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ABSTRACT. We study some explicit functions introduced by Riemann, Jordan, Ldvy, Kahane... 
These functions share the property of having a dense set of discontinuities. We prove that they are 
examples of multifractal functions. 

1. Introduction 

In his famous Habilitationsshrift of 1854 on trigonometric series [15], Bernard Riemann 
introduced the integral that now bears his name. To show that this new integral did in fact extend the 
Cauchy integral, Riemann defined several functions that were too irregular to be Cauchy integrable 
but nevertheless "Riemann integrable." One of these examples is 

R(x) = ~ (nx) (1) 
n 2 ' 

n=l 

w h e r e ( x ) = x - m i f l x - m [ < l / 2 a n d ( x ) = 0 i f x = m + l / 2 ,  m 6 Z .  
Riemann remarked that R is continuous except at the rationals p/2q (p and 2q having no 

common factor, which we denote by p /x  2q = 1), with the following fight and left limits at these 
points 

R = R + 16q------ 5 R = R 16q2. (2) 

Thus R is discontinuous on a dense set; but, in contrast with the characteristic function of  
rationals, the following property holds: For all ~ > 0, the set of points where R has a discontinuity 
of amplitude larger than ~ is finite. Thus R is Riemann integrable, and for this reason we will call 
R the Integrable Riemann function. It is possible, however, to analyze the regularity of R more 
precisely. 

Consider, for example, the neighborhood of  a rational __.e_ (with an odd denominator). The 2q+1 

zk+l (k 6 Z), so the distance between ~q+l function (nx) has its discontinuities at the points ~ _.e._ and a 
_.e____h, __e__ h] discontinuity of (nx) is at least 1/2n(2q + 1); thus (nx) is linear on the interval [2q+l 2q+1 + 

I . Fix h and take N -I- 1 l ] J for n = 1 . . . .  N and provided h < 2n(Zq+l) = [ ~  . Then h < 2n(2q+l) ' 
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n=l  n n = N + l  

= h log + O(h). 

Thus R is quite smooth at rationals with an odd denominator, and its modulus of  continuity is 
h l o g ( I / h )  at these points. So we see that the regularity of  R can change completely from one point 
to another; this is in sharp contrast, for instance, with the Weierstrass functions 

Wa,b(X) = ~ a" sin(b'x) 

that have a very regular irregularity. We make this point more precise. 
The regularity of a function f at a point x0 is measured by the C ~ (x0) conditions, that is, f is 

C~(xo) (~ > 0) if there exists a polynomial P of  degree at most [(~] and a constant C > 0 such that 

}f(x)  - P(x - x0)l < Clx - xol". 

In practice one often uses the HOlder exponent of f at x0 defined by 

hf(xo) = sup{or : f is C'~(x0)} 

to measure the regularity of  f at xo. 
The HiOlder exponent of  Wa.b is constant (and equal to - log a~ log b), whereas we saw that R 's  

can change from point to point. Such behavior of  the HOlder exponent is characteristic of  multifractal 
functions, whose HOlder exponent jumps from one point to another in such an erratic way that the 
set of  points E,~ where the function has a given exponent ~ is a fractal set. The relevant parameters 
that one tries to determine are contained in the spectrum of singularities 

d(ot) = dim{x0 : h(xo) = ~}, (3) 

where dim stands for the Hausdorff dimension (and by convention dim(0) = - o o ) .  
We will show that R is a multifractal function. More precisely, let p" be the sequence of 

convergents of  the continued fraction expansion of x0. We define r ,  (as in [41i by 

x o _  P_5~ ] _ 1 
q, q~"" 

It is an elementary result from continued fractions that r ,  _> 2. Let 

r(x0) = lim sup r , ,  (4) 
nEA 

where A is the set of integers n such that q, is even (if this set contains only a finite number of  
elements, we set r(x0) = 2). We will prove the following theorem in §2. 

Theorem 1. 
The HOlder exponent of  the integrable Riemann function R at xo is 

2 
h R ( x 0 ) -  r (x0) '  

and its spectrum of singularities is given by 

d(et) = I ot for ot ~ [O, 1], 
/ - - ~  elsewhere. 
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F I G U R E  1. R i e m a n n ' s  i n t e g r a b l e  f u n c t i o n  R .  

Note that this H61der exponent is strikingly similar to the H61der exponent of another function 
attributed to Riemann: 

1 2 
~(x )  = ~ ~ sin(:rn x). 

Indeed, let 

r'(xo) = lim sup rn, 
nEB 

where B is the set of integers n such that pn and qn are not both odd. The H61der exponent of 7~ is 

1 1 
h~(xo) = ~ + 2r'(x0------'-S 

(see [4]). R is also a multifractal function with spectrum of singularities 

d~(~)  = 3 (5) 
0 if a = - 

2 '  
- c ~  elsewhere. 

It would certainly be interesting to determine if there is a deeper relationship between these 
two functions. 

