Thermodynamics of Binary and Ternary Solutions
Containing One Interstitial Solute

JOHN CHIPMAN

The activity of a very dilute interstitial component is proportional to the ratio of filled to
unfilled interstitial sites. In a liquid solution in which solvent and solute atoms are
strongly bonded to form in effect molecules of a solute ABy, each solvent atom is regarded
as providing b sites for B atoms. The activity of the solute and other properties of the so-
lution are treated by the same equations as those describing the interstitial solution, Con-
centrations are stated in terms of the ratios y; = m/(nl + 1) where components 1 and 2 are
lattice atoms and ¢ represents any component. The activity coefficient of the interstitial
component is defined as ¥ = a3/2; where z; = v3/(1 — v5/b). Henry’s law for the solute at
great dilution is ¥; = constant. Examples are cited in which log ¥3 is a linear function of
¥z or in other cases of z;. A simple form of the Gibbs-Duhem relation for ternary solu-
tions is used to deduce the effects of an interstitial solute on the activities of the individual

lattice components.

CONSIDERABLE progress has been made in under-
standing the properties of interstitial solutions and
experimental data are accumulating rapidly on both
binary and ternary alloys. Recent years have brought
forth a number of studies of the behavior of nonmet-
allic solutes in binary liquid metallic solvents, aimed
principally at predicting the activity of the solute, for
example oxygen, in the mixture from a knowledge of
the three binary systems concerned, for example Fe-
O, Mn-0O, and Fe-Mn. The more limited purpose of
this paper is to examine the equations for activities
of the components in {nterstitial solutions and in liquid
metallic solutions in which the solute is strongly
bonded to the solvent metals., The latter include not
only nonmetallic solutes such as sulfur or oxygen in
iron or nitrogen in Fe-Cr alloys, but also certain in-
termetallic pairs which combine with large evolution
of heat, for example sodium in mercury or lead. It
will be of interest to see what can be learned about
such systems from thermodynamics without recourse
to quasichemical theory.

In expressing the thermodynamic properties of a
ternary solution in which component 3 is interstitial,
it is convenient to adopt as concentration variables
the atom ratios:

- mo_ ., _ N, _ "3

ylnﬂ1+7lfz,y2—n1+7bz’y3_n1+7bz [1]
Here y; and y. are the atom fractions in the base 1-2
binary and y; the ratio of interstitial to lattice atoms.
The variable y; is useful in moderately dilute solu-~
tions, for example where less than half of the inter-
stitial sites are occupied,

The Gibbs-Duhem equation may be written:

yldél + yngZ + ysdé_g =0 [2]

The molar value of G must be taken per mole of lattice
atoms, GZL rather than the more familiar GM per
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mole of solution, It may be noted that, where both
terms refer to the ternary solution:

6L =6Ma +y5) (3]
and, in terms of the relative partial molar properties,
GL = y151 + 3)252 + y353 [4]

Similar equations may be written for the enthalpy, ex-
cess free energy, and entropy.

Certain features of the use of the atom ratio, rather
than the atom fraction of the interstitial component,
lead to differences in the equations relating the partial
molar properties. Simple relations between the two
variables x; and y; for the interstitial solute include:
ys = %5/ (1 = %3); 2 = y3/(1 + v3); (1 — 2)(1 + 95) = 1;
dxs = dys/(1 + y5)*; dvs = dxs/(1 — x;)°. The general re-
lation which is the basis for the ‘‘tangent intercept’’
method for evaluating partial properties in a binary
solution may be applied to a quasibinary of constant
xz/ x; thus:

M
53 = GM + (1 —Xs) <£>
9 Xs xyxl
By means of Eq. [3] and the simple relations men-
tioned above, this becomes

53 = (E;g:l)y [6]

Equations for the partial molar properties of the sub-
stitutional components are more complex.

