this natural and simple choice is often made. Second, note that the estimates 
in the proof of  Theorem 4.2 resemble those gained by Mallat and Zhong [MZ2, Appendix F], using 
a Sobolev norm and a calculus of  variations argument. 

5 .  A U s e f u l  S h a r p e n i n g  of the R e c o n s t r u c t i o n  T h e o r e m  

Theorem 3.1 is not sharp enough to enable implementation of a discrete version of the Mallat- 
Zhong algorithm. We specialize the setting of §3 in this section, in order to do this. First, we remark 
that a function u ~ L z is real-valued (i.e., is a signal) if and only if f i ' ( -~)  = ~'(~) for almost all 
~ R .  

Fix A > 0. Note that if u 6 L 2, then u ~ PA implies that f = Re u 6 PA. On the other 
hand, if f ~ Pzx is real-valued, then 7-tf 6 Pzx and is real-valued, so that u :=  f + iT-if ~ Pa and 
f = Re u. Moreover, 

~'(~) = 2 f ( ~ )  X[0,~)(~) for almost all ~ ~ R. 

Next we fix ~ > 0 and f21 > f2 with f21 < 2f2 and v 6 N U {0}. We then choose functions 
c and s mapping [~ ,  ~1] ~ R such that both are v times continuously differentiable on [f2, ~21] 
(i.e., c, s 6 C(~)[f2, f21]), with all one-sided derivatives at f2 and f21 equal to 0, such that c strictly 
decreases from 1 at f2 to 0 at f21, whereas s strictly increases from 0 at f2 to 1 at ~21, and such that 
c(~) 2 + s(~) 2 = I for all ~ ~ [f2, f21]. 

We continue by defining two functions w and v (using the fact that f21 < 2f2): 

w(~) :=  1 if I~1 ~ [0, ~] ,  

w(~) :=  c(l~[) if I~l ~ (f~, f21], and 

w ( ~ ) : = 0  for all other ~ R .  

v(~) :=  s(l~l) if ]~l ~ [f2, f2~l, 

v(~) :=  1 if ]~l ~ (fal ,2f2],  

v(~) :=  c(1~1/2) if [~l 6 (2f2,2f21], 

v ( ~ ) : = 0  for all other ~ 6 R .  

and 
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We now define ~o := w"  and ~p := v v (Figs. 2 and 3). Since w and v are even, real-valued functions, 
(p and ~p are also real-valued. Moreover, by our choice of  s and c, w and v are C (~) functions on 
R. In particular, they each have v distributional derivatives in L 2 Cl L 1 and therefore x~o and x~ap 
belong to L 2 N Co. We will return to the rapid decay of ~o and ~ in §6. We remark that we could also 
arrange for v = oo. The construction above closely resembles that of  Meyer [Mel],  who produced 
the first band-limited, orthonormal wavelet basis of L 2, with decay at oo and - o o  faster than the 
reciprocal of  any polynomial. 

It is easy to check that for almost all ~ ~ R, 

I~(~)l 2 = 1~(2~)12 -t-1~(2~)12. 

We note that both ~ and ~ vanish outside of  a bounded interval, while ~ is continuous at 0 with 
~(0) = 1. Consequently, ~p satisfies the identity Y~'~jsz t~(2J~)l  2 = 1 for almost all ~ ~ R, which is 
the condition assumed by Mallat and Zhong in [MZ 1 ]. Moreover, ~'is continuous on R with 7(0) = 1, 
and for all fa0 ~ [fa, f21) there exists 0 < A0 < B0 < oo with A0 < Y'~k~Z I~(~ + 2kf20)l 2 < B0 
for almost all ~ ~ R. By, for example, Daubechies [D, §5.3.2], it follows that the translates of  ~o by 
all integer multiples of  To := rr/f20 are a Riesz basis for a closed subspace Vo, which generates a 
multiresolution analysis of  L2(R). However, due to the fact that }--~kEZ I~'(~ + 2kfa0)12 is not usually 

-:I: -fl 

f l  fl~ 
~ . Z l ;  

FIGURE 2. 