We quote from [9]: the function R "is exactly what Paul L6vy called a compensated jump 
function: all jumps are negative and their sum is infinite but the continuous parts of (nx) provide a 
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shift such that the series converges. Paul L6vy considerd the simpler function 

'~(2nx) 
£(x)  = 2n 

n=0 

as an illustration of what occurs frequently in the theory of stochastic processes with independant 
increments" 

We will study the pointwise regularity of L6vy's function £ and prove in §5 that it is another 
example of a multifractal function. Can we infer from L6vy's intuition that there are natural examples 
of stochastic processes with independant increments that are multifractal? It is actually the case for 
l.Avy processes; see [6]. Note also that in [5] we prove that the simplest model of (random) lacunary 
wavelet series yields almost surely multifractal functions. 

In a note to Compte Rendu [8] published in 1881, Jordan introduced the notion of bounded 
variation and proposed the following example of a function of bounded variation, which is nonetheless 
discontinuous on a dense set. 

Let ap(m, n) > 0 (m, n 6 Z) such that ~ ~p(m, n) < c~; Jordan's example is 

= ~ lp(m, J ( x )  n). 
<x 

In [9], Kahane remarks that Jordan could have used the following (slight) modification of R 
as well 

oo (nx) K "  
K ( x )  

/ - . ,  n 3 • 
n = l  

Indeed, this example of Kahane fulfills Jordan's purpose as well, for the following reason. Let us 
compute the amplitude of the jump of J at (2k + 1)/2n (2k + 1 and 2n having no common factor). 
All the functions (mx) that have a jump at (2k + l) /2n satisfy 

1 
l + ~  2 k + l  

3l c Z  - -  - 
m 2n ' 

so m = An and 2l q- 1 = A(2k  + 1). The possible values of A are exactly the odd integers, so the 
total jump at (2k + 1)/2n is 

1 _ 1 ~ 1 1 7((3)  x7 TM 

z..., (An)3 n 3 z.-, (2p + 1) 3 n 3 8 
A odd p=0 

K can almost be considered as a particular case of the example proposed by Jordan using 

~ ( m , n )  = ~-~ i fm is odd,  

0 otherwise. 

K is the sum of this function composed of pure jumps and a linear compensation term. 
The study of Kahane's example is quite similar to that of Riemann, and K is another example 

of a multifractal function. We will prove the following theorem in §3. 

T h e o r e m  2. 

The H61der exponent o f  Kahane' s example K at xo is 

3 
hx(xo)  -- 

r(x0) 
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except when xo is a rational with an odd denominator, in which case 

h x (xo) = 3. 

The spectrum of  singularities o f  K is given by 

2~ 
T if 

dr  (or) = 
0 i f  c t = 3 ,  

- o o  elsewhere. 

(6) 

The only qualitative difference from R is the regularity at rationals with an odd denominator. 
(Note that the resemblance to 7Z is even more striking here.) 

One can see Kahane's example as a modification of  Riemann's function R. But an important 
property that is not shared with Riemann's function is that it is the primitive of  a singular measure 
(up to a linear term). Indeed, the derivative of Kahane's example is 

7t "2 ~ 7((3) 
m x 

6 z..., 8n 3 -~--" 
2k+l/x2n=l 

We can thus reinterpret Theorem 2 as follows. The measure 

2k+l/x2n=l 

is a multifractal positive measure whose spectrum is given by (6). We will explain this assertion. 
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FIGURE 2. Kahane's example K. 
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The Htlder exponent of a measure/x at x0 is defined by 

h~,(xo) = sup{• : 3C > 0; ¥E < 1 /z([x0 - E, x0 + e]) _< CE~}. (8) 

The spectrum of singularities of/z is then defined as in (3). If f is the primitive of the measure/z, 

/z([x0 - E, xo + ~]) = f (xo + ~) - f(xo - ~) 

and the exponents of/z and f at x0 are the same as long as one can choose P(x - xo) = f(xo) in 
(2).This is always the case if 0 < h(xo) < 1. If 1 < h(xo) < 2, the two exponents will coincide 
for an important class of functions: purely singular increasing functions (as called by Lebesgue and 
later by Salem). By definition, these functions are differentiable almost everywhere with a vanishing 
derivative at every point of differentiablility. (Actually, these authors require f to be continuous; we 
do not make this asumption here.) The Devil's staircase is an example of a purely singular increasing 

~2x - J (x ) is another example. function. We will see that T 
Properties of such functions, or equivalently of their derivatives, have been extensively studied 

by many authors, starting with Jordan and Lebesgue and including Denjoy, Rajchman, and Salem. 
These authors often considered examples of specific functions, many of which we can now interpret 
as multifractal functions. We will examine some of them. 

Let us try to differentiate Riemann's function R. If we are not careful, we obtain the difference 
between an infinite linear function (~'-~ ¼)x and an infinite measure 

n~_~_. (9) 
2k+lA2n=l 

Of course, this calculation should be given credibility by differentiating R in the sense of 
distributions. Thus, if lp is a C ~,  one-periodic function, we obtain 

(1) )/ 
(R'l~r)= lim [ ~ q ~ ( x ) d x -  ~ ~_~_ ~p (10) 

N---~oo J n=l ~ 2k+lA2n=l " 

The limits of the two terms usually do not exist independently, except if f ~ = o. Thus (9) 
makes sense when integrated against functions with a vanishing integral and we can interpret (10) as 
the correct way to renormalize the infinite measure (9) by substracting the correct floating constant. 

