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A study of the kinetics of pearlite spheroidization under static annealing conditions was carried out in 
two materials--AISI 1080 steel and pure Fe-C alloy. A stereological "shape factor", F, defined as 
F = SPv/3Km, was introduced for the kinetic study. The significance of this shape factor in relation 
to the geometrical characters of lamellar structures is discussed. For constant temperature a linear 
relation between F and the logarithm of time was obtained. Analysis of the time and temperature 
dependencies for a constant shape factor gave an activation energy of 70 kcal/mole for AISI 1080 
steel and 58 kcal/mole for Fe-C alloy which indicates that volume diffusion of Fe in ferrite is the 
rate-controlling mechanism. The modified fault migration theory, which was developed from the 
mechanism study of this research, was applied to predict the kinetics of the pearlite spheroidiza- 
tion. For both the AISI 1080 and the Fe-C alloy experimental results have a good match with the 
theoretical prediction. 

I. INTRODUCTION 

IN reviewing the literature it became apparent that the 
kinetics of pearlite spheroidization has been given less 
than adequate attention. Only a few studies have been re- 
ported.l 5 The difficulties arise from the complicated 
geometrical shapes involved during the process of spher- 
oidization and of finding a suitable parameter to represent 
the shape and shape change processes. Most of the previous 
studies on the kinetics of pearlite spheroidization were based 
on the classical theory of Greenwood, Lifshitz, and Wagner 
(the GLW theory) 6'7'8 where microstructural features are 
characterized by some "local descriptors" such as mean size, 
7, and size distribution, f ( r /7) ,  which represent features of 
individual parts of the microstructures. These approaches 
gave reasonable qualitative results but often failed quan- 
titatively. The failure may be attributed to the basic assump- 
tion of the GLW theory that the particles being measured are 
spherical or nearly spherical when they obviously are not in 
a lamellar structure. To overcome this difficulty, another 
parameter, the aspect ratio, has been suggested for the ki- 
netic study of spheroidization. 2'5 The aspect ratio is indeed 
a good criterion to characterize the lamellar structure, be- 
cause the main changes of the lamellar platelets during 
spheroidization are the reduction of their length and increase 
of their thickness which results in the decrease of the aspect 
ratio. However, in practice it is difficult to measure quan- 
titatively the aspect ratio, especially when the definition as 
well as the measurement of the aspect ratio become ambigu- 
ous with respect to irregular shapes. 

Due to the recent development of stereology, an alterna- 
tive approach for the kinetic study has been developed by 
adopting some 'global' parameters such as specific surface 
area, integral mean curvature, and average mean curvature 
to describe morphological changes. 9 The global parameters 
are utilized to express the characteristics of a microstructure 
as a 'whole, or average, in terms of their linear, areal, and 
volume elements regardless of the local geometrical com- 
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plexities. They are superior to the local parameters because 
they have more rigorous meaning for geometrical features 
without any assumption about particle size, shape, and size 
distribution, and they can be unambiguously measured by 
simple counting methods developed in quantitative micros- 
copy. Due to these advantages, some application of global 
parameters to the kinetic study of recrystallization, sinter- 
ing, and Ostwald coarsening have been developed, 1~ but 
their application in spheroidization studies has been scant. 

A quantitative study of the kinetics of pearlite spher- 
oidization utilizing the global parameters is presented in this 
second part of our research report. 13'~4 The measurements 
of these global parameters were accomplished by an auto- 
matic image analysis instrument and by a manual counting 
method. A more complex stereological parameter, called a 
"shape factor", is introduced. It is formed by a combination 
of several primary global parameters. The significance of 
this shape factor is discussed in terms of its relation to the 
geometrical features of lamellar structures during spher- 
oidization. Finally, a quantitative analysis for the theoretical 
prediction of the kinetics was performed which showed a 
good match with the experimental results. 

II. QUANTITATIVE 
MICROSCOPIC TECHNIQUES 

Table I gives a list of symbols and definitions of the basic 
stereological quantities used in the present study. 

Modern developments in quantitative microscopy by 
DeHoff, 15 Underwood, 16 and Weibe117 have shown that the 
global parameters Sv. My, and K,, can be easily measured by 
simple counting methods. The relevant formulae for the 
interrelations between the global parameters and counting 
quantities are listed below. 