- 2 i l l  - 2 f l  

! 

p 

-fll-fl 

~¢ - a x i s  

FIGURE 3. 
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identically equal to 1, (~0, ~)  may not be an orthonormal wavelet pair based on the integer grid 
(k To)k ~Z- On the other hand, it is easy to choose the functions c and s satisfying c (~) = s (f2~ + ~2 -~ )  
for all ~ ~ If2, fh],  which gives us A0 = B0 = 1 for the value f20 = (f2 + f21)/2. 

Now, let us fix a signal f ~ Pa. We form u := f + iT-If ~ P~. We know that supp ~ c 
[-2f21, -f2] U [£-2, 2~1]. We define 

B j : =  2 j -~ '  2J U ~ , 2 j _ t  

[ O' O t l  
B~+] := 2s,  2~ . 

for all j ~ {2 . . . . .  J}, 

Thus, f • ~2J ~ PR(Bj) for all j ~ {1 . . . . .  J}, and f • ~o2~ ~ Pa(Bs+t). Define 

f2 
~l : =  - -  4' 

l ( f 2 t  

1 f21 
' ~ J + l  : =  -- - -  2 2 J" 

f2 
for all j ~ {2 . . . . .  J}, 

As noted above, each pR(Bj) is real Banach space isomorphic to P~j via the isomorphism (I)j given 
by 

(Ojk)(t) := e -it~j (k(t) + i(~k)(t)) for all t ~ R and all k ~ pR(Bj). 

Here, 

1(~_~ ) 
/~1 := ~ + ~2 , 

l(O o) 
+ 2-7:r_  for j ~ {2 . . . . .  J},/z~+t := 2s+1 " 

In using the Hilbert transform in this context we follow many authors, notably Logan [L]. Fix 
j ~ { 1 . . . . .  J + 1 }. Let t j = (t, j).~z be a strictly increasing sequence in R, with lim~__, +oo t j = -4-oo 
and 

7t" 
s u p ( t n J + l  - -  t j )  = :  M j  < - - .  
n~Z ~j  

We now consider the modified Paley-Wiener space P ~ n .  P ~ n  and e2(p~n)  are closed 
(complex) subspaces of Pn and e2(pn), respectively. Let Q denote the orthogonal projection onto 
PT-/~ in Pn and let P be the orthogonal projection onto e2(PT-tn) in e2(p~). Note that QM = MP. 
For the ~0 and ap of this section, the wavelet transform W, restricted to PT-/~, maps PT-/n into 
e2(P~rg, and is an isometric Hilbert isomorphism. This is because ~0 and ~ are real-valued and 
the Hilbert transform commutes with convolution. Similarly, the inverse wavelet transform M maps 
e2(pT-tn) into PT-/n. We now redefine V as 

V := W(Pa) N £ 2 ( p ~ )  = W( P~ n ) .  
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The calculations of  §3 now show us that W Q M  is the orthogonal projection onto V in the Hilbert 
space £2(pn).  Note that u, as defined above, is in PT-/n. Now define F := Fu ___ £2(p~) given by 

F : =  {g . .s+l  = (gJ)j=l E eZ(Pn): for all j 6 {1 . . . . .  J} 

gj(tY~) = (u • ~k2J)(tn j) =:  Cn ], for all n E Z 

J+l ( ,J+l for all n E Z}. and gj+l(t~ )= (u*~oz~) ( t f f  + l ) = : v  n , 

5.1. Theorem 
Let f2, J, f21, W, V and Ej be as described previously, with the modifications of§5. Fix a 

signal f E Pn. Let u :=  f + iT-If. For each j E { 1 . . . . .  J + 1 }, fix a strictly increasing sequence 
t j of real numbers, accumulating at cx~ and - ~  and with Mj := sup.ez(tnJ+l - t 2) < rr/Ej. Let 
the affine set F = Fu c £2(p~) be defined in terms of each t J, as in this section. Also let T :=  PvPr .  
Then for all g E e2(Pf2), (Tng).~N converges in norm to Wu. Moreover, f may be recovered by the 

formula f = Re u. 