We will study measures (finite or infinite) similar to (9) in §4. We can actually slightly simplify 
the model given by (9) or by/zK without changing the specific properties of these measures as follows. 
Consider the expressions 

/ ~ =  ~ n ~ " ;  (11) 
mAn-----I 

these are real measures if/~ > 2, but they need to be renormalized if~ < 2. We will explain how one 
can define a Htlder exponent for the measure/x~ when 1 </~ < 2. When using this generalization, 
all measures/z# will be multifractal (1 </~ < ~ ) .  

Theorem 3. 
If ~ > 2, the spectrum of singularities of(11) is 

dg(ot)= - ~  for ere O, , 

- c ~  elsewhere. 
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FIGURE 3. Rajchman's function. 

I f  1 < ~ < 2, the spectrum o f  singularities o f ( 1 1 )  satisfies 

d~(a)  = 

2 o /  

7 
- - ( : X )  

f o r  t~ ~ [O, fl - 1), 

f o r  c~ > --. 
2 

Note that, in the case fl = 3, (11) is the derivative of 

Ra(x)  = 
E ( n x )  

n 3 
n = l  

(up to the numerical factor ((3)). This function appears in a paper of Rajchman [ 13], where he studied 
purely singular increasing functions and proved that a convergent series of such functions is still 
purely singular. As an example he considers Ra and thus obtains directly that it is almost everywhere 
differentiable. The proof of Theorem 3 will actually yield a more precise result: Rajchman's function 
R~ is differentiable except on a set of Hausdorff dimension 2/3. 

Other functions that have been introduced in the past as examples or counterexamples of 
functions with unexpected properties turn out to be multifractal, for example, Polya's "triangle- 
filling" function, studied by B. Mandelbrot and the author in [7] and de Rham's function, studied by 
Y. Meyer in [ 12]. 

The motivation to consider multifractal functions came from physical problems [2, 11]. Within 
mathematics, it leads one to reconsider the historical examples we have mentioned with a new eye; 
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and by extending our understanding of  these functions, we are able to perceive similarities and 
recurrent structures in what was before a collection of  unrelated curiosities. 

2. The lntegrable Riemann Function 

2.1. U p p e r  B o u n d s  o f  the  H i i i de r  E x p o n e n t  

We start with an easy lemma that yields an upper bound for the H61der exponent o f  any function 
having a dense set of singularities. 

L e m m a  1. 
Let f be a function discontinuous on a dense set o f  points; xo E ~; and rn be a sequence 

converging to xo such that, at each point rn, f has right and left limits; denote by sn the jump o f  f 
at rn. Then 

log sn 
hf(xo)  < l iminf 

log I rn - x01" 

P r o o f .  Let P be a polynomial; since 

I ( f  (r+~ ) - e(r~ - xo)) - ( f  (r~) - P(r~ - xo))l = sn, 

there exists r~ arbitrarily close to r~ such that 

Sn 
If(r~') - P(r" - x 0 ) l  > - -  

- 2  

and [r" - xot > ½[rn - xo[. We choose h = Ir' n - x0[ and deduce Lemma 1. [ ]  

We will now apply this lemma to Riemann's function R. Since R has discontinuities at the 
rationals p / 2 q ,  we expect R to be irregular at points well-approximated by these rationals and to 
be smooth at points badly approximated. (Actually we used this property of  bad approximation to 
prove regularity at rationals with an odd denominator.) The Hrlder regularity of  F at a point x0 will 
thus depend on properties of  diophantine approximation of  x0. 

Propos i t i on  1. 
Let xo be an irrational number; then 

2 
hR(XO) ~ 

r(x0) 

(in particular, f o r  any x, 0 < h(x)  < 1). 

P r o o f .  First we consider the case where A is infinite. Let n E A; 

\ qn / -~n -- 8q 2" 

Since Ix0 - ~1 = 1/q~", Lemma 1 implies that 

h(xo) < l i m i n f 2  _ 2 
r. r(x0)" 

Suppose now that q~ is odd for all n > N. In that case we consider 

Pn + Pn+l 
r ~ - -  

q~ + q~+l " 
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Since Pnqn+l - qnPn+l 
denominator. The jump of  R at r. is 

= ( - 1 )  ~+l, this fraction is under irreducible form; thus it has an even 

7l .2  1 

8(qn + qn+l) 2 -- 4q2+1 " 

On the other hand, 

Ixo - rn I = I(Pn - xoq.) + (P.+I - x0q~+x)l; 

[] 

I 

qn+qn+l  

bu t lp .  - xoq. i 5 1/q.+l,  so 

Ix0 - r.I ~ - -  + ~ 2 " 
qn+l qn+l qn+2 qn+l 

Using Lemma 1, we obtain hR(xo) 5 1, hence Proposition 1 in this case. 