(5]

THE IDEAL DILUTE INTERSTITIAL SOLUTION

An ideal binary solution may be defined as one having
the following properties. The lattice atoms are ar-
ranged on a perfect lattice, The interstitial component
is randomly distributed on the available interstitial
sites. The partial molar energy and volume of the
components are independent of concentration, It has
been shown that in such a solution the activity of the
interstitial component is proportional to the ratio of
filled to unfilled interstitial sites. Thus, for an ideal
solution of hydrogen in a ‘‘good absorber’’ M at a
fixed temperature, Fowler and Guggenheim' derive

VOLUME 3, APRIL 1972-879



the expression, in which N is the number of atoms of
either kind and b is the number of interstitial sites
per lattice atom:

Ny
bNpr — Ng

A similar equation was derived by Gurney® for carbon
in fcc iron, Diinwald and Wagner® tested the equation
for carbon in austenite and cited earlier references to
its derivation. Their experimental results showed sub-
stantial deviations which they ascribed to a more rapid
decrease in the number of available sites than in the
denominator of the fraction [Ngc/(bNge — Nc)]. Such a
decrease has been the basis for the more recent
‘‘blocking models’’. Many of the equations which have
been derived by statistical thermodynamics for the
activity of carbon in iron reduce to this simple ratio
at infinite dilution, and most of the proposed models
are concerned with deviations from the ideal.

It is convenient to consider the thermodynamic
properties per mole of lattice atoms and for this pur-
pose the fraction of Eq. ['7] is multiplied by b to define
a “‘lattice ratio’’, which, for the solution 1-3 is:

= ay ¥ const (7]

— "3
Zs = m — ng b [8]
which ideally is proportional to the activity, a;. The
constant of proportionality includes b and a factor
which depends upon the standard state adopted. Thus
in an ideal interstitial solution:

_ _ _Fky
as—kas—l—_%g [9]

In a ternary solution containing two types of lattice
atoms, components 1 and 2, the usual condition for
ideality must be imposed on the lattice itself, and at
infinite dilution with respect to the third component,
a; = nl/ (7. + m). The interstitial component 3 behaves
in the same way as before, provided the number of in-
terstitial sites is unaltered, and, for a fixed atom
fraction in the binary lattice,

a3 = kzs = kmg/(m + m — ma/B) = kys/(1 = 35/b)  [10]

It is possible to visualize a partially ideal ternary so-
lution in which the interstitial component forms an
ideal solution in a nonideal lattice of fixed composition.
In such a case the relation between a; and 23 may be-
come a complex function of the lattice composition.
The use of z; as a concentration parameter and the
application of Eqs. [9] and [10] as limiting equations
in certain dilute liquid metallic solutions such as Fe-
8, Fe-Cr-C, and Hg-Na has been suggested.*”® These
are solutions in which the solute element is strongly
bonded to the solvent metallic element. This applica-
tion may be justified by the following argument. Con-
sider the solute B strongly bonded to the solvent A,
The AB bonds are very much stronger than the AA
bonds while at great dilution the BB bonds are unim-
portant, Belton and Tankins’ suggested the formation
of molecular species such as FeO, thus reviving the
molecular theory of solutes in a new form, More re-
cently Jacob and Jeffes® have proposed a model based
on the formation of possible species of the type of X;0.
Several were considered by Jacob and Alcock,’ who
discarded the concept of a constant coordination num-
ber for the atoms X, Y, and O and found most satis-
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factory results when O was assigned a coordination of
4. These authors have been interested in predicting
the activity of the solute in the mixed X-Y solution
from data on the X-O, Y-O, and X-Y solutions. The
present objective is the more limited one of corre-
lating activity and composition in a system which has
been studied experimentally.

All of these developments are based on the idea that
each solvent atom provides a number of sites for solute
atoms, and consequently the situation in this kind of
liquid solution is analogous to that in the solid inter-
stitial solution. Hoch'® has applied the statistical
mechanics of interstitial solutions to carbon and oxy-
gen in liquid iron and has concluded that the liquid has
the bee ferrite structure. A somewhat different view
has been developed' with the aid of equations of the
present paper.