V v  = AA = ev [1] 

Sv = 2NL [2] 

sf ,  = 2 N L / P p  ~ [3] 

My = 2 7 r N a  [4] 

g m = M v / S  V = 7 T N A / N  L. [5] 

In the present study, point counting and linear intercept 
counting were accomplished by both an automatic image 
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Table I. List of Basic Stereologicai Symbols and Definitions 

Symbol Definition 

p~, 
AA 
Vv 

N~ 
Na 
A2 
Sv 
s~ 

My 

Point fraction, number of points per test points 
Area fraction, area of features per unit test area 
Volume fraction, volume of features per unit test 

volume 
Number of features intersected per unit test line 
Number of features intersected per unit test area 
Mean intercept length of planar figures 
Specific surface area 
Specific surface area of components P, 

(s~ = sv/Vv) 
Integral mean curvature 
Average mean curvature 

analysis instrument and by manual counting methods, 
Specimens with coarse interlamellar spacing were measured 
by a computer assisted image analyzer, the Leitz T.A.S. For 
specimens with fine interlamellar spacing, a manual count- 
ing method was adopted because the resolution of the Leitz 
T.A.S. was limited by its image input dev ice - - an  optical 
microscope, 

High contrast and high polishing quality are required for 
the specimens in Leitz T.A.S. measurements. Specimens 
were first etched in a boiling alkaline sodium picrate solu- 
tion for 20 to 30 minutes (NaOH 25 mg, picric acid 2 mg, 
distilled water 100 ml). Cementite particles were stained to 
a dark black which appear in high contrast to the ferrite 
matrix. Measurements of point counting and intercept 
counting were performed by the computer via a predesigned 
program. About 60 fields were measured and the average 
value taken as representative of each specimen. 

Specimens for manual counting were etched in 2 pct nital 
for a couple of seconds. For specimens with relatively 
coarse interlamellar spacing, manual counting was carried 
out on the projection screen of an Olympus optical micro- 
scope, For those with very fine microstructure, measure- 
ments were done on photomicrographs taken on an ETEC 
scanning electron microscope. A special transparent count- 
ing grid, as shown in Figure 1, was overlaid on the screen 
or pictures to facilitate manual counting. The intercepts of 
the microstructural features with the test points or lines 
were manually counted. For those features which intersect 
the edges of the test area a rule for counting suggested 
by Gundersen TM and Weibel ~7 was followed to eliminate 
'edge effect ' .  The counting grid adopted here is the 
'isotropic currilinen test system' proposed by Mertz. ~9 The 
test lines are semicircles which overcome the difficulties 
caused by the anisotropy of lamellar structures. At least 20 
randomly selected fields were counted for each specimen 
and the average value taken as the final measurement of 
the specimen. 

III. STEREOLOGICAL MEASUREMENTS ON 
KINETICS OF PEARLITE SPHEROIDIZATION 

A. Principles for the Selection of a Stereological 
Shape Factor 

Since spheroidization of lamellar structures is a process of 
shape evolution of microstructures, the first step is to select 

! 

Fig. 1 -  Isotropic currilinen test system for manual counting.L7 

riO0 

suitable criteria to evaluate shape changes. However, the 
quantitative expression of the shapes of microstructural fea- 
tures turns out to be one of the most difficult subjects in 
quantitative stereology. Neither a general rule nor a univer- 
sally accepted criterion is available for quantitative shape 
evaluation. At the present stage of development of quan- 
titative microscopy, stereologists suggest using a parameter 
called a 'shape factor' for an approximate expression of the 
shape of the microstructural features. The shape factor is 
usually formed by a combination of several primary stereo- 
logical parameters such that it can quantitatively express the 
shape of the microstructural features. A variety of shape 
factors have been reported in the literature. The selection of 
an appropriate one depends on the system of microstructural 
features being studied and the purpose of the research. The 
general principles for selecting a suitable shape factor can 
be summarized as follows. The parameter should be (1) di- 
mensionless; that is, it should be purely shape dependent, 
which is to say unaffected by absolute volume fraction, 
particle size, or size distribution in the system; (2) sensitive 
to shape change, so that the parameter reflects clearly ob- 
servable shape changes; and (3) related to primary stereo- 
logical parameters which can be unambiguously measured 
by simple counting methods. 

Four classes of shape factors were summarized by Under- 
wood, 2~ one of which, the class 1, appears to be an 
appropriate one for our purpose. This shape factor was first 
developed by DeHoff, 2~- and later on Fishmeister 23'24 mod- 
ified it by changing the constant to make F = 1 for a 
spherical shape. The definition of the shape factor F given 
by Fishmeister is 

F = S~/3-Km = 2NL2/3~rVvNA. [6] 

Underwood 2~ and Gallo 25 also recommended it as a 
powerful criterion to express quantitatively the shape of 
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microstructural features. Unfortunately, no experimental 
measurements using this shape factor F in microstructure 
or morphology studies were found in the literature. Never- 
theless, this shape factor was adopted to express quan- 
titatively the shape changes of the lamellar structure in 
this study. 