(12) 

(13) 

2.2. An Estimate of the H/Jlder Exponent 

In this section, we show how the determination of the H61der exponent at irrationals can be 
reduced to a problem of Diophantine approximation that we will solve in the following section. 
Since hR < 1, we have to estimate R(xo + h) - R(xo). Suppose that h > 0 and let N = [1 /hi ;  

o~ (nx) C 
Z - - < - - < C h ,  n 2 -- N - 

n = N + l  

SO 

N (n(xo + h)) (nxo) 
R(xo + h) - R(xo) = n2 + O(h) 

n-----] 

(and the term O(h) can be neglected since the H61der exponent of  R is at most 1). 
Let E(x0, h) be the set of  rationals r = p / q  such that 

q is even, 

r ~ [x0, xo + h], (14) 

Each function (nx) is linear on [xo, x0 + hi, with perhaps one jump (at most) of  amplitude rZ /8q  z 
i f r  ~ E(x0, h). Thus 

f - ~ n h  yr 2 1 rc 2 1 
R ( x o + h ) - R ( x o ) =  n=l n2 8 rEE(xo,h)Z ~-~ + O(h) = ----8 rEE(xo,h)Z ~-~ + O ( h l o g h ) .  

The determination of  the H61der exponent of  R at xo is thus reduced to the estimation of  

(15) 

Z ~ "  (16) 
rEE(xo,h) 

We separate two contributions in this sum. The first one comes from the rationals that are convergents 
of  x0, and the second one from the other rationals. 

Let us first compute the contribution of the convergents. Since the qn grow at least geometri- 
cally, the order of  magnitude of  the sum is given by its first term; so, if h = Ix0 - ~1, 

h2/~. 1 Z -~  C = ~ < < - -  = Ch 2/~" (17) 
q2 - - q2 

rEE(xo,h) ~ 
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(where the sum in the middle is restricted to convergents). And the estimate 

1 
Z "q'~ <-Ch2/~" 

r~E(xo,h) 

afortiori holds if 

x0 x0 p.-,[I _ P n  < h <  
qn-1 

We denote by E'(xo, h) the subset of E(xo, h) composed of rationals that are not convergents. 
If p/q is not a convergent, 

qP-- xo 1 > 
- 2q2- 

Furthermore, if p/q ~ E'(xo, h), then q _> 1 /~ /~ .  Thus the denominators of the rationals of 
E' (xo, h) satisfy 

1 1 - - < q <  

In order to estimate Y']r~e'(xo h) ~ ,  we take a large integer m and split the interval [1/2, 1] of the 
exponents of h into m subinte'rv~s 

/k = [Zk, Yk+l)  = "[- 2"" ~ , ~ "[- • 

The following proposition will be proved in the following section. 

Proposition 2. 
Denote by E(m, k) the set of rationals r E E'(x0, h) such that 

I 1 
- -  < < - -  ( 1 8 )  
hY~ - q - ha . , "  

The number N ( h, k) of elements of E (m, k) is bounded by 

1 hl_2yk+,.  
1 

2 - -  - -  
Yk+l 

Using Proposition 2, ~r~e(,~,k) ~ is bounded by 

2 2 _ _  h2yk+l--2Yk+l < 
1 -- 1 

2 - ~  2 - - -  
Yk+l Yk+l 

and the following bound holds: 

1 I I 
Z q'-~ < C(m)h -~. 

rEE(m,k) 

Using this bound, we deduce that 

1 1 ' 
Z -~ <- C(m)h -~ 

rEE'(xo,h) 

_ _  h l - l / m  
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for all integers m, so 

1 
q-~ = O(h l-E) V~ > 0. 

rEE'(xo,h) 

This estimate, together with (18), proves the first part of Theorem 1 (the proof is exactly the 
same if h < 0). In order to determine the number of rationals satisfying (18), we need to make an 
excursion into diophantine approximation. 

2.3. Some Diophantine Approximation 

The results we use in this section can all be found in Serge Lang's book [10]. Let x0 be an 
irrational number and g an increasing function, larger than 1. 

D e f i n i t i o n  1. The number x0 is said to be of type less than g if for any B large enough, 
there exists a solution of the system 

D I 
X 0 - q  < q-~ (19) 

B 
< q < B (20) g(8) - 

(p and q having no common factor). [ ]  

First note that the convergents e_Zqn satisfy (19). If B = qn+l, then (20) holds if ~ _< qn and, 

hence, ifg(qn+l) > :q~-~. But 
- -  qn 

Pnqn Pn+l] < 2 q n + l  XO-- P~ , 

1 rn-- 1.  which Can also be written 1 < 2/q~ n or qn+l > ~q~ , thus 
qnqn+l ~ 

g(q~+l) > 2(q~+l) (r'-2)/(*'-l). (21) 

If we choose g increasing and satisfying (21), afortiori, 

g(B)  > 2B (rn-2)/(*:l) 

if B ~ (qn, qn+l]. Thus, the following corollary holds. 

