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Smoothing Minimally Supported
Frequency Wavelets: Part 11

Eugenio Herndndez, Xihua Wang, and Guido Weiss

ABSTRACT.  The main purpose of this paper is to give a procedure to “mollify” the low-pass
filters of a large number of Minimally Supported Frequency (MSF) wavelets so that the smoother
functions obtained in this way are also low-pass filters for an MRA. Hence, we are able to approx-
imate (in the L?-norm) MSF wavelets by wavelets with any desired degree of smoothness on the
Fourier transform side. Although the MSF wavelets we consider are bandlimited, this may not
be true for their smooth approximations. This phenomena is related to the invariant cycles under
the transformation x — 2x (mod 2rt). We also give a characterization of all low-pass filters for
MSF wavelets. Throughout the paper new and interesting examples of wavelets are described.

1. Imtroduction

An orthonormal wavelet, or simply a wavelet, is defined to be a function ¥ € L2(R) such that
{¥j« : J. k € Z)} is an orthonormal basis of L%(R), where

Yix =259 x~k), jkelZ

In the first paper of this series [HWW] we characterized all orthonormal wavelets having Fourier
transforms supported on the set S, = -—%a, 47— %a], 0 < o < & (or, symmetrically, fﬂ = [—4m +
‘3‘ B, -§- B1,0 < B < m). This set is natural since it includes the support of the Fourier transform of the
wavelets known as the Lemarié—Meyer wavelets [LM] and, as explained in [HWW], is “optimal” for
this purpose. In fact, we showed that the support excludes the interval H, = [-%a, 2r — %a] and
each such wavelet can be obtained by a simple procedure from a particular wavelet ¥? whose Fourier
transform is nonzero for almost every & € I, = [—2a, —a] U [27 —a,47 — 2a],0 < a < 27.
Observe that this set has measure 2, and it is easy to see that I;ﬁ &El=x ,a(E) almost everywhere.
More generally, for any wavelet v, the support of ¥ must have measure that is at least 27, and
when it is 27, | 1/;] must be the characteristic function of this supporting set [BSW]. We have called
wavelets whose Fourier transform have support that is a set of measure 2r MSF wavelets. Observe
that I = I, = [—2n, —m]U [, 2x] is the support of the Fourier transform of the Shannon wavelet,
¥®, and the Lemarié-Meyer wavelets, v, are obtained by constructing a smooth nonnegative
approximation b of x, so that 117 = e"gb(S) (see [BSW]). This process leads us to consider all
wavelets that “arise” from the MSF wavelets ¢%. We described in [HWW] how to construct such
wavelets based on the two equations
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Y H@EP=1 aeteR, (1.1
jeZ
Y U@ E)FQIE+2%n) =0 ae & eRforeachk € 2Z +1 (12)
j=0

that characterize all wavelets [Wan]. Being a characterizarion of all orthonormal wavelets, (1.1) and
(1.2) imply the orthonormality of the system {1« : j, k € Z}, which is equivalent (see [HW]) to
another pair of equations, namely,

S WE+2%uDP=1 ae teR, (1.3)
keZ
Y G @I +2%m) Y +2kn) =0 ae. & €Rforeachj > 1. (1.4)
keZ

In these equations, and throughout this paper, the Fourier transform of a function f is defined by

f&) = Jg f(x)e™= dx, so the Plancherel theorem takes the form 2 || f "; = f ||§ }
Many natural questions arise from these considerations. Let us list some of them.

1. What measurable sets K C R are the supports of the Fourier transforms of MSF wavelets?

2. When can such an MSF wavelet associated with the set K be approximated (in the L?-norm)
by one that has a smooth Fourier transform supported in a set that is “slightly” larger than
K?

3. Does there exist an MSF wavelet that is not bandlimited?

4. Can K be a nowhere dense perfect set?

5. Is the collection of all wavelets a closed subset (in L2(R)) of the unit ball? Is it connected?

Answers to 1 and 3 can be found in [FW]. Negative answers to 2, a positive answer to 4, and
a negative response to 5 are provided in [HWW].

These answers were derived rather directly using (1.1) and (1.2). We shall consider other ques-
tions as well; however, one of our purposes in this paper is to apply another construction of wavelets
to study these as well as related questions. As we shall see, this will give us a deeper understanding of
the properties of wavelets connected with the smoothness of their Fourier transforms. The basic idea
of this method is to use the notion of an MRA and the associated quadrature mirror filter construction.
We assume that the reader is familiar with these notions and refer to their excellent treatment in [Dau}
and [Mey]. In particular, the fact that a “low-pass filter” m is a 2 -periodic function satisfying

ImE)> +im@E +n)* =1 forae £eR (1.5)

motivates one to ask what other properties guarantee that such a periodic function is a low-pass filter
associated with an MRA.

In much the same spirit as in [HWW], we ask what “deformations” of such a filter give
us “near by” filters. Of course, many authors have considered the question of what 27 -periodic
functions satisfying (1.5) are MRA low-pass filters. We shall be particularly interested in A. Cohen’s
characterization of C* filters [Col, Co2] and will develop some analogous results suited to our
purpose of smoothing the filters associated with MSF wavelets. These results, which will be explained
in §2, allow us to construct a new family of MSF wavelets that answer a question connected with
the behavior around the origin of the support of the Fourier transform of a bandlimited wavelet.
The smoothing procedure, which will be discussed in §4, will lead us to some surprising results;
perhaps the most striking is that, even when the MSF wavelet has a Fourier transform supported in
a very simple bounded set (say, four disjoint intervals), the “neighboring” wavelets obtained by our
method with a smoother Fourier transform cannor be bandlimited. This behavior is connected with
the invariant cycles of the transformation x + 2x (mod 2sr), a subject that will be the main theme
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of the last section of this paper. It is difficult to describe fully this phenomenon without using the
details of our construction. Thus we postpone further discussion of this feature.