B. Significance of Shape Factor F in Relation to the 
Geometrical Characteristics of Lamellar Structures 

The shape factor F adopted here satisfies conditions 1 and 
3 mentioned above because F is dimensionless and consists 
of primary stereological parameters. (But see Note Added in 
Proof.) To assess condition 2 expressions of F for three 
major geometrical features involved in spheroidization, i.e., 
spheres, platelets, and rods, are derived as follows: 

(1) Expression of F for a spherical shape 

(r is the radius of the sphere) 

S p = 3/r,  

Km = 1/r, 

F = Sv/3K,n = l [7] 

(2) Expression of F for single cylinder or platelet 

(r is the radius, x is the size, x = 2r, and A is the thickness. 
Note that A, the thickness, is not the same as A2, mean 
intercept length defined in Table I.) 

2(1 + A/r) 
S~- 

(a/r)r 

A + T r r  
K m = 2(1 + A/r)r 2' 

4(1 + A/r) 2 
F = [81 

3(A/r) (Air + 7r)" 

When r -> A, i.e., the platelet shape, 

4r 2x 
F . . . .  [91 

37rA 3rrA 

and when r < A, i,e., the cylindrical shape, 

4 
F = - ~  1.33. [10] 

3 

The relationship between the shape factor F and the as- 
pect ratio x/A is calculated from Eq. [8] and is plotted in 
Figure 2. It is noted that when x >> A, i.e., the platelet 
shape, the shape factor is linearly proportional to the aspect 
ratio x/A, which means that F is indeed sensitive to changes 
of platelet shape. Since the majority of the geometrical 
features of cementite during"the main process of spher- 
oidization are the platelets, it is reasonable to believe that 
the shape factor F introduced here is an appropriate crite- 
rion to characterize the shape change of lamellar structures 
during spheroidization. 

It is also seen from Figure 2 that the shape factor F 
becomes nearly constant at a value of 1.33 when x/A is less 
than 1, i.e., within the aspect ratio range of the cylindrical 
rods. This value is very close to that of the spherical shape 
(F = 1). Hence we know that F is not very sensitive to the 
shape change from a long cylinder to a short cylinder or 
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Fig .  2 - - T h e  r e l a t i onsh ip  b e t w e e n  F a n d  x / A  ca l cu l a t ed  f r o m  Eq.  [8].  

from a cylinder to a sphere. However, this insensitivity will 
have little influence on the quantitative evaluation of the 
shape change since the break-up of cylindrical shapes con- 
tributes only a small portion of the morphological change 
during the later stage spheroidization. 13 

The discussion above deals only with the expressions for 
a microstructure of monodispersed shape, i.e., only for a 
single particle in the shape of a platelet or cylinder. For a 
real pearlitic lamellar structure, which always consists of 
a dispersion of various cementite platelets, the situation 
becomes more complicated. An explicit expression, anal- 
ogous to Eq. [8], between the shape factor F and some 
geometrical parameters is difficult to derive since the distri- 
bution of the sizes and the aspect ratios of different lamellar 
platelets must be taken into account. To avoid this problem 
we introduce a special stereological formula given by 
DeHoff from his study of the stereological properties of 
platelet features: 26 

,.~.2 

~-2 - -  4 ~  m �9 [11] 

Since the mean intercept length in the plane of the platelets, 
A2, equals the average length of lamellar plates on a polished 
section, Y, we have: 

A2 = ~.  [12] 

For an ideal lamellar structure the specific surface area, 
Sv, is related to the thickness of the platelets, A, by 

Sv = 2Vv/A.  [13] 

Combining Eq. [6] with Eq. [11] to Eq. [13] yields 

8E 
F -  3,/7.2- X . [14] 

The shape factor of a single platelet (Eq. [9]) is similar to 
that for a lamellar structure (Eq. [14]) except for a differ- 
ence in the constants. From these formulae it is clear that the 
shape factor represents the average value of the aspect ratio 
of the platelets of the lamellar structure. 