For the kind of liquid solution in question, we may
say that each atom of solvent provides on the average
b interstitial sites. There is no geometrical guide to
the value of b and values that have been cited or im-
plied in the foregoing discussion are integers or frac-
tions not far from unity. If we have m moles of solvent
and #n; moles of solute, there are bw sites, of which n
are filled, The entropy of random mixing of #; filled
sites and bm — m vacant sites is

by — g

- TR - Mg
AS = B [(bm ng) In o

+mln 'I;'n—l] [11]
which by differentiation gives the partial molar config-
urational entropy of component 3

§SC = (a_s) = —R In —"m
n1 . bn1 3

25 s [12]

In the ideal case the partial heat of mixing is constant
and the partial molar free energy is

_ " [13]

G3=H§+RT1n bnl_ns

And the activity is

()
bn]_ -

which is identical with that of the ideal interstitial
solute, Eq. [7].

Eq. [9] or its equivalent Eq. [14] will be taken as
the limiting law at great dilution, the proper form of
Henry’s law for interstitial and strongly-bonded liquid
solutions, The corresponding form of Raoult’s law in
the binary solution 1-3 is found by integration of the
Gibbs-Duhem equation:

as = X const = kz; [14]

Y3
Ina, =~ [ ysdlnas=bln (1 - y,/b) [15]
0
These equations are applicable only at great dilution,
For finite concentrations deviations will occur, It is
to be expected that the deviations from a correct lim-
iting law will be simpler than the deviations from an
incorrect one.

The activity of an ideal interstitial solute, compo-
nent 3 in the binary 1-3 is shown in Fig. 1 as a function
of x; the atom fraction, y; the atom ratio, and z; the
lattice ratio. The value of b is taken as one. The rela-
tions in the ideal ternary 1-2-3 are illustrated in Fig.
2, where compositions are expressed in atom ratios
as defined in Eq. [1].
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Fig. 1—Activity of an ideal interstitial solute as a function of
its atom fraction x4, atom ratio ys, or lattice ratio z4.

DEVIATIONS FROM HENRY’S LAW

In the nonideal solution as # kzs, and the ratio as/zs
= ¥; approaches a constant limiting value ¥3 at infinite
dilution with respect to component 3 in an alloy of
fixed y.. In the binary interstitial solutions, as well as
in liquid solutions containing strongly-bonded solutes,
the deviations from the ideal of Eqs. [10] and [14] are
adequately representad by an empirical linear relation,
for example in the system 1-3:

In ¥, = as/z5 = In U5 + 659, [16]

where 0; is an interaction coefficient which is constant
at constant temperature, This is illustrated in the fol-
lowing examples. In the interstitial solution, austenite,
the activity of carbon has been measured by a number
of observers, the widest range of concentration being
that covered by Ban-ya, Elliott, and Chipman'® at
1150°C. Their results are shown in Fig. 3 in the form
of a plot of log K'(z) vs yc where K'(z) is the equilib-
rium value of pgg /(PCOZ -2¢) and log K’ = log ac/zc
+ constant. The linear relation fits the data within ex-
perimental errors and has the advantage that it is
readily interpreted in terms of some of the proposed
statistical models. Their equation describing the ac-
tivity coefficient is a simple one, graphite being the
standard state, and the temperature 1423 K:

log ¥ = log ac/2c = 0.685 + 2,76y, (17]

STANDARD STATE

If it be desired to employ the reference state of in-
finite dilution, the standard state then becomes a hypo-
thetical state in which z; = 1 and all other properties
of the solution correspond to infinite dilution, This is
a point at 2o =1 on the imaginary line a(x= 2. Fora
solution so dilute that Henry’s law is valid, the concen-
tration being z{, the activity referred to graphite is
ac=V¥gzE. The activity referred to infinite dilution
is ap = z§. The ratio of the two is a¢/a; = ¥&. Thus,
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Fig. 2—Activities in an ideal interstitial solution. The activity
of the interstitial component increases more rapidly than its
concentration.

log ac—1log a¢ =log ¥ and the standard free energy
of transfer between the two standard states is

G&(gr) — Gglint. dil.) = —RT In ¥ [18]

It is noted that this hypothetical standard state corre-
sponds to a filling ratio of 1/(b + 1) of the interstitial
sites or a ratio of filled to unfilled sites of l/b. By
reference to Eq. [17] the free energy change between
the two standard states is

C(gr} = Cly, inf. dil.);

AG 423 = 2.3RT <0,685 = 4460 cal [19]
and
log ag = 2.76y + log 2 [20]