2. Minimally Supported Low-Pass Filters

We have mentioned in the introduction that A. Cohen has studied the C* filters that give rise
to MRAs. Let us begin this section by presenting a precise statement of his result, which can be
found in [Col] or {Co2].

Theorem 2.1.

Let m be a 2m-periodic slaxt Sfunction,r =0, 1,2,..., 00, defined on R such that m(0) = 1.
Then m is a low-pass filter for a wavelet if and only if m satisfies (1.5) and there exits a compact set
K, which contains O in its interior, such that

Y xgE+2m)=1 forallt R (2.2)
icZ
and
mQ2/Ey#£0 forallt e K andall j=1,2,.... (2.3)

Moreover, the scaling function ¢ can be chosen so that ¢ € C".

A. Cohen’s result assumes m € C®(R). The fact that we can replace C® by C'*!, r =
0,1,2,...,is easily obtained from his arguments (see [HW]).

We shall obtain an analogous result for the case of filters that produce MSF wavelets associated
with MRAsS. In order to do this it is necessary to say a few words about MR A s (as we said previously,
details can be found in [Dau, Mey]).

A multiresolution analysis (MRA) consists of a sequence of closed subspaces V;, j € Z, of
L%(R) satisfying

feV;, ifandonlyif fQ())e Vjn.jeZ (2.5)
(V) = {0k (2.6)
jeZ
UV =L*®; 2.7)
j€z
There exists a ¢ € V, such that {¢(- — k) : k € Z} 2.8)

is an orthonormal basis for V,.

The function ¢ is called a scaling function for the MRA. These five conditions are not independent.
For example, (2.6) is a consequence of (2.4), (2.5), and (2.8). In case |@| is continuous at zero
(and this is generally true and assumed in this paper), it can be shown that (2.7) is equivalent to
{@(0)] = 1 as long as the other conditions of an MRA are true (see [HWW] or [Wan] for details).
Thus, multiplying ¢ by a unimodular constant we might as well assume (and do so in this paper)
that ¢(0) = 1.

It follows from (2.5) that (2.4) is equivalent to V_; C Vp. When this is the case, ¢(3) € Vo;
and if we develop this function in terms of the basis {¢(- — k) : k € Z} and express this in terms of
the Fourier transform, we obtain

P(28) =m(&)p(E) forae. £ €R, (2.9)
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where m is a 27 -periodic function satisfying (1.5), which is called the low-pass filter associated
with this MRA. We recall that the wavelet corresponding to this scaling function is obtained from
the equation

b =tmG+m e, 2.10)

‘We shall make use of the fact that the scaling function ¢ can be expressed in terms of the low-pass

filter m as
[o o]

¢ =[[me7®. @.11)

]=1

Moreover, |¢| can also be recovered from the wavelet i via
oo
BEF =) 19 @HL 2.12)
j=1

We shall also use the following result.

Lemma 2.13.

Let ¢ € L*(R) be such that |$(0)| = 1 and |§| is continuous at zero. For j € Z, define Vjas
the closed span in L*(R) of (¢ ik - k € Z}. Then, the family of subspaces (V; : j € Z} is an MRA
with scaling function ¢ if and only if

Y IgE +2%m)P=1 forae £€R, (2.14)
keZ

and (2.9) holds for a 21 -periodic function m.

For MSF wavelets we cannot apply Theorem 2.1, since m ¢ C'. In fact, it follows from (2.12)
and (2.9) that the filters m associated with these wavelets must be of the form |m| = x, for some
measurable set £ ¢ R. In this situation, the 2 -periodicity of m implies E = E 4 27 and (1.5) can
be rewritten as

Xp® +x,E+7)=1 forae £€R. (2.15)

It follows from (2.11) that |$| = x, where S = (1’2, 2/E. Since ||¢“§ =2 ||ga||§ = 27, we
immediately obtain | S| = 2. The orthonormality of the system {¢(- — k) : k € Z} implies

Y xsE+2%kn)=1 forae £€R, (2.16)
keZ
since this is equivalent to (2.14) when |¢| = Xs- This tells us that {S + 2km : k € Z} is a partition
of R almost everywhere. Moreover, (2.11) implies

Im(27/&)] =1 forae.£e€ S andall j> 1. (2.17)

Finally observe that if for an MSF wavelet we have |¢(0)] = 1 and |@| continuous at 0, we must
have that 0 is an interior point of S. We have proved several results concerning the low-pass filter of
an MRA, which are collected in the next result.

Proposition 2.18.

Suppose that ¥ is an MSF wavelet associated with an MRA for which |§| is continuous at
0 and |¢(0)] = 1. Then, the low-pass filter m associated with this wavelet must be of the form
|ml = xp, where E C R is a measurable set that satisfies E = E + 2m (2n-periodicity) and (2.15).
Also, the set S = (72, 2/ E is the support of §, |¢| = X, | S| = 2, and S contains 0 in its interior
and satisfies conditions (2.16) and (2.17).
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Remark 1. The set E that appears in Proposition 2.18 does not have finite measure. But,
when restricted to a period interval, the new set F = E N [—, 7] has measure 7. It follows from
(2.15) that

T 0 14 b4
|F|=f Xg(8) dt = xE<s>ds+/0 xE(E)dE=/0 & +m) +xp@)de =z O

T -

Remark 2. If ¥ is an MSF wavelet and we define ¥ by ¥ (§) = € *®)(¢) for any real-
valued measurable function «, then x/~f is also an MSF wavelet. This follows from the fact that (1.1)
and (1.3) characterize MSF wavelets (see [HKLS] or [HW]). Thus, the phase of an MSF wavelet is
arbitrary. [

The next result characterizes the 2 -periodic measurable fucntions that are low-pass filters for
MSF wavelets.