Corol lary  1. 
r 1-2 

Let r '  > r(xo); the number xo is o f  type less than t ;r:;-~ . 

Let ~p(t) be a positive decreasing function such that 

Let 

oo 

~p(q) = +oo. 
q = l  

f l  ° 
O(N) = ~ ( t )  dt,  

and ;~(N) be the number of solutions of the inequalities 

P ~P(q) 
O < x o - -  < ~ ,  l < q < N .  

q q 

Finally, let w(t)  = t~t(t). The following result holds [10, Theorem 8]. 
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Theorem 4. 
Let xo be an irrational of type less than g. I f  w satisfies the three foUowing properties: 

• g = o (~o )  

• oa is increasing and tends to q - ~  

• Vcw'-~g(t)/t is decreasing for t large enough. 

Then 

)~(N) = O(N) + o(O(N)). 

Recall that we want to estimate the number N(h, k) of rationals r = p /q  satisfying 

1 1 
r 6 Ix0, xo + hi and h---~-k -< q < hYk+~ " 

These two conditions imply that 

so N(h, k) is bounded by 

I_.L_. 

0 < x0 - p < , (22) 
q 

)-k+l , (23) 

where ).k+l (N) is the counting function associated with 

¢k+l (q) = q 

First, when r(x0) > 2, we will estimate )~k+l(N) using a function g of  the form g(t) = t ~. 
Let us check the hypotheses of  Theorem 4. First t'k+l 6 (1/2, 1], so ~p is positive decreasing 

2 _ J -  
and satisfies ~ ap(q) = +c~.  Since w(t)  = t ,k+l, the hypotheses of  Theorem 4 will be satisfied if 

1 1 
/ 3 > 0 ,  2 - ~  > /~ ,  2 - - - > 0 ,  

Yk+l Yk+l 
(24) 1( 1 ) r(xo)- 2 

2 - +13 - 1 < 0 ,  f i <  
Y/+l - r(x0) - 1 

Since 1/2 < Yi+l < 1, we can choose any fl satisfying 

i n f ( r ( x ° )  - 2 , 2 _  1 ) 
0 < fl < k.r(x0) - 1 gk+t 

(as long as r(xo) > 2). 
1 2 _1 

Thus Lk+l (N)  "- 2- l/~a÷j) N '*+t ; so, using Theorem 4, ~-k+l (hY~,,) is bounded by 

2 ( 1 ) 2 n ~ ,  2 h,_2r,+ ' 
I ~ - 1 " 

2 - ~  2 - ~  
Yk+l Yk+l 

Hence, Proposition 2 follows in this case. 
If  r (xo) = 2, we take for g an increasing function satisfying 

g(q,+l) > qn+_.____~l., 

qn 
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g increases slower than any positive power of  t, so the hypotheses of  Theorem 4 still hold and 
Proposition 2 holds in this case. 

2.4. The Spectrum of Singularities of  R 

Let H~ be the set of  all real numbers p such that 

p c 
3 C > 0 ,  _ P ~  < i  

- q~ 

for an infinity of  values of  n such that qn is even (and if  there is only a finite number of values of  n 
such that qn is even, we decide that p 6 H2). Let us prove that the ~2/~ Hausdorff measure of  H~ 
is positive. 

First, if r = 2, then H~ = ~ and the result holds. If  r > 2, one uses the following classical 
lemma. 

Lemma 2. 
l f  p and q have no common factor and if 

1 
Iqxo-  p[ < - - ,  

2q 

then p/q is a convergent of xo. 

Let F~ be the set of  all real numbers x0 such that 

P__L < __ 
3 C > 0 ,  x 0 -  q. _ q~ 

for an infinity of  values of  n such that p~ and qn are both odd. 
The ~2/~ Hausdorff measure of  F~ satisfies (see [4]) 

7-L2/r(Fr) > 0. 

But, i fxo e F~, xo/2 ~ Hr, then p./2q,  is an irreducible fraction, 

Pn < - - ,  
2qn - 2p~ 

and Lemma 2 implies that pn/q, is a convergent of  x0/2; thus 7-/2/~(H~) > 0. 
Consider the set 

H~ - U H~,. 

The 7-/2/~ measure of  U~,>~ H~, vanishes; since H~ has a 7-/2/~ measure positive, H~ - U~,>~ H~, 

has dimension 2 / r .  
If  x0 ~ H~ - U~,>~ H~,, since x0 ~ F~, the first part of  Theorem 1 implies that R is not 

smoother than z at x0 and, since x0 ¢ U~,>~ H~,, ~o is C~-'(xo) YE > 0; thus hR(xo) = 2_ and the 
T r 

dimension of  {x0 : hR(xo) = ~} is at least 2 / r .  

Suppose that hR(xo) = z Then R is C~-~(xo) YE > 0 and thus x0 ~ H~, Yr '  < r ;  thus 
3"  

I-I>T 

and the dimension of  {x0 : hR(xo) = 2} is bounded by 2 / r ,  hence the second part of  Theorem 1. 
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3. Jordan's Function 

The study of Jordan's function differs from the study of Riemann's integrable function only at 
rationals with an odd denominator, and we will detail that point. 