P r o o f .  Uniqueness is the only issue here. We wish to show that FM V = {Wu}. Now 
suppose that h E FN V. Then h = Wul ,  where ul = fl + i ~ f l ,  f l  ~ Pn and f l  is real-valued, 
since h 6 V. Now fix j ~ {1 . . . . .  J + 1}. Since h ~ F, ((Wul)j .(t~)).~z = ((Wu)j(tJ.)),~z. 

Consequently, ( ( W f l ) j  (t~)).~z = ( ( W f ) j  ( tJ)) .~z and ((WT-(fl)j (t~)).~z = ((WT-(f)j  (t~)).~z. 

Hence, from above, ( ( * j ( W  fl)j)(t~))n~Z = ( ( * j ( W  f)j)(tJ.)).~z. 
By a similar argument to that in §3, * j ( W f ) j  is uniquely determined in P~zj by (t.J).~z and 

( (* j (Wf) j ) ( t~) ) .~z .  Thus * j ( W f D j  = * j ( W f ) j .  Since q~j is an isomorphism, we see that 
( W f 0 j  = ( W f ) j .  And since j 6 {1 . . . . .  J + 1} is arbitrary, we see that W f l  = W f .  Therefore, 
f l  = f .  At last we arrive at the fact that u ~ = u, or equivalently, h = Wu.  [ ]  

The usefulness of  Theorem 5.1, as we shall soon see, derives from the fact that we have roughly 
quartered the sampling rate used in Theorem 3.1, when f2~ is close to f2. 

5.2. R e m a r k .  With the modifications to our setting of this section, if in Theorem 4.2 and 
Corollary 4.3 we replace the original E j ' s  by the new sharper E j ' s  of  this section, while changing 
f everywhere to u, where u :=  f + iT-If for some given real-valued f ~ Pn, then we get two new 
true statements. We will call them Theorems 5.3 and 5.4, respectively. Moreover, the constants ffj 
and r/j are given by the same formulas in terms of mj and M j ,  respectively. 

6 .  T h e  A l g o r i t h m  f o r  D i s c r e t e  S i g n a l s  

We continue with the notation and definitions of  §5. We further restrict g2~ to be such that 
f2~ < 4f2/3. Now we define a function H with some of the properties of  the H mentioned in §3, 
and two functions G R and G L, which are modifications of the G discussed there. We introduce the 
notatioon y+ := (1/2)(y + i ~ y )  and y -  :=  (1/2)(y  - iTly) for all real-valued L 2 functions y. Note 
that y+ = ~'.  Xt0.~) and y -  = ~'. g~-~.01, for all such y. 

Recall the functions c, s, ¢p, and ~p introduced in §5. We suggest that the reader quickly sketch 
the functions H,  G ~, and G z that are introduced subsequently in terms of c and s, and that are 
closely related to ~0 and ~p. Also refer to Figs. 2 and 3 for illustrations of ~ and ~p. 

Let e :=  ~ - f2~/2, and note that e > 0. For all ~ ~ [ - f 2 ,  f2] define 

n ( ~ )  := 1 if I~1 ~ [0, ~ / 2 ] ,  

H(~)  := c(l~l) if }~l ~ (f2/2, f21/2], and 

H(~)  := 0 for all other ~ e [-~2,  f2]. 