C. Stereological Measurements of Shape Factor as a 
Function of Time and Temperature 

In the present study the shape factor F is used as a crite- 
rion to describe the kinetics of spheroidization. The global 

METALLURGICAL TRANSACTIONS A V O L U M E  18A, AUGUST 1 9 8 7 - -  1361 



parameters Sv and My were determined by intercept count- 
ing and loops counting based on Eq. [2] and Eq. [4], re- 
spectively. The stereological measurements of NL and NA 
were carried out by either manual or automatic computer 
assisted measurements. The average mean curvature K,, 
was determined by the ratio of Mv/Sv. The results of stereo- 
logical measurements for the time dependence of the shape 
factor F under different temperatures are plotted in Figure 3 
to Figure 6. It is seen from all of these figures that for a 
constant temperature, F is a linear function of logarithm of 
time. It can be written in general as 

F = a + b log(t).  [15] 

The solid lines through the experimental points were 
drawn by a computer program of least square regression. 
Qualitatively, the decrease of the shape factor F as time 
increases can be easily understood by its geometrical mean- 
ing in relation to the average aspect ratio ~/~-. It is known 
from the fault migration model that during spheroidization, 
the average length of the cementite platelet decreases while 
the thickness of the platelets increases. The overall average 
aspect ratio thus decreases and so does the shape factor F. 

It is interesting to note from Figure 5 and Figure 6 (Fe-C 
alloy) that at 700 ~ and at longer annealing times (t > 
300 hours), the F values deviate from the linear relation of 
Eq. [15] and tend to become constant, at a value approach- 
ing 1. Such a change in slope indicates (1) that the shape 
factor F is not sensitive to the shape change from cylinder 
to sphere (from F = 1.33 to F = 1.0); and (2) that most of 
the cementite particles are close to the final spherical shape. 
The value o f F  = 1 corresponds to the condition of the final 
equilibrium shape of all spheroids and no further shape 
evolution at all. 

The simple relationship between time and shape factor F 
shown in Eq. [15] indicates that the shape factor is a useful 
criterion to describe the kinetics of the shape change of the 
lamellar structures. It is conceivable, from the results 
presented in Figure 3 to Figure 6, that there is a general 
relationship among the shape factor, time, temperature, and 
interlamellar spacing for a given material. Attempts were 
made in this study to establish such a general relationship, 
but were not successful. 

Note Added in Proof 
A reviewer raised interesting questions about our treat- 

ment of the shape factor which we address here. 
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The basic global parameters such as Sv and My are funda- 
mental in that they are independent of the size and shape of 
microstructural features. In contrast the shape factors are, in 
general, size and shape dependent. For the purpose of quan- 
titatively evaluating a process whose essential feature is a 
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shape change (as is the case here), any single one of the 
global parameters is clearly inappropriate--because they 
are not shape dependent. Furthermore, the global parame- 
ters Sv and My would vary with sphere size in a completely 
spheroidized structure; that is, they would vary as Ostwald 
ripening occurred. 

We wanted a parameter that was dimensionless (not true 
of Sv and My, but true of our F) and that was dependent only 
on shape. As the reviewer pointed out, no parameter that 
satisfies the second criterion is known: the F factor we 
adopted depends on shape and size of the particles. Hence 
our use of F to characterize shape change is not a "pure" 
measure of shape change. 

However, the theory presented here shows that the dimen- 
sionless shape factor we adopted does approach a constant 
value (of 1) as spheroidization approaches completion and 
that it does not change with Ostwald ripening. Furthermore, 
our experimental evidence confirms that the theory is a 
metallurgically useful means for characterizing the spher- 
oidization process. In addition, the F factor we adopted has 
a visualizable geometric meaning: it is directly related to the 
average aspect ratio observed on a polished microspecimen, 
which is the usual metallurgical criterion for evaluating 
degree of spheroidization. 

The principal theoretical problem is establishing how 
much a size distribution affects the value of the shape factor. 
The mathematical treatment of this problem is very difficult. 
We circumvented this problem by introducing Eq. [ 11] and 
by noting that Eqs. [9] and [14] differ principally in the 
values of the constants. We conclude that the shape factor 
we adopted appears to be independent of the distribution of 
x/A-. However, as pointed out by the reviewer, the use- 
fulness of this approach might be limited. 