LIQUID SOLUTIONS

An example of the use of z; in liquid solutions is
found in the work of Ban-ya and Chipman®® on activi-
ties in Fe-S solutions. They measured the equilibrium
ratio defined as K'(2) = py,s/(py, 25) which is obvi-
ously proportional to the activity coefficient ¥g. In the
absence of any geometrical criterion the value of b
was assumed to be one. The values of log K'(2) were
plotted against zg as shown in Fig. 4 and a straight line
relation was found, There is no theoretical reason for
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Fig. 3—Equilibrium ratio K'(z) = pdo/pco, - 2c 28 a function of
¥c in austenite (Ref. 12).
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Fig. 4—Equilibrium ratio K’ (z) = pﬁzs/sz- zc as a function of
zg in liquid iron (Ref. 13).

supposing that a plot of log ¥; vs z; should be more
nearly linear than a plot of log ¥; vs y;. In austenite,
the linearity of log ¥¢ vs yc appears in some of the
more acceptable statistical treatments (models II and
XI of Ref. 12) and its possible application to liquid so-
lutions needs further investigation. The simplicity of
the mathematical treatment presented here would tend
to encourage the use of y;. The following treatment is
based on the constancy of 8; in Eq. [16].

REAL TERNARY SOLUTIONS

In the ternary solution the values of ¥$ and of 6; are
functions of the base composition y,. They are desig-
nated [¥3],, and [6s]y, and the equation is

In ‘I,;123) = [ln ‘Ifg]yz + [93]y2 V3 [21]

The activities of components 1 and 2 in the binary so-
lutions 1-3 and 2-3 are found by substituting a; = ¥;2;
from Eq. [16] and integrating as in Eq. [15] to obtain

Ina*® = — %9&13’3% +blIn (1 - ys/b) [22]

and a corresponding equation for In ai?®.

In determining a: in the ternary solution, the inte-
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Fig. 5—Schematic representation of the activity coefficient of
a solute and its effect on the excess free energy of the solution.

gration of Eq. [15] has as its lower limit not pure 1,
but the binary 1-2 of composition v, in which the ideal
activity is y;. Hence, in the ideal ternary solution

Inaf® =1ny, + b1n (1 = 35/0) [23]

It is noted that for values of b not far from unity and

for the small values of y; encountered in most inter-

stitial solutions, the last term is approximately equal
to In (1 — v;). Now if we define the activity coefficient
as the ratio of the activity to its ideal value, we may

define ¥, as

¥, = a/y(l - y3/b)b ~ a/yi(1 = 93) [24]

and a corresponding definition for ¥,,
In terms of activities, Eq. [4] may be written

GL/RT =y, Ina, + 2 In @z + y5 In [25]

where @; is based on infinite dilution and is defined as
ai = (\113/\Il§)z3 and ¥; and ¥3 are for a specified value
of y.. The ideal free energy is:

G (id)/RT = 91 In [91(1 = 93)] + 32 In [32(1 — y)]
+ 33 1n 23 [26]

The excess free energy above that of an ideal ternary
in terms of the activity coefficients defined in Egs.
[16] and [24] is found by subtracting the above to give;

GE/RT = 31 In ¥, + 3, In ¥, + [y In ¥5/%5), [27]

The situation is illustrated in Fig. 5 where the up-
per portion A represents hypothetical determinations
of the activity coefficient of a solute at several concen-
trations in the binary solvent. The excess free energy
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of the solution is shown in the lower portion, B, One
would like to be able to compute the curves of B from
the data shown in A, but thermodynamics does not of-
fer a method for doing this. It is possible, however,
given the data of A and the curve for the excess free
energy of the binary, to calculate the corresponding
values for the ternary solution. This may not be done
by the simple addition of RT In \113/\If§ to the values for
the binary. The addition of component 3 alters the
values of ¥, and ¥, and, therefore, the construction of
the broken curves of B requires the application of
some form of ternary Gibbs-Duhem equation,