Next, extend H by periodicity to a 2g2-periodic function on R. Note that f2 + e > f2~, because 
f2~ < 4f2/3. It follows that ~(~) = H(~ /2 )  ~(~/2)  for almost all ~ ~ R. 
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The 2fZ-periodicity of  H implies that H(~)  = ~ k ~ z  Ck e-ikr~,  ~ E R, with convergence in 
L 2 [ - f l ,  g2]; where T :=  zr/f2 and Ck = T ( H  • ;(E_~.~l)V(kT), k ~ Z, is the £2(Z, C) sequence of  
Fourier coefficients of  H.  Applying the inverse Fourier transform to the previous equation for ~(~), 
and using the fact that, by its definition, )-~-k~Z ]~(~ + 2kf2)l is uniformly bounded in ¢ from above 
by 2, it follows that ~p satisfies the dilation equation 

~0(t) = E 2ck~o(2t - kT) ,  t E R ,  (0)  
k~Z 

with convergence in L 2 fq Co. Also, by our choice of  s and c, H • g[-~,~] ~ C (~). Consequently, 
(Ck)k~Z is o ( 1 / k  ~) as lk[ ~ ~ .  

In addition, 7-/~o, ~o + , and ¢p- each satisfy a dilation equation with precisely the same coefficients 
ck. We denote these equations by ( 6 ~ ) ,  (O+) ,  and ( O - ) ,  respectively. 

Let el :=  (~I  - f2)/2. For all ~ ~ [f21 + el - 2 ~ ,  f21 + eli  define 

GR(~) := s(2~) if ~ ~ [f2/2, f21/2], 

GR(~) := 1 if ~ ~ (f2~/2, f21], 

G~(~) := c(2~ - 2f2~ + f2) if ~ ~ (f2~, £'21 + eli, and 

G~(~) := 0 for all other ~ ~ [f2~ + e~ - 2f2, f2~ + e~]. 

Next, extend G ~ by periodicity to a 2f2-periodic function on R. Note that f2~ + e~ - 2f2 < 0, 
because £'2~ < 4f2/3. It follows that ~p+(~) = G~(~/2)  tp~'~(~/2) for almost all ~ ~ R. 

The 2f2-periodicity of  G ~ implies that ~ +  satisfies the following equation: 

~ + ( t )  = E 2d+~°+(2t - k T ) ,  t ~ R, ( ~ + )  
keZ 

with convergence in L 2 M Co. Here d + = T ( G  R . Z(~+~,_m,a,+~])V(kT) for each k e Z. We also 
have that (d+)k~z is o ( 1 / k  v) as Ikl ~ o~. 

Letting GL(~) :=  G ~ ( - ~ ) ,  for all ~ ~ R, and replacing ~0 +, ~p+, and G ~ by ~0-, ~ - ,  and G t 
(respectively) in the immediately preceding discussion results in an equation for ~ -  with coefficients 
d~ = d+k, which we label (~9-).  Some simple algebra gives 

~ ( t )  = ~-~(d + -t- dk)~p(2/--  k T )  + i ~-~(d + - d~-)(7-bp)(2t - kT) ,  (qg) 
keZ  k~Z 

(7-/7/)(0 = - i  E ( d  + - d~-)~o(2t - k T )  + E ( d  + + d~-)(7-/~o)(2t - kT) ,  (c~7-[) 
keZ k~Z 

for all t E R, with convergence in L 2 M Co. 
Now, let us recall Shannon's sampling theorem, due to Whittaker [W] and Shannon [S] (see 

also, e.g., Young [Y], Marks [Ma]). Fix u E P~, with T = 7r/f2. Then 

u = E u ( n T ) s i n c ( f 2 ( .  - nT) ) ,  
n~Z 

with convergence in L 2 M Co. As usual, sinc (t) :=  s i n t / t  i f t  ~ 0 and sinc (0) :=  1. Moreover, 
S : u -+ (~'-T u(nT))n~z is a Hilbert space (isometric) isomorphism of  P~ onto £2(Z, C), and 
(yn :=  (1 /x /T)  sinc (f2(- - n T ) ) ) ~ z  is an orthonormal basis for P~. 