D. Significance of Shape Factor F in Relation to the 
Diffusion Rate Controlling Mechanism of Pearlite 
Spheroidization 

Holloman and Jaffe ~7 and Larson and Miller 28 investi- 
gated time and temperature effects on the properties of steel. 
They all made the basic assumption that the relation between 
time and temperature and the property they were measuring 
took the usual form of the diffusion equation; i.e., the prop- 
erty is a function of the parameter t[exp(-Q/RT)]:  

P = f ( t [ exp ( -O/RT)] )  [16] 

where P is some property of the material such as the hard- 
ness or strength. Q is assumed to be the activation energy 
for the rate controlling process. Since the property of a 
material is usually assumed to be related to the micro- 
structure, it is reasonable to assume that the shape factor, F, 
which represents the geometrical characters of the micro- 
structure, is also a function of the property, namely: 

F = f ' (P)  = f " ( t [ exp ( -Q/RT)] ) .  

For a constant F, it can be shown that 

_1 = A , , e x p ( - Q / R T )  or l o g t  = A '  + Q . 
t ' RT 

[17] 

This is a well-known general rate equation, where A'  is 
a constant. The computed results of log t vs 1/T for several 
values of F are plotted in Figure 7 to Figure 10. On these 
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Fig. 7 - - P l o t  of log t vs 1 /T  for coarse AISI 1080 steel 

figures the points are the calculated data and the solid lines 
through them are computed by a least square regression. It 
is obvious from these figures that the linear relation of the 
general rate equation, Eq. [17], is followed in all cases to a 
very good approximation. From the slopes an average value 
of the activation energy of the rate controlling mechanism 
Q can be evaluated. The computed values of Q and A '  
for different materials and different interlamellar spacing 
are listed in Table II. The error ranges were estimated by 
taking the maximum deviation of each slope from the 
average value. 

From these figures, it is found that the slopes for the 
same material are nearly constant regardless of differ- 
ent interlamellar spacings. This result is consistent with 
theory because the activation energy for diffusion depends 
only on the composition of the material, not on the inter- 
lamellar spacing. 

The activation energy calculated from the slopes for AISI 
1080 steel are about 70 Kcal/mole and for the Fe-C alloy 
about 58 Kcal/mole,  respectively. The difference in the 
activation energy between AISI 1080 steel and pure Fe-C 
alloy may be attributed to Mn, which raises the activation 
energy of AISI 1080 steel. Published data for the activation 
energy of different diffusion mechanisms for eutectoid 
steels are listed in Table 111. 29 33 From a comparison of our 
measured Q values with these data, it is concluded that for 
both AISI 1080 steel and Fe-C alloy the predominant rate 
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Table II-A. Values of Q and A in Equation [17] Computed by Least Square Regression 

Computed 
lnterlamellar Constants Shape Factor F Average Q 

Material Spacing in Eq. [17] 2 3 4 5 6 8 (Q/R) kcal/mole 

A '  - 2 4 . 9  - 2 7 . 2  - 2 9 . 4  - 3 1 . 6  - 3 3 . 8  - 3 8 . 3  34.5 68.5 + 9 
AISI coarse 

1080 Q/R x 103 30.8 32.2 33.5 34.9 36.3 39.1 

steel fine A' - 2 6 , 3  - 2 9 . 3  - 3 2 . 3  -35 .3  - 3 8 . 3  - -  35.4 70,3 +- 7 
Q/R x 103 31.9 33.7 35.4 37.1 38.8 - -  

Fe-C coarse A '  - 2 4 . 8  -26 .1  - 2 8 . 0  - 2 9 . 6  - 3 1 . 3  - -  29.6 58.8 -+ 2 
alloy Q/R x 103 28.7 29.2 29.6 30.0 30.5 - -  

Table II-B. Values of Q and A in Equation [17] Computed by Least Square Regression (Fine Interlamellar Spacing of Fe-C) 

Computed 
Constants Shape Factor F Average Q 

Material in Eq. [17] 1.2 1.5 1.8 2.0 2.5 Q/R kcal/mole 

Fe-C A '  - 2 1 . 0  - 2 4 , 2  - 2 7 . 6  - 2 9 , 8  - 3 5 , 3  28.4 56.5 -+ 7 
Fine interlamellar spacing Q/R x 103 25.3 26.9 28.4 29.5 32.1 
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Table III. Published Data of Activation 
Energy Q for Iron and Carbon Diffusion 

a 
System kcal/mole References 

Volume diffusion 60.7 
of Fe in Fe 64.0 

Grain boundary 41.5 
diffusion of Fe 40 

Volume diffusion 19.2 
of C in Fe 20.1 

James and Leak (1965) 30 
C. Leymonie (1959) 31 
James and Leak (1965) 29 
C. Leymonie (1959) 31 
Honeycombe's book 33 
C. Wert (1950) 32 

controlling mechanism is the volume diffusion of iron atoms 
in a ferrite matrix. 