Recall that 

(nx)  
J ( x )  = 

n 3 

is continuous except at rationals p/2q, where J has right and left limits, the jump of J at such a 
point being 7~(3)/8q 3. Let r = p/(2q + 1) be a rational with an odd denominator. In order to 
bound the regularity of J at r, we use Lemma 1; since J has a discontinuity at a distance h = C/n 
of r, the jump being of C'/n 3, we obtain that the H~51der exponent of J at r is at most 3. In contrast 
with Riemann's function R, this upper bound will turn out to be the right exponent at these rationals. 
Indeed, using the same notation as in §2.2, 

tn / 
J ( 2 q ~ + h ) - J ( 2 - ~ - " f  = n = l  ~ + ~ ' ~  n ~ + n = N  - 

We split each term (n(~--~+~.. + h)) - (n ~+'T+l )) as a sum of a linear term nh and a certain number 
~(n) of jumps; thus (25) is the sum of two terms, the first one being 

. __ l  _ - g 

and the second one being 

~ ( n )  (26) 
n 3  • 

n=N 

Since (x) has discontinuities at (2k + 1)/2 (k ~ Z), t is a point where (n (2q+x-2- + t)) jumps if there 
exists k such that 

n + t  -- 2 ' 

hence 

1 
q - np + ~ + k(2q + 1) 

t =  
n(2q + 1) 

Suppose that h > 0. The numerator is always larger than 1/2; thus if 

1 
n < (=  A), 

2(2q + 1)h 

the function ( n ( ~ +  1 + t)) has no jump on [0, hi. 
I f  A < n < 3A, the only contributions to (26) come from the values of n satisfying 

q - n p ~ O  mod 2 q + l .  (27) 

There exists a unique solution of (27) between A and A + 2q; the other solutions form an arithmetic 
sequence of reason 2q + 1. The contribution of this whole sequence to (26) is thus between 

oo 1 ~ 1 

m=g~o (a + m(2q + 1)) 3 and m=0 (A + 2q + m(2q + 1)) 3, 
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FIGURE 4. Jordan's function near 1/3. 

and the value of these two sums is 

1 
2(2q + 1)A 2 + O 

If3a < n < 5A, the values o fn  satisfying 

q -np--= 1 mod2q + 1 

also contribute to (26). As above, this contribution amounts to 

1 ( ( 3 ~ )  
2(2q ÷ 1)(3A) 2 + O 

The same argument works for all possible values of q - np + 1/2, and finally (26) is equal to 

~ 1 + O ( 1  )jr2(2q+l)hZ+O(h3)" 
w 2(2q + 1)(2l + 1)2A 2 (2l '+-l)3A 3 4 
/=0  

We just proved the following proposition. 

Proposition 3. 
The HOlder exponent of J at --£- is 3, and the following expansion holds: 2q+l 

( P ) ( P ) 7r2 zr2(2q+l)h2+O(h3). J ~ + h  =J  ~ +--~h 4 

(28) 
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Suppose now that x0 is an irrational number. Proposition 1 becomes 

3 
h(xo) <_ - -  

r(x0) 

The H61der exponents at irrationals are thus between 0 and 3/2. 
Since 

c¢ (nx) C 
E < < Ch 2, 

n 3 -- " ~  -- 
N+I 

it follows that 

and (15) becomes 

N 
J(xo + h) - J(xo) = Z (n(xo + h)) - (nxo) 

n 3 
n=l  

q- O(h 2) 

(29) 

N 71.2 nh 7((3) E 1 7((3) 1 
J(xo + h) - J(xo) = n=tZ n 3 T reE(xo,h) q'~ + O(h2) = --h6 - - - 8  reE(xo,h)Z q3-- + O(h2)" 

The contributions of the convergents to 

rEE(xo.h) ~ 

are bounded by Ch 3/~" ; using the same method as in §2.2, the contribution to (30) of the rationals 
satisfying (22) is bounded by 

Ch3yk < ChYk + -~.  

Since yk > I/2,  

1 3 I 
Z - - < C h ~  

r~E(m,h) q3 -- 

We deduce Theorem 2 as in the case of Riemann's function. 
Note that the derivative of J (x) - ~ x  vanishes at the points where it exists, so it is a n  example 

of increasing singular function. However, the term in h 2 in the Taylor expansion of J at rationals 
with an odd denominator does not vanish, so the the spectrum of the singular measure/zr  differs 
slightly from the spectrum of K: they are the same except that the value d(3) = 0 in the spectrum 
of K is replaced for /xr  by d(2) = 0. 