Thus prepared, we turn to the discrete algorithm. Let us suppose that we have a one-dimensional 
signal, sampled on an evenly spaced time grid, tr = (tr(nT))n~z ~ £2(Z, C), where T > 0 and 
£2 = 7r/T. We know that tr interpolates a hand-limited signal f s P~. Therefore, f ( n T )  = 
( 1 / ~ r T ) a ( n T ) ,  for all n, and f = S- l t r .  If  we only know the values t r (nT)  for n in a finite set 
E = {0 . . . . .  N} of  consecutive integers, then we could assume, for simplicity, that t r (nT)  = O, for 
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all n ~ E. Alternatively, we could extend a to a signal in e2(Z, C) in ways that would allow f f t o  
have more smoothness. 

Let u :=  f + iT-if. Now we turn to the construction of Wu,  or equivalently W f  and WT-/f,  
using a variation on the usual pyramid algorithm. This amounts to calculating all J -4- 1 levels of  
these transforms at each grid point nT. From Shannon's formula, for all m ~ Z, 

(7"( f ) ( m T )  = E f (kT)flm,~, (~)  
k~Z 

where 

1 - ( - 1 )  " - k  
flm,k -- if  k @ m and flm,m = O. 

yr(m -- k) 

By our choice of q), f * ~0 = f and 7"/f • ~p = 7-(f. It follows from equation (~)  that 

f * q)2(mT) = E Ck f ( (m  -- k)T),  rn E Z, 
k~Z 

(P~pl) 

7-If • ~o2(rnT) = E ck ( ~  f)((rn - k)T), 
k~Z 

Using equations (~)  and (~P~), we also see that for all m e Z, 

f * 02 (mT)  = E (d+ + d~-) 2 f ( (m  - k)T) 
k~Z 

+i E ( d ~ - - d ; )  
k~Z 

m E Z. (PT-/~01) 

(7-[ f ) (  (m - k) T), 

(P~ t l )  

7-l f * O2(rnT) = - i  E (d~ - d~) -~ f ( ( m  - k)T) 
tsz  ( P ~ l )  

+ E (d+ + d k )  (7-lf)((m - k )r ) .  
2 k~Z 

Continuing inductively, again applying (~) ,  we deduce that 

f .~2 , (mT)  = E ck f , q~2((m- 2k)T ), m E Z. (P~p2) 
k~Z 

At this second stage we can also similarly write equations for 7-[f • ~o22(mT ), f • ~k,2(rnT), and 
7-/f • ~k22(mT), for each m ~ Z. Continuing further, by induction, we produce for each level 
j E {1 . . . . .  J ] ,  equations for f • ~P2J, ~ f  * ~02J, f * aP2J, and ~ f  • ~P2J evaluated at each point mT 
in terms of  f • ¢P2J-~, 7-/f • ~p2j-~, f • O2j-~, and 7-/f • ~?j-z evaluated at all the points kT. We label 
these equations ( P~oj), (PT-/qgj), (Pap j) ,  and ( PT-[~pj), respectively. 

The previous algorithm is the complete modified pyramid algorithm for calculating the wavelet 
transform of u = f +iT-If E PT-[~ with respect to the dilation equation solution-wavelet pair (~0, ~p) 
on the discrete grid kT. It can also be viewed as a simultaneous calculation of the (~o, ~p)-wavelet 
transform of  f and the (~qg, 7"~k)-wavelet transform of  f .  The calculation of  a second transform is 
the price we pay to ensure convergence of our reconstruction algorithm in the discrete setting, using 
the lower sampling rates from §5. We choose G e, instead of the usual G, to ensure that our filter has 
smaller period, equal to 2f2, with sufficient (C (~)) smoothness. Thus we ensure that our coefficients 
ck and d + have rapid decay, and we expect this to facilitate the minimization of numerical errors 
when the pyramid algorithm is inevitably restricted to a time grid of finite length. We remark that 
when f2~ = 4 ~ / 3 ,  f21 + el - 2f2 = - - ~ / 2  and the functions c and s may be chosen so that G R is 
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an even function. In this case, ~(~)  = GR(~/2) ~(¢/2) for almost all ~ ~ R, therefore the pyramid 
algorithm above for u simplifies to the usual one [MZ2] for each of f and 7-/f. 