IV. QUANTITATIVE ANALYSIS OF T H E  
KINETICS OF P E A R L I T E  S P H E R O I D I Z A T I O N  

A. The General Governing Equations for Mass 
Transport Processes during Spheroidization 

To describe quantitatively the kinetics of pearlite spher- 
oidization, it is necessary to establish the governing dif- 
fusion equations to analyze the mass transport processes 
during spheroidization. Several assumptions are made, as 
follows: 

(1) The volume fractions of each phase are conserved. 
(2) The interfacial energy is isotropic. This may not be a 
good assumption but is a necessary one in order to simplify 
the mathematical analysis. 
(3) The diffusion processes are carried out under the equi- 
librium state. 

It is known from the model of fault migration theory 13,14 
that the driving force for the instability of the lamellar struc- 
tures is the chemical potential gradient between the highly 
curved lamellar faults and the flat part of interfaces. Quan- 
titatively, the variation of the chemical potential with the 
curvature of the interface K is given by the Gibbs-Thomson 
relation: 

/x = /~0 + yI2K,  [18] 

where/x0 is the chemical potential at a flat interface, y is the 
interfacial energy which is assumed to be independent of 
orientation, ~ is the atomic volume of the diffusing atom, 
and K is the interface curvature given by: 

1 1 
K = m + m  

Rl R2 

where R] and R2 are principal radii of curvature at the inter- 
face point under consideration. 

Due to the chemical potential gradient, atoms will move 
from the higher curvature areas to the lower curvature areas. 
The drift velocity of the atoms, V, is given by 

V = -MVI~, [19] 

where M is the mobility of the atoms given by 

Dvy~ 
M -  

RT 
[201 

Dv is the volume diffusivity. [Ds (interfacial diffusivity) 
could be used in this equation if interface diffusion was 
predominant. ] 

The volume flux, J,  related to the dissolution of the fault 
tips and the thickening of the neighboring flat interfaces, can 
be expressed as: 

J = VCo, [21] 

where Co is concentration of diffusing atoms. Substituting 
Eq. [19] and Eq. [20] into Eq. [21] yields: 

Dv Co yl2 
J = - -  V/x. [22] 

RT 

When transport takes place by volume diffusion in the ma- 
trix phase under equilibrium condition, Otx/Ot is negligible 
at any point, and therefore Laplace's equation can be uti- 
lized to describe the chemical potential field throughout 
the solid: 

V2/z = 0.  [23] 

The rate of the normal migration of the lamellar fault is 
given by 

On 
- l~J = B V ~ ,  [24] 

Ot 

where 
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B = D v C ~  

RT [25] 

Equation [18], Eq. [23], and Eq. [24] can be considered as 
the general equations governing the main diffusion process 
during spheroidization. 

B. Theoretical Analysis of the Migration Rate of 
Lamellar Faults 

Following the approach given by Nakagawa et al. ,34 we 
attempt to solve Eq. [23] by introducing a In cosh coor- 
dinate system to describe the lamellar structure. This r/-~O 
coordinate system used throughout our analysis is shown in 
Figure 11. The transformation to the orthogonal X-Y coor- 
dinates from r/-to is given by: 35 

a 
x = -- ln[cosh 2 r/ - sin?to], 

77" 

y = 2atan-J[tanh 7/" tan ~] [261 
7r 

where a is the interlamellar spacing (see Figure 11). In the 
rl-O system, Laplace's equation becomes: 

O21 ~ + O2t x 
Or/: ~ = O. [271 

In most of the previous investigations, the geometrical 
shape of the lamellar termination was commonly assumed as 
a semicircular cap. Such a semicircular cap seems to be an 
unreasonable shape as it implies a discontinuous change in 
the interfacial curvature. In this study a curve with smoothly 
varying curvature, as shown in Figure 11, is introduced to 

Y 

f la t  l a m e l y "  

~r/2 

]':~!': !!! . / 4  'i~!:t!i![2!~i!il 

I ~--~/z 

Fig. l 1 - - T h e  In cosh (r/-t)) coordinates system. The lamellar fault is 
represented by the curve tp = r r /4  and the continuous lamellae here he at 
~b = -+77r/2 A model of lamellar fault is shown in the insert. 

represent the geometrical shape of the lamellar termination. 
This smoothed curve seems to be much closer to the real 
shape of the lamellar termination. 