Theorem 2.19.

Let m be a 2m-periodic measurable function defined on R such that m is Hélder continuous
of positive order at 0 and m(0) = 1. Then m is a low-pass filter for an MSF wavelet if and only if
|m| = xp, where E C R is a measurable set that satisfies (2.15) and

|ﬁ 2 E[ = 2. (2.20)
j=1

In view of Proposition 2.18 we only need to show that if |m| = x g+ With E satisfying (2.15)
and (2.20), then m is a low-pass filter for an MSF wavelet. In fact, we only need to show thatm is a
low-pass filter for a wavelet, since this will be an MSF wavelet by (2.11) and (2.10). We start with
a lemma.

Lemma 2.21.
Suppose that E is a measurable set contained in R such that E = E + 27 and E satisfies

(2.15). If S = ﬂj’il 2/ E, then we have
i |SN(S+2kn)| =0 forall k#0, k € Z;
ii. |8] <2n.

Proof. Givenk € Z,k # 0, let B, = SN (S + 2kw) and write k = 2°q with p > Oand ¢
odd, p,q € Z. For all £ € By, & belongs to both S and S + 2kxr. From the definition of S we then
deduce that £ € 27*'E and & € 2P+ E + 2P*1gx. Thus, 277 € E N (E + gm), which shows
that 2=7~!B, C EN(E + ) since E is 27 -periodic. But (2.15) implies |E N (E + )| = 0; hence,
12=7~!'B;| = 0 and, consequently, |S N (S + 2km)| = |B;| = 0. This proves i.

Inequality ii follows from i since this implies that the sets S+ 2k, k € Z, are mutually disjoint
almost everywhere and, hence,

S xg+2%n) <1 forae & eR.
keZ

The argument is as follows:

2T 2
|S|=/Rxs<s>ds=2/0 xs<s+2kn>ds=f0 3 xs(€ +2kn)d <2m. O

keZ keZ

We now continue the proof of Theorem 2.19. Let us define

$@® =[[m@ o). 2.22)
Jj=1
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Then |@| = x, where § = (32, 2/ E. We claim that

Y 16 +2km)> =1 forae £ €R. (2.23)
keZ

If we assume (2.23), the system {@(- — k) : k € Z} is orthonormal. Since m is continuous at O and
im(0)| = 1, we have |$(0)| = 1 and |¢| is continuous at 0. By Lemma 2.13 we only need to show
that $(2§) = m(£)@(&); but this follows immediately from the definition of ¢ given in (2.22).

It remains to show (2.23). By part i of Lemma 2.21, the sets S + 2kx, k € Z, are disjoint
almost everywhere and, hence,

Y I6E + UM = Agunn €) <1 forae £ €R.

keZ keZ

On the other hand, (2.20) implies

2 o]
/0 Zl@(s+2kn)12ds=th¢><s)|2d.s=|S|=)ﬂsz}=zn,
i=1

keZ

which shows (2.23) for a.e. £ € [0, 27]. Since the function on the left of (2.23) is 2rr-periodic, the
desired results follows. This finishes the proof of Theorem 2.19.
There is an immediate rephrasal of this theorem, which is most useful for applications.

Corollary 2.24.

Let m be a 2x -periodic measurable function defined on R such that m is continuous at 0 and
{m(0)| = 1. Then m is a low-pass filter for an MSF wavelet if and only if im| = x, where E C R
is a measurable set that satisfies (2.15) and there exits a measurable set C C R such that |C] = 2n
and

mQ277) =1 forae. EcC andallj=>1.

Proof. The necessity follows from Proposition 2.18. For the sufficiency we only need to
show (2.20). Since |m(277¢)| =1 forae. £ € C and all j > 1, we obtain that C C ﬂ?‘;l 2 E
almost everywhere. Since [C] = 27, Lemma (2.21) gives us

o ¢]
2w =|C| < !(]sz| <2r. O
j=1

Remark 3. Corollary (2.24) is stated in a form that is closer to the conditions in Theorem
2.1. Since C = § = (|2, 2 E almost everywhere, (2.16) implies that {C + 2kr : k € Z} is a
partition of R almost everywhere. O

Corollary 2.24 allows us to construct MSF wavelets. The exampies we give in this section are
not new, but they are included since we shall use them in the sequel. In the next section we shall use
Corollary 2.24 to obtain a new family of MSF wavelets.

Example 1. Let0<a <2rand F = [—5, 7 — 5] Define
m(E) =D xp (& +2km)
kel

so that m is 2z -periodic. The set C described in Corollary 2.24 is C = [—a, 27 — a]; and we obtain
the wavelet ¢ for which ¥9(§) = ei§XI , where I, = [—2a, —a] U [27r —a, 47 — 2a]. O



Smoothing MSF Wavelets 29

Example 2. Let F =[-2r, —ir]U[—}r, tx]U (47, 2x], and define

mE) =) X+ 2km).
keZ
Then the set C described in Corollary 2.24 is C = [—$x, —m|U[—2x, 37]U[r, $7]; and we obtain
the wavelet i for which 1/Af = e"ng, where K = [—%n, —2r]U[—m, —%7:] U [%JT, nlU[2m, %n’].
The reader can check that all the wavelets described in Example 2 of [HWW] can also be obtained
from Corollary 2.24. [

3. A New Family of MSF Wavelets

In this section we use Corollary 2.24 to construct a new family of bandlimited MSF wavelets.