4 .  F r o m  R a j c h m a n  F u n c t i o n  t o  R e n o r m a l i z e d  M e a s u r e s  

We now consider the Rajchman function Ra, its derivative, the measure ((3) E p A q = l  --~P/q' 
and more generally the distributions 

1 
],Zfl = Z "~3P/q" 

pAq=l 

The study of the pointwise regularity of Ra is very similar to the study of Jordan's function. 
The exception is that, here, we do not have to make a specific study at rationals. The reader will 
easily check that Theorem 2 must be reformulated as follows. 
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If  x0 is an irrational number, let 

r"(x0) = lim sup rn; 
?l -"~ OO 

the H61der exponent of Rajchman's  function R~ at x0 is 

3 
hRo (XO) = 

r"(x0) 
More generally, if 13 > 2, the same analysis as above yields the exponent 

/~ (31) hu~(xo) = z"(xo)" 

Using Lemma I, (31) is also an upper bound for the H61der exponent of  the primitive f~ of/z~,  so 
the H61der exponents of  f~ and/zt~ coincide everywhere. 

The spectrum of singularities of/z~ is calculated using the following remark Let E~ be the 
set of  all real numbers x0 such that 

x0 ~ C 3 C > 0  - - P n  < - -  - q~ 

for an infinity of  values of n .  The 7-/2/3 Hausdorff measure of  H~ satisfies 

~ 2 / r ( H ~ )  > 0 

(see [1] or [4]). The spectrum of singularities of  ~z~ is thus obtained exactly as in the case of  
Riemann's function R: 

dua(a) = ~ f o r a  6 0, , 

- o o  elsewhere. 

We now consider the renormalized measures 
I 

Z "~6p/q when 1 < fl _< 2. 
pAq=l 

Recall that this must be understood as the distribution 

.---, 1 1 
N~ooqlim =1 ~ ~p/qll~r -- q#-l~ • (=  l im(SNl~)) (32) 

(if ~p is C °° and 1-periodic)• In order to be able to define an H61der exponent of  this distribution, we 
must check if we can take for ~ the characteristic function of an interval. If  ap = 1 [a.o], 

l (~q ~p/q[~) q-~-l f [b -a]q+r  [ b - a [ _  r q---~ - ~P -- q~ q~---------T q~ with r 6 { - 1 , 0 ,  1} (33) 

and the limit in (32) exists. We can now try to determine the order of  magnitude of (32) when 

"~ l[xo,xo+h]" 
Thus, we denote by A(xo, h) the limit of  (32) when ~ = llxo,xo+h I and define the H61der 

of the measure Y'~p^q=l q~P/q by exponent 

h~ (x0) = lim inf log lA (x0, h)l.- (34) 
[h [---~0 log thl 

Of course, this is the same as computing the H61der exponent of the function 

A(x) = lirn (SN[l[o,x]), 
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which is the "renormalized primitive" of/z~. Furthermore, it coincides with the usual definition of 
the H61der exponent of a measure when 13 > 2. Let us first show that A is continuous at irrationals 
and estimate its HOlder exponent. 

As usual, ~ denotes the convergents of x0, and we consider an increment 
qn 

h x0'  
qn" 

Note first from (33) that we deduce 

Z ~ ( ~  ) qph_~_l q--~ 1 ~ : i  h ' - I  ~p/qlltxo,.,,o+h ] -- <_ ~ < + O(1). (35) 
q>l/h q>_l/h 

Of course, 

y ~  h h ( ( 1 )  2-/~ ) h #-I 
q<l/h qfl-I - -  2 - / 3  + O(1) = 2 - / 3  + O(1). (36) 

We must still estimate 

• If q < qn, because of the best approximation properties of convergents, no Dirac mass 8p/q 
is supported in [x0, xo + h]. 

• The contribution of q = qn is 

1 hg/,,. (37) 

• I fq  > qn, we have 

1 1 
hi~2 < q < ~. 

As usual, we split the intervals [ 1/2, 1 ] of the exponents of 1 / h into arbitrarily small subinter- 
vals [Yk, ~/k+l ] and apply Proposition 2 to each of these subintervals. We obtain a contribution 
bounded by 

Ckhl-2yk+Jht~+~ < Ckh ~-1. 

We see that the contribution of the convergents dominates when 
/3 

- -  < / 3 - 1 ;  
~"(x0) 

in this case, the H61der exponent is/3/r.  (The estimation for values of h different from Ix0 - q~J = 

1/q~" is straightforward.) When _..L._ > 13 -- 1, we can only say that the H61der exponent is larger ~"(x0) -- 
than/3 - 1 (and smaller than/3/r"(xo)), hence Theorem 3. Note that the method we use cannot yield 
the spectrum between/3 - 1 and/3/2. 

Paul IMvy introduced 

5. L~vy's Function 

oo (2nx) 
£(x) = Z 2" 

n = 0  
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as an illustration of the type of discontinuities that a stochastic process with independent increments 
can have. L is clearly continuous at nondyadic points and discontinuous with right and left limits at 
dyadic points; at A = s, the jump of L is 2-". 