In the "0-4t coordinate system, a lamellar termination is 
assumed to be represented by a smoothed curve of constant 
to (to = 7r/4, as shown in Figure 11). The neighboring flat 
lamellae can be represented by one of the curves qJ = ~-/2, 
3rr/2 . . . .  etc., depending on the volume fraction of the 
lamellar phase. For pearlite, the volume fraction of ce- 
mentite is about 0.13. Hence the corresponding position 
of the flat lamellae is taken at tO = 77r/2 as shown in 
Figure 11. The boundary conditions for Laplace's equation 
thus are: 

(1) /x = /x0 + yl)K(r/, t) at t) = ~ ' /4,  

(2) /x = /x0 at t/J = 7~r/2. [28] 

In the boundary condition (2), we assume that the curvature 
everywhere at the flat lamellar interface remains negligibly 
different from zero. 

The solution of Eq. [27], subject to these two boundary 
conditions above, is 

tx = IZo + TD 2a cos~Tru/4) + ~-a z J 

sinh(7r - to)u 
cos ur/du. [291 

sinh(137r/4)u 

Following a similar analysis given by Nakagawa et al. 34 
the migration rate of the fault tips is given by: 

~t g'=rr,4- "/7"28 (~exp[-Bw3u 3 coth(13mt/4)t]u 

4 a:J0 du 
[30] 

and the initial velocity at t = 0 is 

On _ 7r2B [~u coth(137ru/4) 
Ot 4~k/2a 2 J0 cosh(Tru/4) du. [31] 

Setting 

_ 7r:B ( u coth(137ru/4) , 
K 4 X f 2 J f  ~ au. [321 

Finally, Eq. [31] becomes 

On K 
- [33] 

Ot a 2 

which tells us that the rate of fault migration is inversely 
proportional to the square of the interlamellar spacing, a. 

C. Quantitative Anah,sis of the Kinetics of Pearlite 
Spheroidization 

In the previous section, we derived an expression--  
Eq. [33] - - f o r  the migration rate of a single cementite plate- 
let tip. Now we are looking for a general expression for the 
kinetics of the shape change in the entire lamellar structure. 
Figure 12 shows a pearlite microstructure which consists of 
an array of flat and faulted lamellae in which the lamellar 
faults are assumed to be randomly distributed throughout 
the structure. The volume fraction of lamellar cementite, 
V~, which is equivalent to the area fraction of cementite, Aa, 
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Fig. 12 - -  Pearlite structure consists of an array of flat and faulted lamellae: 
(a) before spheroidization, (b) after spheroidization. 

can be given by combining Eq. [11] to Eq. [13] with Eq. [4] 
to Eq. [5]: 

4 _ -  
Vv = AA = -~NAX A , [34] 

where x and A- are the average length and the average 
thickness of the lamellae, respectively, and NA is the number 
of cementite particles in unit area. 

During spheroidization, the significant geometrical 
changes of the lamellar cementite are the recession of the 
fault tips and the thickening of the lamellae. 

Differentiating and rearranging Eq. [34] yields: 

Vvd(1/-A) 4 (  d2  xdNA) 
dt - ~ NA'-~t + d l  , [ 3 5 1  

where d_~/dt is the rate of the average length change of the 
lamellae which is equivalent to the negative value of the 
recession rate of the fault tip, given by: 

dx/d t  = -On/Ot = - K / a  2. [36-a] 

The volume fraction of cementite is related to A- and the 
interlamellar spacing, a, by 

Vv = A /a  [36-b] 

Substituting Eq. [36-a] and Eq. [36-b] into Eq. [35] yields 

dA 4 4A --_. dNa 
dt - 7r rKvv N A -- ~ (Ax) 7 "  [371 

Equation [37J then can be integrated to give: 

f ' ( 4  2VvdNA\  
A t -  A o = ,, ~KVvNA NASv Z )  dr" [ 3 g ]  

Since for a lamellar structure the lamellar thickness, A, is 
related to the specific surface area, Sv, by A = 2Vv/Sv, 
(Eq. [13]), we have, finally, 

( (NA)t dNA 
(--~-v) - (-~v)o:2K~'NAd, - [39] 

')to J(NA)o ~A SV " 

Equation [39] can be utilized to express the kinetics of 
pearlite spheroidization. Quantitative evaluation of the time 
dependence of the reciprocal of the specific surface area, 
1/Sv, for several specimen systems of this study is accom- 
plished by using Eq. [39]. To compare our results with 
theory the value of B (Eq. [25]) was taken from published 
experimental results. 36'37'38 From these results K could be 
evaluated using Eq. [32]. The values of B and K used in 
these calculations are shown in Table IV. Both the calcu- 
lated results and the experimental results are plotted in 
Figures 13 to 16 for comparison. 