ACTIVITIES OF THE SOLVENT COMPONENTS

In his original treatment of the application of the
Gibbs-Duhem equation to ternary solutions, Darken™
showed that the thermodynamic properties of the sol-
vent components can be calculated from that of a third
component provided the latter is known at all composi-
tions of the ternary. This method obviously is not ap-
plicable in the present context since y; approaches in-
finity as x3 approaches unity. Darken showed further
that in the case of a dilute solution of the third compo-
nent the activities of the solvent components can be
estimated with a reasonable degree of certainty pro-
vided a mathematical model of the binary is available.
Several examples were cited and chemical intuition
was sustained. More recent attempts to apply regular
solution theory' or a quasichemical model*®’® or hid-
den assumptions of a model'” have yielded only quali-
fied success, but have not obtained quantitative con-
firmation. It would appear impossible to solve this
problem by thermodwnamics alone,

Wagner'® has discussed the applications of the Gibbs-
Duhem equation to ternary systems and has deduced a
number of useful equations which may be simplified
somewhat by using y; rather than x; and substituting
some of the relations mentioned above. It should be
remembered that Wagner’s third component (in our
sense) was numbered 2 and his binary, like Darken’s,
was system 1-3, Rewritten in our notation his Eq.
[1-72] becomes:

3G\ _ _ 3G3)_ (a G3>

(3_’)73) yz(ayz Vs 3y3
This and the corresponding equation for 9 Gz/ dy; are
regarded by Wagner as the most profitable forms for
a ternary system. The introduction of y;, however,
limits their use to compositions in which x; is sub-
stantially less than unity and the above equation cannot
be used for the full integration,

If the thermodynamic functions of the binary system
are known, the equation may be integrated with y; = 0
as the lower limit to find the effect of component 3 on
the partial molar properties of each of the other com-

ponents. In terms of excess properties, Wagner’s Eq.
[1-80] reduces to:

[28]

¥3
GF(yz, ys) = GF(yzy ys = 0) + {f
/

0

E
E _ 9G35
|:G3 Ve ‘a'y2 ]

X dys — ysc;“} (29]
Y2

The quantity in brackets may be evaluated as the or-
dinate intercept of the tangent lines for stated values
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of y; on a plot of G¥ vs ye at a particular value of y,.

On the other hand, if the activity coefficient ¥; hag
been expressed as an algebraic function of v, and Y3
an analytical solution may be obtained for the effect
of component 3 on the activities of the other compo-
nents. As an example, the recent data of Wada, Wada,
Elliott, and Chipman'® on the activity coefficient of
carbon in Fe-Ni alloys up to wy; = 0.25 at 1000°C are
expressed by the equation:

log ¥ =0.887 + 1.87yy; + 3.03y.

and log ¥ is the value of the above at ¥o =0, Eq.
[29] is rearranged and applied to the activity coeffi-
cient ¥ /¥¢ and is then solved for the increment

6 log \I’Fe

[30]

log ¥re(ynivc) —log ¥pe(yni dc = 0) = 6 log ¥

fyc log X 2 log ‘I’c/‘I’?::ld Log
= O _— - 3 —————— -_— _c
J e g N 3 yNi e T e 108 gy Vi

(31]

According to Eq. [30] the value of log ¥ /¥ is inde-
pendent of yy; and is equal to 3.03yc . Substitution in
Eq. [31] gives

Yc
6log ¥pe = [ 3.03yc dyc— 3.08y% = —1.515% [32]
o]

Thus, the effect of carbon on the activity coefficient of
iron is independent of yy; up to yy; = 0.25. Because of
the decreased solubility of graphite the maximum effect
of carbon decreases sharply with increasing nickel con-
tent. In the binary Fe-C the solubility of graphite is

Yo = 0.0725 while at Yni = 0.25 it is reduced to Ye
=0.030, Maximum values for & log ¥, are respec-
tively —0.0080 and —0.0014, It is to be remembered that
these are only the incremental effects of carbon, to
which must be added the value of ¥, for the activity
coefficient in the Fe-Ni binary.