The regularity of L at a nondyadic point xo will clearly depend on the quality of approximation 
of xo by dyadics. Let us introduce the notation 

Proposition 4. 
The Holder exponent of L at xo is 

n 
h (xo) = lim inf 

log2 A, ( x )  ' 

and the spectrum of singularities of L is 

d ~ ( c r )  = a for CY E [0, 11. (39) 

Proof. Let xo be given. Since L has, at a distance of h = A, ( x )  from xo, a jump of size at 
least 2-", Lemma 1 implies that 

n 
ht(xo)  5 lim inf 

log2 A, ( x )  ' 
in particular, hc (xo) 5 I Vxo. 

Note that for h = A, ( x ) ,  

FIGURE 5. Ltvy's function. 
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(if n is the first index such that h = An(x)) and (40) is afortiori satisfied if h lies between two 
values An. 

We still have to calculate the dimension of the set of points where E has a given H61der 
exponent. 

I f~  > 1, let 

E~ = lim sup U [ k 2 - n  - 2 -n'~, k2 -n + 2-n~]. 
n - - + ~  k 

Clearly, dim E~ < I/R; the converse inequality is almost as easy. We pick a very lacunary sequence 
nm ( n m =  2 n'-~ , for instance), and we construct a probability measure/z supported by 

I f m  = 0, we put on each interval [k2 -n0 - 2 -n°~, k2 -n° - 2 -n°" ] the same mass 2 -n". Each 
of these intervals contains A(k, no) = 2.2-n°'~ (2n' + O(1)) intervals [12-"' - 2 -n'~, 12 -n' + 2-n"~]; 
on each of these intervals, we put the measure 2-n°/A(k ,  no). We iterate this construction and thus 
obtain at the limit a probability measure ~ supported by F~. One easily checks that Yx ~ F~ 

/z([x - h , x  + h i )  < ch l/¢t 

We use Proposition 4.9 of [1], which implies that 

Since F~ C E,~, 

7-q/~(F~) > 0. (41) 

1 
dim (E~) = - .  (42) 

Using (38), hc(xo) =/3  if and only if 

xo N e , , ,  - U e , : ,  

From (41) and (42) we deduce that the dimension of the set of points where hc(xo) = t3 is t3; hence 
Proposition 4 is proven. [ ]  

6 .  C o n c l u d i n g  R e m a r k s :  D i r e c t  M e t h o d s  v s .  W a v e l e t s  

L~vy's function can be seen as a modification of the Weierstrass function 

Z 2-" sin 2"x, 

where the sine function is replaced by (x). Let us compare the determination of the pointwise 
regularity of these two functions. As regards I.Avy's function, Lemma 1 immediately yields the right 
upper bound for the H61der exponent. As regards the Weierstrass function, the oscillations of the sine 
functions make it difficult to obtain upper bounds for the H61der exponent. Actually, Weierstrass, 
using only 'by hand' methods did not get optimal results; Hardy in 1916 had the idea of estimating 
a convolution product of the analyzed function with a well-localized function having one vanishing 
moment (the derivative of the Poisson kernel). This idea, which announces wavelet methods, yields 
optimal results (see [3, 4]). Up to now, wavelet methods were used to study multifractal functions (see 
[4, 5, 7] and references therein). However, wavelet methods cannot be applied to the functions we 
study in this paper, since these functions have a dense set of discontinuities; and all existing criteria 
on the wavelet transform that imply a pointwise H61der condition also imply that the function is 
continuous in a small neighborhod of the point that is considered. Thus no existing wavelet criterium 
could possibly give the pointwise regularity of functions that have a dense set of discontinuities. 
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Roughly speaking, if f is a series of piecewise linear functions, direct methods for estimating 
the modulus of continuity usually yield optimal results; and if f has a minimal regularity, one should 
probably use wavelet methods. 

Of course, particularly simple cases are the functions that belong to both of these categories. 
An example is the Takagi function 

~-~ [(2"x)l 
T(x) = 2 n (43) 

n=0 

(Note that I(x)l is the "hat function," which is the first function of the Schauder basis.) This func- 
tion was introduced by Takagi in [15] as a particularly simple example of a continuous nowhere 
differentiable function, and it was rediscoverd by de Rham later [14]. To study this (monofractal) 
function, we can either compute directly the increments of the function or notice that (43) yields 
immediately the expansion of T(x) in the Schauder basis and use a wavelet criterion. Both methods 
give hr(x)  = 1 everywhere. 

More interesting is the case of functions that belong to none of the categories we mentioned. 
Consider, for instance, 

~ ~b(2"x) 
~-(x) = 2-----T---, (44) 

n = l  

where ~b is one-periodic, discontinuous, piecewise smooth, but not piecewise linear; and suppose, for 
instance, that it is discontinuous at 1/2. None of the methods we considered applies. The situation 
is not desperate however, we can write ~ as a linear combination of the function (x) and a Lipschitz 
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function. The H61der exponent is thus the same as for L6vy's function. That is, the only problem 
might be at the points where both functions have the same exponent; but, in this case it is equal to 
1, so that the exponent of .T is larger than 1; and it is actually equal to 1 because of Lemma 1. We 
leave to the reader the amusing cases where the discontinuity of q~ is not at 1/2. 
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