We now fix g E £2(pn) and describe the calculation of QMg via the pyramid algorithm. In 
the current setting, which was introduced in §4, Mg may be given by 

J 

Mg := ~ gj * ¢'2"~J + g J+l * ~ .  
j = l  

( I )  

)J+l) Now, QMg = MPg = M (Qgj j=x • Each Qgj ~ PT-/~, and therefore Qgj • ~2J = ( ~ j  * ~2~ 

and Qgs+l * ~'~ = (QgJ+l * 92J)'may be calculated from the values of Qgj at each kT, via the 
modified pyramid algorithm. Then, invoking equation (I),  we can calculate ((MPg)(m T))m~Z. 
Here, each 

A V 
Qgj = (gj x[o,~)) , 

and therefore each grid point evaluation Qgj (m T) can be calculated from the values of gj (kT), via 
Shannon's theorem, in a manner similar to the calculation of the discrete Hilbert transform described 
above. 

We can now see how to calculate Pv = W Q M  in the discrete setting. And what of F = F~ 
and the projection Pr? Let us define M'  l := 3T, M~ := y((6/5)2J) T and M~+ 1 := y((3/2)2 J) T. 
Here, 2/(t) := the greatest integer less than t, for all real t. Fix j ~ { 1 . . . . .  J + 1 }. It is easy to check 
that since f2t < 4f2/3, we have that M~ < J r /E j .  We choose a strictly increasing sequence tJ of 

real numbers from (mZ)m~Z, accumulating at oo and - ~  and with Mj := sup,~z(t~+ 1 - t~) _< Mj.. 

Define I" := Fu c £2(pa) given by 

r : = { g  . )J+l = [gJ j=l E e2(P~): forall  j E {1 . . . . .  J} 

gj(t~) = (u • ~PzJ)(t~) =: C~, for all n E Z 

and g2+l(t/+l) ( u .  ~J ) ( t~  +1) =: (" J+l for alln 6 Z} 

Also let T := PvPr .  Then, for all g ~ £2(p~), (T,g)n~N converges in norm to q = Wu, with a 
geometric convergence rate computable from Theorem 5.3 (where we may take mj := T for each 
j) .  For example, we may start the reconstruction algorithm at g = 0 ~ £2(P~). 

Now let us calculate the orthogonal projection Pr. Fix h ~ £2(pn). Next, fix j ~ {1 . . . . .  J + 
1}. Let Ej  be the set of all m ~ Z such that m T  appears in the sequence t j .  Then by Sharmon's 
theorem, the j th  coordinate of Prh is given by 

(Prh)j = ~ C  j s inc( f2( . -  tnY)) + ~ /7 j s inc( f2( . -  mT)).  
rtEZ mCej 

Here 0 j = oJ(h) ~ g2(Z, C) is chosen subject to the constraints that r?~ := (Wu) j (mT)  = CJ~ 
whenever m E E j, so that m T = t~ for some n E Z; and ~ = 0 j minimizes 

[(m -- h j (mT)l  2 
m~Ej 

as ( varies over all ( ~ £2(Z, C). It follows that for all h ~ e2(Prz) and for each j ~ {1 . . . . .  J + 1}, 

(Prh)j = ~ CYn sinc(f2(- - t~)) + E h j (mT)  sinc(f2(. - mT)).  
n E Z  m~Ej 



Unique Reconstruction of Band-limited Signals 79 

7 .  L o c a l  M a x i m a  a n d  t h e i r  S i g n i f i c a n c e  

Let us continue with the setting of §§5 and 6. In part~ular f ~ P~ is a signal and our wavelet 
~z is such that supp ~ __c [-2f21, -f2]  U If2, 2f21]. Also, ~ ~ L °°. Under these circumstances, 