For a bandlimited wavelet, v, such that IIZ] 1s continuous at zero, it is known (see [BSW]) that there is

a neighborhood of the origin such that the Fourier transfrom of ¢ must be zero in that neighborhood.

The family of wavelets that we shall construct in this section shows that this neighborhood can be
arbitrarily smail (this was observed in [BSW]; perhaps the approach here is more direct).

The inequalities
(-D= Jjm jr _(+D=m
< < < —
2n 2r+1 2n 27 +1
valid for all natural numbers n and all j =1, 2, ..., 2" — 1, imply that the set

2n~1 . . e .
= _M —_]_TI'_ _ T b4 :’1 (]+1)7'[

j=1 j=1

L}

is a finite union of disjoint closed intervals within (—x, 7). For an n € N, define

ma(€) =Y X (& +2kn), E€R (3.2)

keZ

Lemma 3.3.
For each n € N, the function m,, satisfies (2.15).

Proof. A simple calculation shows that
X{(an[_mo])_f_ﬂ}(s) + XF,.n[O,n](S) = X[o'”](S) for a.e. ‘S eR.
The 7-periodicity of jm,(-)|*> + |m,(- + 7)|? gives us (1.5), which is equivalent to (2.15). O

Lemma 3.4.
If C, = 2F,, then C, has measure 2 and

m,(277E) =1 forae £cC, and jeN.

Proof. By Lemma 3.3 and Remark 2.18 we have {F,| = 7, and hence the measure of the
set C, must be equal to 2z. If £ € C,, %S € F,; thus, m(%) = 1. To prove the second statement
of this lemma it is enough to show that if / is an interval in the union defining F, (see 3.1), then
%I C F,. This is obviously true when I = ["znﬂﬁ’ JT]- Now we assume

jim G+ Dn :

l=|—, —1, =1,2,...,2"-1,
[2n 2+ 1 /

and consider separately the cases where j is even or odd. If j is even, we can write j = 2s and

obtain

11_ 1 [2srr (2s+1)7r:| [ﬂ (s+1)rr] CF.

2772 27 24 o om ]
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When j is odd, we write j = 25 + 1 so that
1 2 1 2s 1
[(s+ o ( +2)ﬂ}c[g_ (s + )rr]an' 0

—I=-§ R ’
2 2 27 2741 20 41

These last two lemmas together with Corollary 2.24 allow us to obtain a scaling function ¢,
such that ¢, = x c, and an MSF wavelet v, such that

Fa(®) = i m, (% + 7!) Pn (%) forae. £ eR. (3.5
This wavelet is bandlimited; in fact, supp J/,, C [—4m, 4r]. To see this observe that
2" 2"
fp = 2F, 22 —27,2
Supp ¢ C[ 22"+1 2"+1]C[ 7, 2]
and use (3.5).
Lemma 3.6.

Let ,, be given by (3.5). Then we have:
i' If‘g € ( 2;.2_7:_17 2n+1) then \I/n(f) =0.
ii. I_fg E ( 2n ’ 2n+1) U (2"'{—1’ 2n) then W’n(&)l = 1’

Proof. Incaseiwe have

& 27 "+ 2"z ( 2" + 2
== e, S22 - % ux,.
(eI oy R rany 1|\ T 1Y a2

On Xy, m,(n) =0by(3.1)and 3.2). If n € Xy, n — 21 € (-7, — 2"+1) and, hence,

my (% +Jr) =mu(n) =m,(n —21) =

From (3.5) we obtain K[AI,, (§) =0whené& € (— 2,. g 2, 1) and i is proved.
Observe that |1/;,,l is even, since @, is even and m,, is an even 2w -periodic function. Thus, to
establish ii it suffices to consider £ € (5%’1—1, 25’,.1). Forsuch a &,

£ T T 3 2% 2" -Drn
= =)cc z - - .- F,.
€ )G ™ ol T 2" <
Thus, by 3.5), ¥ ®) = ma§ + 1)@ =m,§ - m@(H) =1-1=1. O

Remark 4. The interested reader can compare this result with Theorem 2.1 in [HWW] and
observe that this is not one of the wavelets characterized by that theorem. O

Remark 5. It was proved in [BSW] that for any bandlimited wavelet ¢, such that || is
continuous at zero, there is a neighborhood of the origin for which v is identically zero. The above
lemma shows that this neighborhood can be as small as we wish, even for MSF wavelets. O

When n = 1 we obtain Example 2. The Shannon filter can be included in thxs faml]y as the
case n = 0. Figure 1 shows a computer graph of the wavelet v, for which Va(§) = ¢ H X (), with

K—1§3U122U36nuln2
= 5T R - 5% 37

U{gnlﬁu6§ 212 U3J’t16
573 5T |V ST ST
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FIGURE 1.

4. A Smoothing Procedure

In this section we shall show how to obtain smooth approximations for a large number of MSF
wavelets. The idea is to obtain a smoothing procedure for the corresponding low-pass filter that gives
us a “new” low-pass filter for an MRA for which the scaling function can be chosen to be smooth.