It is seen from these figures that the theoretical analysis 
of the spheroidization kinetics in terms of the time de- 
pendence of reciprocal specific area, Sv, presents a reason- 
able agreement with the experimental results. However, it is 
also noted that there are some discrepancies between the 
theoretical and experimental curves, especially within the 
ranges of the final stages of the spheroidization. However, 
it should be realized that Eq. [39] is only an approximate 
expression for the kinetics because of the following: 

l O  ' ' ' ' ' " ' l  
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~[ / / '  

o J / / 
~O / /" / 

..- 1 . / /  o Z  / . -  / 
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2 ~  ,...,, 
/ /  / - -  c,,.o, l o , . . , I  
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0 .01 / '  , / , ,  , , , , I  , i I i l l l i l  I , , , , ,  

3 10  3 0  1 0 0  3 0 0  1 0 0 0  

T I M E  ( H R )  

Fig 1 3 - - P l o t  o f  (1/S~),- (1/Sv)o (coarse AISI 1080 spheroidized at 
700 ~ - - o - -  Exper imental  results o f  the present  study. - - -  Calcula ted  
results f rom Eq.  [39] using the cons tant  B given b y  Mehl .  3~ - - - -  Calcu-  
lated results f rom Eq [39] using the cons tan t  B given by  Oriani .  37 

Table IV. Diffusion Constants B and K Used in the Calculation of Equation [39] 

System B, cm3/hr. K, cm3/hr. Reference 

Commercial 2.63 x 10 -u 1.43 x 10 J4 Meh136 
steel 1.22 x 10 14 6.58 X 10 14 Oriani37 

Fe-C alloy 5.44 x 10 14 29.4 X 10 14 Hecke138 
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7 0 0  ~ - - o - -  Experimental results of the present study. - - - Calculated 
results from Eq.  [39]  u s i n g  the constant B given by Heckel. 38 

(1) The values of B reported in the literature vary consid- 
erably as shown in Table IV. 
(2) In the later stage of spheroidization, the average shape 
of the structure considerably deviates from the model 
assumed. 
(3) Subboundary groove diffusion and Rayleigh's per- 
turbation in the early and later stages of spheroidization, 
respectively, were not taken into account. 

From the results of the quantitative analysis presented 
above, it is seen that two facts play an important role in the 
rate of spheroidization, namely: (a) interlamellar spacing, 

1 0 0  I r I I I I I I ]  I I T i r l l r  1 I I I I f i l l  - 

10 ~ -- 

/ 

I : ~  

~ 1.o 
:/ - - o - -  EXPT .  
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/ / /  . . . .  CALC 
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Fig .  16- -Plot  of ( 1 / S v ) ,  - ( 1 / S v ) 0  ( f ine  F e - C  alloy spheroidized at 
7 0 0  ~ - - o - -  Experimental results of the present study. - - -  Calculated 
results from Eq.  [39] using the constant B given by Heckel. 3~ 

(b) the density of faults. The reasonable agreement between 
the theoretical prediction and the experimental results indi- 
cated that the fault migration theory is an appropriate model 
for the kinetic analysis of pearlite spheroidization. 

V. CONCLUSIONS 

1. A shape factor, F, defined as F = S~/3K,~, is  a good 
parameter to characterize the shape evolution during 
spheroidization of lamellar structures. Geometrically, it 
represents the average aspect ratio of a lamellar structure 
as observed on a two-dimensional polished section. 

2. In the spheroidization of undeformed pearlite, there is a 
linear relation between the shape factor F and the loga- 
rithm of time for a constant temperature. 

3. The general rate equation in terms of the time and tem- 
perature dependence for a constant shape factor, i.e., 
1/t  = A e x p ( - Q / R T ) ,  is well followed. The activation 
energy calculated from the rate equation is interlamellar 
spacing independent but is composition dependent and 
has a value about 70 kcal/mole for AISI 1080 and about 
58 kcal/mole for pure Fe-C alloy. These results indicate 
that the volume diffusion of Fe in ferrite is the major rate 
controlling mechanism. 

4. Quantitative analysis based on the modified fault mi- 
gration theory shows that two factors play important roles 
in the rate of spheroidization, namely: the interlamellar 
spacing and the density of faults. The theoretical predic- 
tions for the kinetics of spheroidization have a reasonable 
match with those of experimental result. 
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