A 

~(~) 

ul(~):--- iF ' ~ ~ R  

shares the properties of ~,  and 0 := u~ ~ L a N Co is such that ( f  • O)'(t) = f • ~(t) ,  for all t ~ R 
(since ~ = 0'). Therefore, the local maxima of I f  * ~1 occur at those places where the signal f ,  
smoothed by 0, is varying most rapidly. This is similar for I f  * IPEJ I, J ~ { 1 . . . . .  J}. Thus we may 
interpret the positions of the local maxima of I f  * ~2Jl to be the edges (points of sharp variation) 
of the signal f ,  smoothed by 02J, where f • 0:j is a smoothing of the signal f ,  restricted to the 
frequency range [--~"21/2 j - I  , - f t / 2 J ]  U [~ /2  j, ~'21/2J-1] .  

We remark that we may think of 0 as generating an integrated wavelet transform or smoothing 
transform I, given by 

I:u---~(u*O2~,u*02~ . . . . .  U * 02J, U * ~2J) ,  u E P ~ .  

It is easy to check that l/I. Ile2~e,) is equivalent to I[ • ll2- 
Mallat and Zhong [MZ1, MZ2] only sample f • l~tEj ValUeS at the edges and, indeed, discard 

all such local maxima values below a threshold. This corresponds to only keeping the sufficiently 
sharp edge features of the signal at each level j .  Mallat and Zhong find that their reconstructed 
signal is visually close to (or hard to distinguish from) the original signal. We discuss one advantage 
of keeping sample values whose total energy is large (in our one-dimensional setting) in the next 
section. 

8 .  N o t  C h o o s i n g  L o c a l  M a x i m a  S l o w s  

the Rate of Convergence 
As in §4, let (X, (-, -)) be a complex Hilbert space with corresponding norm It " II- Suppose 

that V and S are closed subspaces of X. Define U := PvPs. 

8.1. Lemma 
Let X, S, V, and U be as defined previously. Then for all n ~ N U {0}, 

( (Psh,  h)~ 2" 
IlU2"hll > Ilhl[ \ ~(~i  ] foraUh ~ X\{0}. 

Proof .  Fix h ~ X\{0}. From the positive homogeneity in h of the inequality to be shown, 
we may assume that Ilhll = 1. Define the one-dimensional subspace A := {cth : ct ~ C} of X. Of 
course, 

PAX = (X, h) h for all x ~ X. (:~) 

Note that P^Pv = P^. We proceed via induction on n. Let n = O. By equation (:~), for all x ~ X, 

IIUxlt > IIP^PvPsxll = llP^Psxll = I(Psx, h)l. (#) 

Therefore, [IUhll > I(Psh, h)l. Note that, for all k e N, 

PvU k = PvPvPsU k-1 = PvPsU ~-1 = U k, 

Pv[U*]k-lp s = Pv[(PvPs)*]k-lPs = Pv[PsPv]k-lP s = [PvPs] k = U ~. 

Now assume that n ~ N and 

[IUZ~-'hll >_ I(Psh, h)l 2°-'. 
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Then, from inequality (#) and the identities above, we have that 

IlU2"hl[ = [lUUr-lh[I > I(PsU2"-lh, h)l 

= I(PsU2"-'-IPvU2"-'h, h)[ = I(U2"-'h, Pv(U*)2"-~-]Psh)[ 

= I<U2"-'h, U2"-'h)l = IlU2"-'hll 2 > [(Psh, h)l 2". [] 

8 . 2 .  L e m m a  

Let (X, I', ")) be a complex Hilbert space with corresponding norm II • II- Suppose that V is 
a closed subspace of X and F is a closed affine subspace of X such that there exists q ~ F N V. 
Define T :=  PvPr. Thenforall n ~ N U {0}, 

I ITZnx-ql l ->  l t x - q l l  (Zx) 2", 

where 

Zx : =  
l (Prx - q , x  - q)l 

I I x -  qll 2 fora l lx  ~ X\{q}. 