Suppose that ¥ is a bandlimited MSF wavelet associated with an MRA for which its low-pass
filter is given by

mE) =Y Xp (& +2%n),
keZ
where F = | J,_, I, is a finite union of disjoint intervals contained in (—, 7). We choose the
scaling function ¢ so that (&) = []72; m(27/¢).
Givene >0andr =0,1,2,..., 00, let s, be a C" function defined on R such that s.(x) =0
forall x < —¢e and

s2) +c2(x)=1 forallx eR, (4.1)

where ¢, (x) = s.(—x). It is not difficult to construct such a function having any desired degree of
smoothness. Details can be found in [AWW, Wic]. Figure 2 shows a sketch of the graphs of these

functions.
IfI, = (ag, be), £=1,...,n,with—r <a; <b;y <a; <by <--- <b, <mx,wechoose a
positive £ small enough so that

—rT<a—&8<--<ate<b—e<bte<ay,—e<--<b,te<m.

We assume O € (ag,, bg,) for some €, and choose ¢ so that ¢ < min{—a,,, be,}. Let m. be the
27 -periodic function given by

me§) =y {Zse({-' — ag + 2km)ce(§ — by + 2km) | . (4.2)

keZ { £=1

What we have done is to apply a smoothing precedure at each point of discontinuity of x. (see
Figure 3) and extend the new function 2 -periodicalty to R.

—€ |o €

FIGURE 2.
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4

A
2n-periodic . . : s : : , : ' Ve 2n-periodic
—— ———
[l f " ¥ h ] 1 r . 1
] t [l 1 b 1 I 1 H []
0 T

-~

FIGURE 3.

We can apply Theorem 2.1 to m.. To see this observe that m.(0) = 1 and m, satisfies (1.5)
since (4.1) holds. Let K = supp ¢. Since v is bandlimited, so is ¢ and, hence, K is compact and
satisfies (2.2) and (2.3) (by Corollary 2.24 and Remark 3).

By Theorem 2.1, if m, € C"*! (r > 0), we can construct a scaling function ¢, by

$e(&) =[[me@8)
j=1
and a wavelet ¥, such that
Py =etim (& 5 (€
Ye(§) =€ 2m; (2+”> e<2) 4.3)

Moreover, both ¥, and ¢, belong to C”.
It is clear that “m —mg — 0 as ¢ — 0. We also have the following approximation
result.

Theorem 4.4.

Ifm,mg, ¢, ¢, ¥, and . are as above, then we have

“ L2(-m,7)

i "(ﬁ-—@”Lz(m)—>0ass—>0;
ii. ”1[1—1//5||L2(R)——>0ase—>0.
Proof. Fixe, > 0and j, € Nsuchthatm (§) = 1 for§ € (=27%,275%) C (aq,, by,) when

& < &,. This can be done since 0 € (a,,, b,,) C F. Since ¥ is bandlimited, so is ¢ and, thus, there
exists a J € N such that supp$ = K C (=27,27). We claim that if k, = j, + J, then

ko
& &) =] [m.277¢) forall £ K andall £ <&, (4.5)
j=1
and
ko
o) = I_[m(Z"jS) forall £ € K. (4.6)
i=1

J
To see (4.5) observe thatif j > k, = j,+ J and § € K,
277t e 277K (=270, 277y c (=27, 270,

and, hence,_ mg(27/E) = 1 forall ¢ < &. A similar argument establishes (4.6) since m = 1 on
(=270,270) C (ae,, by,)-
Formulae (4.5) and (4.6) imply

Ag(e) = |@e — @ 24y — 0 as 0. 4.7

Thus, all we need to show is

/ 1G:(E))*de — 0 as £ > 0
R-X
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because ¢ = 0on R — K. From
Var = "‘5"2 = "‘ﬁ"u(m < ¢ - (ﬁ”LZ(K) + “ﬁbs "LZ(K) = Ag(e) + ”‘ﬁf ”LI(K)’
we deduce that, for £ small enough,

fK 16 ()2 dE > [V21 — Ax(e)]*.

Thus,

/ 16, (€)1 dE f 16: ()2 dE — / 16, ()12 dE
R-K R K

27 — [V271 — AK(e))z —> 0 as e— 0.

IA

This shows i of the theorem. Part ii follows immediately from (4.3) and i. O

5. Two Examples of a Different Nature

The smoothing procedure developed in §3 will be applied to the wavelets ¢ and ¥ of Examples
1 and 2, respectively. In the first case the new wavelets, ¥Z, are bandlimited and their Fourier
transforms have supports that are very close to the support of 17/71 when ¢ is small compared to a.
In the second case there is a surprise: the new wavelets, v/, which approach ¢ in L%(R), are not
bandlimited for any admissible choice of &.

We first consider the wavelet y¢ of Example 1. In this case we can choose the scaling function

@° satisfying
PHE) = X(_y27_q)E):
and thus

ma(g) = ZX[—%.N—%](E +2k7f).
keZ

We shall work out the details for the case 0 < a < n. Thecase m < a < 2 can be treated in a

similar way. Let0 < ¢ < % and apply our smoothing procedure to the low-pass filter m¢ to obtain
a new filter mZ, a scaling function ¢? with

- e .

g ) = [[me2®),

j=1

and the wavelet y¢ such that

TR(EY — pi5 ma § - §
YE) =e'ims <2+7r>¢£ (2> (5.1

Lemma 5.2.
LetO < a < mwand0 < ¢ < ¢. Theng? has support contained in I} = [—a—2¢, 2 —a+2¢);
moregver,

26 =m(3) 1,©. 53)

Proof. The graph in Figure 4 is helpful for the proof of this theorem. Suppose & € 2/[r —
£ +e&,2m —a +2¢], j > 1. Then the condition £ < £ implies

2-J'$E[n-2+e 27r—a+2g]c[n_f_+€2n_ﬂ_£]
2 ’ 2 ’ 2 :



34 E. Herndndez, X. Wang, and G. Weiss

2r-periodic 2r-periodic

e e

a_ _n-2 g 0 -8 _a_ _a
-2n-3-€ n-5+E 3-¢ 0 R-3+€ 2n-3-¢ 3r-3+¢

FIGURE 4. The support of m§.