Schuhmann’s® method of integration is especially
designed for use with triangular coordinates and is not
readily applicable to the kinds of systems considered
here, An alternative method which, like Schuhmann’s,
utilizes isoactivity lines and is applicable to systems
such as a gas in a metal pair or carbon in a binary
iron alloy is developed as follows, For simplicity the
equations will apply to a solution in which 6 =1,

_ Eq. [4] is differentiated with respect to vy, keeping
Gs constant,

aGL (851) - (3(—;2) —
= -Gy + _ + G
(33’2 )53 Moy /g LT ey /g T

3

G [33]

Eq. [2] is divided by dy: again keeping Gs constant

F 51) 3 52) _
+ _ =0 34
yl(ayz G, Yz 83:/5, (34]
Subtracting the above
aG L = _ = . ays)
=G:—G +G - 35
( ayz)@ -G G(22), [35]

which is combined with Eq. [4] and rearranged to give
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9z [36]
Now if the value of (GL — 93G3) for a specific constant
value of the chemical potential G; of component 3 is
plotted against y; and a tangent is drawn at any value
of yz, the intercept at y. =1 is G: and the intercept at
yl = 1 is Gl.

In order to calculate the activities of components 1
and 2 by means of Eq, [36], it is necessary to know the
free energy of the whole solution, Gl containing 1
mole of the lattlce elements and y; moles of the inter-
stitial. If GM , the molar free energy, is known for all
compositions of the base-binary 1-2, the value of GL
for any quasibinary of fixed y. is by Eq (6]

_ _ L _ .,
&= 6L 3o + (2_(_G_Lcl>_63

Y3

GL=cM+ f (Gs 3s)y, [37]
o

Since G; is a function of ys the integral of Eq. [37) may
be replaced by [y:Gs — [7(ys dGs)y,]. This is substi-
tuted in Eq. [36] to yield Eq. [38] which applies to a
series of values of ys: )

Y3 Y3
G2 = GM - f(yaac)yz+y1 [GM f (ysaGs)yz}

[38]

This equation is based on thermodynamics alone and
may be solved when sufficient data are available without
recourse to models or empirical equations. However,
sufficient data are rarely available and empirical equa-
tions may be very helpful.

It will be convenient to divide Eq. [38] by 2.3RT and
to introduce the defined term E which can be evaluated
for each specific value of y,:

E=GM/23RT - Ofya (vs 8 10g as)y, (39]
This procedure gives the useful results:

log ag—E+y1(Zf) [40]
Similarly

tog e = .+ 32(53;) fa1)

If information on the base-binary is lacking, Egs.
[40] and [41] give us only the increment in log a; or
log a; due to the presence of component 3. This incre-
ment is designated 6 log a; or 0 log a,. Since the value
of GM is unknown and we are concerned only with in-
cremental values in log a: or log a;, we simply let M
equal to O for all values of y,. Then, if E is to be used
only in an incremental calculation, we may call it Ey
and write

V3

Es = —Of (vs 8 log as)y, [42]

This is to be evaluated from experimental data on a; at
various values of y.. The activity a; is replaced by
W3z3.

We now introduce the empirical observation that
log ¥; is a linear function of y; for a fixed value of y,,
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Fig. 6—Determination of the effect of carbon on the individual
activities in liquid Fe-Cr solution at 1660°C.
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Table I. Effect of Graphite Saturation on the Activities of Iron and
Chromium at 1660°C

Yo 0 0.1 0.25 0.50 0.75 10
(extrap)  (extrap)

Y sat 0.275 0306 0.355 0.429 0.484

yZC 0.0756 0.094 0.126 0.184 0.234

0c/2.303 2.48 2.68 2.98 3.48 3.99

—%601/(2;/2.3 -0.094 -0.126  -0.188 -0.320 -0.467

log(1-yc) -0.140 -0.161 -0.191 -0.243  -0.287

Eg -0.234 ~-0.287 -0.379 -0.563 -0.754

élogag, -0.234 -0.232 -0.217 -0.17 -0.13 -0.1

S logacy, -0.75 -079 -0.87 -0.95 -0.97 -0.98

Eq. [21]. The integration follows the same course as
that used in obtaining Eq. [22] and the result is similar,
namely,

1
Ey = — H[ea]yz 93 + log (1 — y3) [43]
The increment in log @ attributable to the presence of

component 3 at the fixed activity a; is:

8 E
6 =E
log az = Es + 1 (a yz)a3 (44)

As an example, let it be required to find the effect
of graphite saturation in the liquid system Fe-Cr-C
on the activities of the two metallic components. The
activity of carbon has been determined by Richardson
and Dennis®* for a number of quasibinaries while
graphite solubilities are interpolated from Griffing,
Forgeng, and Healy.?® Their data, as analyzed by the
author,’ are shown in Table I along with the terms re-
quired for solution of Eq. [44]. A plot is shown in Fig,
6 with tangents drawn at the experimental composi-
tions. Their intercepts, tabulated as & log ap, and
0 log acyr, represent the effect of graphite saturation
on the activities of the two components,

Let it be understood that the methods here suggested
are not of broad general usefulness, but are speci-
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fically applicable to interstitial solutions and to cer-
tain liquid solutions which are found by experiment to
conform to Eq. [21].

ACKNOWLEDGMENTS

The author wishes to thank J, F. Elliott and L. S.
Darken for criticism of an early draft and R. Benz,
M. B. Bever, and G. C. Das for helpful comments on
the manuscript. This study was supported by the Army
Research Office, Durham, North Carolina, and by the
American Iron and Steel Institute.

REFERENCES

1. R. H. Fowler and E. A. Guggenheim: Statistical Thermodynamics, The Mac-
Millan Co., New York, 1939.

2. R W. Gurney: Introduction to Statistical Mechanics, Sec. 100 and 121, pp.
132 and 160, McGraw-Hill Book Co., New York, 1949.

3. H. Dunwald and C. Wagner Z Anorg. Allg. Chem., 1931, vol. 199, pp. 321-46.

4. J. Chupman: Trans. TMS-AIME, 1967, vol. 239, pp. 1332-36.

5.J F. Elhott and J Chipman. Composition Coordinates for the Actwities of
Solute Elements in Dilute Liquid Metallic Solutions, presented at the Int.

METALLURGICAL TRANSACTIONS

Symp. on Metallurgical Chemistry, Sheffield, England, July 14-16, 1971.
6. 3. Chipman: Int. Conf on the Science and Technology of Iron and Steel,
Tokyo, Japan, 1970.
7. G. R. Belton and E. S. Tankins: Trans. TMS-AIME, 1965, vol. 233, p. 1892,
8.K. T. Jacob and J. H. E. Jeffes: Trans. Inst. Min. Met. (London), 1971, vol. 80
pp. 000-00.
9.K. T. Jacob and C. B. Alcock: Acta Met., 1971.
10. M. Hoch: Trans. TMS-AIME, 1964, vol. 230, p. 138.
11. J. Chipman: Met. Trans., 1970, vol. 1, p. 2163.
12. 8. Ban-ya, J. F. Elliott, and J. Chipman: Trans. TMS-AIME, 1969, vol. 245, p.
1199; (b) Met. Trans., 1970, vol. 1, p. 1313.
13. 8. Ban-ya and J. Chipman: Trans. TMS-AIME, 1968, vol. 242, p. 940.
14. L. 8. Darken" J. Amer. Chem. Soc , 1950, vol. 72, pp. 2909-14.
15.C. B. Alcock and F. D. Richardson: Acta Met., 1958, vol 6, p 385.
16. C. B. Alcock and F. D. Richardson Acta Met., 1960, vol. 8, pp. 882-87.
17. K. W. Lange and H. Schenck: Mer. Trans., 1970, vol. 1, p. 2036.
18. C. Wagner: Thermodynamics of Alloys, Addison-Wesley Press, Inc., Cam-
bridge, Massachusetts, 1952, pp. 19-21.
19. T. Wada, H. Wada, J. F. Elliott, and J. Chipman: Mer. Trans, 1971, vol. 2, p.
2199.
20 R. Schuhmann, Jr.: Acta Met., 1955, vol. 3, pp. 219-26.
21. F. D. Richardson and W. E. Dennis: J. Iron and Steel Inst., 1953, vol. 175, pp.
257-63.
22.N. R. Griffing, W. D. Forgeng, and G. W. Healy: Trans. TMS-AIME, 1962, vol.
224, pp. 148-59.

s

VOLUME 3, APRIL 1972885