Proof. Now, F is a translation of  a closed subspace S of X. Moreover, S = F - q and 
Pr  x = Ps x + q - Ps q, for all x ~ X. Let U := PvPs. Applying Lemma 8.1 to this choice of V, 
S, and U, Lemma 8.2 easily follows. [ ]  

We apply Lemma 8.2 to prove our final result concerning our Mallat-Zhong algorithm, in the 
setting of  §§5-7. 

We may again consider that our signal f ~ Pn is discrete and of the form ( f(kT))k~z,  where 
T = Jr/if2, and may apply Shannon's theorem to each level of W f .  Let u :=  f + i7~f. Once 
again, we sample each (Wu)j  at a sequence t j from (mT)meZ such that t i has all the properties 
of §5, for each j .  By Theorem 5.4, the Mallat-Zhong alternating projection algorithm converges 
geometrically in the norm to some point of  FN V. The following result gives a lower bound on this 
geometric convergence rate. 

8.3. Theorem 
With the discrete setting of this section, let f be a signal in Pn and u :=  f + iT-( f . Let 

r :=  Fu c_ £2(pn) and set T := PvPr.  Then for all n E N U {0}. 

l IT2"0-  Wulle2(e,) > IIWulle2(p,)(Zo) 2°, 

where 
J+l  

~ I(Wu)i(mT)l 2 
j= l  mf~Ej 

Z 0 : =  J+l  

~ I(Wu)j(mT)[ 2 
j = l  mEZ 

Here, for each j ~ { 1 . . . . .  J + 1 }, E j is the set of all m E Z such that m T appears in the sampling 
sequence t j. 

P r o o f .  Let q :=  Wu. We need only calculate Zx, as defined in Lemma 8.2, for x = 0 
£2(Pn). By Shannon's theorem, for all h ~ £2(Pn) and for each j ~ {1 . . . . .  J + 1}, 

( P r h ) / =  ~ C~ sinc(ff2(. - t~)) + ~ hj(mT) sine(f2(- - roT)). 
nEZ ra~Ej 

Fix j ~ { 1 . . . . .  J + 1}. Then 

(PRO)/= ~ C~ s inc ( f2 ( . -  t~)), 
nEZ 
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However, 

qJ = Z Cj sinc(f2(- -- t J))  + Z qj(mT) sinc(g2(. - mT)). 
nEZ m~Ej 

](q - PrO, q)r 
Z 0 - -  

Ilqll 2 

Therefore the result follows from Shannon's theorem and the definition of the norm in g2(P~). [ ]  

8 .4 .  R e m a r k .  Theorem 8.3 tells us that for each level j of our wavelet transform, if we 
sample (Wu)j on our discrete grid (m T),,~z at a family of points (m T)m~ej that allows for unique 
reconstruction at a geometric rate (as described above), and such that the total energy of all the sampled 
points at all levels is small compared with the total energy of the signal, then the lower bound on the 
geometric rate of convergence of our Mallat-Zhong algorithm with initial point 0, is large, that is, 
close to 1. Choosing a sample point m T inside a neighborhood U of a point k T where I(Wu)j (k T)I is 
locally maximum, instead of choosing k T itself (with all other sample points remaining unchanged), 
is thus certain to increase our lower estimate on the convergence rate. Of course, we can often 
simply choose two points mT and nT in U so that I(Wu)j(nT)l + I(Wu)j(mT)I > l(Wu)j(kT)l; 
however, the choice of an extra point (or points) increases the total number of sample values and 
sample points that need to be transmitted to the remote site where reconstruction is to occur. Thus 
there is some kind of balance going on locally, between sample size and number of samples, that 
needs to be explored further by numerical and theoretical means. 

Theorem 8.3 may therefore be viewed as some theoretical progress in the direction of the well- 
tested computational facts (see MZ1, MZ2) that sampling at as many local maxima as is practicable 
gives a better reconstructed image in fewer iterations of the algorithm. 
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