But the last interval lies in the complement of suppm?2. Thus, m? (277&) = 0, and it follows that
j-=1 ] o]
gi§) = { [1 m‘;(z"‘s>] mg(27€) [ I m‘;(z"%)] =

when § > 2w — a + 2¢ (the right-hand endpoint of 7).

Now welet& € 2/[—a — 2, —% —¢], j > 1. Then the fact ¢ < ¢ < Z Jeads us to
Z'jée[—a—Ze,—%—e]C[—%—n+s ———e]

Again, the last interval lies in the complement of suppm’. Hence, as before, gog (&) = 0 for
§ < —a — 2¢. This shows supp gas C I¢. Equality (5.3) will follow from this if we can show that
ms(2~ JE) =1whenj>2and£ € IZ. But this is the case since

. 1
2/[—a — 26,21 —a+2¢] C Z[—a—2£,2n’—a+28]c[—g—+e,n—%—s]

for j > 2 (again, the last inclusion follows from ¢ < § < £). a

In [HWW] we proved a theorem that characterizes all wavelets whose Fourier transforms are
supported in the interval S, = [— %a, 47 — %a]. The wavelets we have just constructed (by a different
method) are members of this class. Since ¢ < g and

supp @2 C I¢ = [—a — 2¢, 27 —a + 2¢],
it follows from (5.1) that
supp 92 C 21° = [—2a — 4¢, 4w — 2a + 4€] C S,.

However, if we allow ¢ to exceed ¢ we obtain a completely different collection of wavelets that
have much broader supports that increase unboundedly as & approaches 5. In fact, when ¢ =
(the largest value that is possible in our procedure), the wavelet 7 is not bandlimited. Thus, the
construction we are now presenting produces wavelets that, as those in [HWW], are “associated”
with the MSF wavelet y¢ but are really of a different nature. Those associated with Theorem 2.1
in [HWW] are “close” to ¥ in the L? norm and have bands that are “metrically close” to supp 1//“
This last property does not hold for the wavelets 7 that we are now constructing.

It is easy to see that if ¢ = 4, ¥2 is not bandlimited. Since <p€ is continuous and ¢2(0) = 1,
@2 is nonzero in a neighborhood of 0. If ¥ were bandlimited, 1//” would have to be zero in a
neighborhood of 0 (see [BSW]). Also

o — it a _E_ a é
YiE)=¢e mg(2+7f>¢g(2)-

These two facts would force mZ (£) to be identically zero in a neighborhood of 7. But when & = %
mi(§) #0forall & € (—a, 7).

We now study the case ¢ < . For technical reasons that will become clear during the proof,
we shall restrict ourselves to the case a < ’25
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Theorem 5.4.
Let0 < 2¢ < a < 7, and define

o (222 -

00 if e=

Je=jl=

Then, q?;‘ is identically zero on

Je
E = (—o0, —a—2¢]U [U[err —2la 42 2 g —g - 25]] U2ty —2/eq 427 e, 00).
j=1

Thus, ¢2 has a band that lies within [—a — 28 ety — 2Jeq 4 25¥ el when e < g. Moreover, if
5:(8) #0forall§ € (—¢, ¢) (see (4.1)), then goe is nonzero at precisely the points of the complement
of E.
Proof. Figure 4 will be helpful in the proof of this result. Suppose that & € 2/[—a — 2¢,
—5—¢l,j = 1. Since 0 < 2¢ <a < %, we have
2'j5 € [—a—2e,—g——-£] C [_% —7r+s,—§ —e].
But the last interval lies outside of suppmZ. Hence, @({:) =0foré < —a —2¢. Let
=[2r—-2ta+2e 2 \r —a-2], jel.
Ifj=1and§ € X;, then €[r— 3 +&,2m — % — ], and this last interval lies in the complement

of the support of m¢ Hence <p€ (5) 0 on X,. We proceed by induction. Suppose ¢¢ = 0 on X,
forall £ < j. Then, for allé € X4,

Z e [2’n—2f'1a+2js,2j+17r—?2——5] =X_,-U[2j+17t—]t—%+8,2j+1ﬂ—%—8]

= X; UG;.
If % € Xj, then (,os(i) 0 by our inductive hypothe51s If 5 € Gj, then m"(i) 0 since
Gj=[-m~%+e, —% —¢] (mod2). Thus, gZ(§) = m?(5)¢? (i) Oforallf € X,41. We now
show that

| X = 127%"7 — 2%a + 27+Fe, 00),
J>Je
and this clearly implies that (,ZZ? is identically 0 on E. This equality follows if we can prove that the
left endpoint of X ;. is smaller than the right endpoint of X ; when j > j,; that is,
Vg — g+t e <2ty —q—2¢ forall j > j,.
This inequality is equivalent to 2/ > 22 which is true by our definition of j,.
It remains to show that gZJ: is nonzero at each point of the compiement of E. Clearly q’)? &) #0
when § € (—a —2¢,2w — a + 2¢), since m?(27/€) # 0 when j > 1. It suffices to show that
(pe (§) # 0 for everyE € E;, where

=[2y —q =2, 2/t g —2iq 4+ 2itlg), F=1,2,.00 e

Let us prove it by induction. If § € Ey = [47r —a —2¢, 47 —2a + 4¢], then % € 27 — ‘21 —&, 2 —
a + 2¢). Thus, 2(§) # 0 and m?(§) # 0, since

[27:—%—8,27r—a+2£]=[—(2i——e,-—a+28]+27r C suppm;.
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i

o \\\\\\\
!

FIGURE 5.
Now suppose j > 1 and @‘(5) #O0for§ € E;_q. Then, for§ € E;,
% e [2n - % —e,2m 27 la+2e| C By
Thus, @(%) # 0 by our inductive assumption. We can also write

% e [2/‘;1 _ ‘2—’ 62w —2la+2e] =2n + [-‘2—' Y P 2fa] C suppm?,
which shows m2(5) # 0. Hence, g2(§) = m*($)¢2(5) # OforallE € E;. O

Figure 5 is a three-dimensional representation of the family of wavelets ¥ for a = 7 and
0 < & < 7. As ¢ increases from 0, the graph of ¥ approaches the viewer; the case & = 0 is the
Shannon wavelet. (This graph has been obtained in collaboration with J. Soria.)

We now apply our smoothing procedure to the MSF wavelet ¢ such that x/}(g )y=¢é : X » Where
K is the particular simple disjoint union of four intervals described in Example 2. In this case,

mE) =y X +2km),

keZ

where F = [—3m, —ix]U[-in, ixlU [, 37). WithO < & < ;7 we obtain a low-pass filter
m, (see Figure 6), a scaling function g, such that

(&) = [ [m.278),
j=1

Y= eim [ s (£
Y(§) =e me(2+n)gog<2>,

which belongs to C™ (r =0, 1, 2, ..., 0c) if we choose m, € C"*1,

and a wavelet ¥, satisfying

4
2n-periodic e 2n-periodic
et e Tat
~ 2. 1 1 0 1. lp 2
T -8 -3m -gm 3 % 3° T
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A

Pe
16 8 8 16
-;‘E -gﬂ? 0 3“ 37!
A
A
16 8 8 16
-3 -7 0 37 3
FIGURE 7.
Theorem 5.5.
In the case under consideration, ifm, € C"*' (r =0,1,2,...,00) and0 < ¢ < 1—12-71', then

the scaling function @, satisfies
Pe(£2'3m) £ 0, £=0,1,2,...,
and . € C’. It follows that , € C” and . is not bandlimited.
Proof. Forf=0,1,2,...
" 2 12 2 .~ (2
@e (2£§n> =m, (25 lin) eemg <§7r) @: <§n) .

Observe that 455(%71) = % and me(§zr) = % (see Figure 6). Moreover, the points 2/ %JT (mod

21), j > 1, belong to {—%n, %n}. The fact that m, is even and these observations show that
m (2t %n) = % foralls = 1,..., £. Consequently,
2 l i+1
e [205m ) = — 0, 5.6
@e < 377) ( ﬁ) # (5.6)
which finishes the proof of the theorem, since ¢, is even. O

Remark 6. Formula (5.6) shows that the decay of |¢.(£)[, at infinity, is not faster than
C léi‘zl. This behavior is also shared by z/}e. In fact, it is easy to see that

(2 |\
| 2=} = — s £=0,1,2,....
w( 3 ) (ﬁ)

This sh?ws that for wavelets i such that |1/}| is continuous on R, the condition |1/}l = Ol +
IED)~%"2), @ > 0, in P. Auscher’s theorem (see [Aus] or in [HWW, Theorem 3.1]) is not necessary
for v to be associated with an MRA.  [J

Computer figures of the modulus of the Fourier transforms of the wavelet v, and the scaling
function ¢, for & = 1—12—71 are given in Figure 7.



38 E. Herndndez, X. Wang, and G. Weiss

Remark 7. The fact that ¢, is not bandlimited also follows from Proposition 5.12
in [BSW]. O

We now can amplify the discussion at the very end of the first section. The passage from
the MSF low-pass filter m to the “smoother” filter m, is quite similar to the method developed in
{BSW, HWW], which allows us to obtain a wavelet ¢, from an MSF wavelet . In these earlier
works, the support of ¥, is metrically close to the support of ¥ (where  is either the Shannon
wavelet or ¥ = ¢?); furthermore, || Ve — Y ||2 is small when ¢ is small. As we can see from the

examples in this section, the last feature is still true; however, supp 1}8 is dramatically different from
supp ¥. This difference arises in the MRA construction of a wavelet from its associated low-pass
filter.

6. Invariant Cycles and Wavelets

In Theorem 5.5, the points 2 and —Z2x play a special role. We consider other families of

points that have similar properties with respect to the wavelets with continuous Fourier transforms.
Let p : (—m, w] —> (=7, 7] be the transformation x + 2x (mod 2x). Suppose O(x) =
{p"(x) : n =0,1,2,...} is the corresponding orbit of x. We say that x € (—=, =] generates an
invariant cycle for the transformation p if there exists a k € N, such that p*(x) = x. The smallest
such k is called the length of the cycle.
The point x = %7[ generates an invariant cycle of length 2; and the point x = %71’ generates an
invariant cycle of length 6. The next lemma describes all the generators of invariant cycles.

Lemma 6.1.
The point & € (—n, ) generates an invariant cycle for p if and only if

orsomek € Nand € € Z such that -2 + 1 < <27 - 1.
keNandt € Z suchthat 21 4+ 1< <2k1 -1

Proof. Suppose & € (—m, 7] generates an invariant cycle of length k. Then there exists an
€ € Zsuchthat 2*§ —2¢m = . Hence £ = 552, with |£] < 24! — 1. Conversely, if = 527
for some k € N and £ € Z such that [¢] < 2¥~! — 1, then we have

_12”_2£”=2k_1

ke — 20 = 2K 2 =§&,

2%

which shows p* () =¢. O
The invariant cycles appear in the construction of MSF low-pass filters. One of these filters is
given by the periodization of Xp»where F = [— %n, - %Jt]U[— %n, %n] U[%zr, %n’] (see Example 2).
Another example is the family of wavelets described at the beginning of §3. The supports of
the associated filters involve the orbits of the points
1 2" -1
= 2]‘[ =
2" +1 2 — 1

s’l 2”7 ne Na (6.3)

which are of the form expressed in Lemma 6.1. Observe that the orbit in question is

2 4 2" 2r 2T
M4’ 17 T 2e gl 2e 41T g1 |

O(En) = {

which consists of the doubles of some of the endpoints of the set F, given by (3.1).
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In Example 5 of [FW] a family gf MSF wavelets that arise from MRAs was presented. This
is the family {v, : n € N} for which |y,| = Xw,» where

gn+l _ ) 1 2n+l -2
_ n+1 n+1 —
Wn = [—2 A e LA 2”) Y ['2” + T o T 1”)

2 1 2
U mﬂ,z—"_—ln' U 27{,27{+mﬂ .

It is easy to see that ¢, = x c.» where

" 2 27

G = {,;L=J1 [—2%: t oo =27 + E;zr)}
2 2 "2 2p

U [—2n+l _ 1”’ o+l 1”) U [U I:E;z—”’ o+l _ 171')] :

p=1

The low-pass filter m,, is given by the periodization of the set F, = %C,,. The set F, is not contained
in [—m, 7], but it is not difficult to see that
ma(€) =) xg (& + 2km),
keZ
where

_ 1 1 2" —1 1 1 2" 6.4
Sn—— _”+-2n_+1—_—T7r’_n+2_n” U —2n+1_1ﬂ’2n+1_1” U E—;ﬂ,-z—n:l—:—l-ﬂ , ( . )
and the set S, is contained in [—m, ]. This filter is related to the orbit generated by the point

1
2. (6.5)

o+l 1
We are now ready to prove the main result of this section.

Theorem 6.6.
Suppose that ¢ is a bandlimited scaling function for an MRA with low-pass filter m, and ||
is continuous. If & € (—n, n] generates an invariant cycle for p and O(§) is its orbit, then

[T ma=0.

ne0E)

Proof. We prove the theorem in the case £ > 0. Since |@| is continuous, the orthonormality
of the system {@(- — k) : k € Z} is equivalent to
Y 1@ +26n)2 =1 forall £ €R
teZ

(see (2.14)). The assumption that ¢ has compact support implies the existence of the largest positive
k € Z,suchthat 9(§ +2knm) # 0. Let O(§) = {&), &2, .. ., £,} be the orbit of §, where §, = prEY,
1 <n < p,and p?(§) = §. Using the equality $(28) = m(§)@(£) (see (2.9)) and the 27 -periodicity
of m, we obtain

14
¢Qkx +&) [ mm = ¢Qkn + & [[m&p
j=1

n€0E)

= GQkm + E)mQkn + E)m(Akm + 28) - - - m(2Pkw + 2P 1E)
= G4k + 28)m(dkmw + 26) - - -mQ2Pkmw +2°71E) = ...
= ¢QP km 4 27¢).
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By Lemma 6.1, £ = 2,%27: for 1 < £ <27~ — 1. Thus, 2éx + & = 2P£ and, hence,

¢Qkn +£) [] mm) = ¢k + 027 +8).
n€O(§)

Since 27k + £ > k, the right-hand side of the above equality is zero. The result follows from here
since §(§ + 2km) # 0. a.

Remark 8. The ideas of the proof of this theorem are already contained in the proof of
Proposition 5.12 in [BSW] where the case § = %7[ is treated. 0O

Remark 9. In the proof of Theorem 5.5 we exhibited a filter m, and an invariant cycle
generated by & = -23-7r for which HneO(e) m.(n) # 0. In fact, we showed that neither ¢, nor ¥, in this
case, can be bandlimited because of this result. In Theorem 6.6, of course, one of our hyphothesis
is that ¢ is bandlimited. [

Theorem 6.6 can be written using a wavelet instead of a scaling function.

Corollary 6.7. A
Suppose that r is a bandlimited wavelet associated withan MRA and |} is continuous. Ifte
(—m, ] generates an invariant cycle for p and O(£) denotes its orbit, then ]—Ine o) Y 2(n—m))=0.

Proof. Use (2.10) and (2.12). O

Theorem 6.6 allows us to show that if we apply our smoothing procedure, described at the
beginning of §4, to x Fr where F, is given by (3.1), and to x 5 where S, is given by (6.4), we obtain
nonbandlimited wavelets with smooth Fourier transforms. To see this we only need to observe that
m.(n) # O for all 7 belonging to an invariant cycle: for F, take € O(§,) where &, is given by
(6.3); for S, take n € O(&,) where &, is given by (6.5).
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