Fig. 2—{111}pole figure from midthickness of sheet aged at
200°C for 3 h. A{100}¢011).

this earing behavior can be attributed to the presence
of planar precipitates of 6’ which tend to make the
material behave in a more isotrapic manner.

Some tesis were alsoc made on commercial sheet
with the usual specification, HS 15, for age-hardenable
aluminum alloy containing 4 pct copper. Although the
ears were less distinct in this material, the same
trends were observed.

Thanks are due to Professor D. V. Wilson for the
provision of laboratory facilities.
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On the Kinetics of Anisothermal
Oxidation

ALAN J. MARKWORTH

A model for anisothermal oxidation kinetics has
been presented by Wolf and Grochowski' (WG) based
on the assumptions a) that the system under considera-
tion is described by a ‘‘parabolic rate law’’ under iso-
thermal conditions, and b) that its temperature in-
creases linearly with time. This model is summar-
ized below, and certain points pertinent to its develop-
ment are discussed. Finally, a revised model is de-
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veloped, based on a fundamentally different assumption
compared to that used by WG, and a new expression is
derived through which weight-gain is related to time.

Summary of Wolf-Grochowski Model.! The WG model
is concerned with an oxidizing system which is assumed
to satisfy, under isothermal conditions, a parabolic
rate law having the form

W2 = Kyt {1}

where W is the specific weight change, ¢ the time over
which oxidation has taken place (W being assumed to
be zero at ¢ = 0), and K, a rate constant taken to be of
the form

Kp = A exp (E‘g‘) (2]
where A is the preexponential factor (whwh may be a
function of the ambient oxygen pressure %), @ the activa-
tion energy, R the gas constant, and T the absolute
temperature. WG assumed A and @ to be independent
of T, and T to increase linearly with time, i.e,,

T=T;+nt (3]

where T; (noting that they used upper case for this
subscript) is the temperature at { = 0, and 7 is the

rate at which T changes with time. They then com-
bined Eqgs. [1], [2], and [3] to obtain

q
WE = At exp [‘ R(T; + rt)]' ]

Eq. [4] was then used to calculate dW/dt and the re-
sult combined with [3] to obtain dW/dT. Then, a new
variable Z was defined such that

-9
Z= RT [5]
and they found that
2WdW = — (%%) eZ(Z2%+ 27 - Zdz (6]
where
Q ki

Finally, they integrated Eq. [6] to obtain (except for an
incorrect sign with one of the terms in the integrand,
which is corrected here)

__4Q Zm -Z(7" -l _ gt
Wi =-"5 fZ eZ(z?+ 27 - zMdz [8]
where
-_9 9

and W, = W(Z,,) with T,, being some maximum tem-
perature (occurring at time ¢,, = (T, — T;)/7). They
concluded that the integral in Eq. [8] above is ‘‘amen-
able to solution by graphical or computer techniques,”””

Critique of Wolf-Grochowski Model. A number of
points can be made relative o the WG derivation
which was summarized above. These are the follow-
ing:

First, we note that the integral on the right-hand
side of Eq. [8] can be cbtained in closed form, without
the need for approximation methods. One approach
would be to carry out an appropriate integration by
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parts of the function ¢ Z~ which appears in the inte-
grand on the right-hand side of [8].

Actually, the differentiation and subsequent integra-
tion carried out by WG were not necessary. One need
only combine Egs. [1], [2], [3], [7], and [9] taking cor-
ditions, in Egs. [1], [2], and [3], to correspond to the
‘““maximum’’ values of W, 7, and ¢.

Finally, the most important point relative to the
WG model is concerned with the analysis leading to
Eq. [4] above, which must be reconsidered, Substitu-
tion of the time dependence of temperature (Eq. [3])
was carried out by WG in the integrated form of the
parabolic rate law (Eq. [1]), rather than in the form
expressed as the following differential equation:

aw _ Kp
E—W. [10]

However, if oxidation proceeds such that the instan-
taneous rate of change of W with ¢ is always inversely
proportional to the instantaneous value of W, with the
proportionality constant itself being time-dependent
as described in Eqgs. [2] and [3], then it is necessary
to begin with Eq. [10] rather than [1]. This procedure
is developed below. We note that Kofstad,® in his
treatment of oxidation occurring with the temperature
varying linearly with time, did indeed substitute the
time-dependent temperature into the differentiated
form of the weight-gain expression (see the analysis
leading to his Eq. [7]).

Redevelopment of Weight-Gain Equation. Beginning
with Eq. [10] (as contrasted to the WG approach of be-
ginning with [1]), we find, upon appropriate combina-
tion of this expression with Eqgs. 2], [3], and [5],

aw? AQ ., .

77 =—;§—Zzez. (11]

Integrating Eq. [11], again taking W(¢ = 0) = 0,
2 _AQ (Zi_, 4
Wm_ﬁfzmzze a. [12]

The integral in Eq. [12] can be expressed as an ex-
ponential integral, the general definition of which is*

En(z) = [Tt eztar [13]

wheren=0,1,2, .., .. and ®&(z) > 0. Using Eq. [13],
we find that [12] can be written as

Won = 28 [ 230 B,(2,,) - 27B(2))). 4]

Now let us change Eq. [14] to one which involves E,
functions rather than E, functions. Toward this end,
we note the following relation, which can be readily
derived using Eq. [13]:

En+1(z) =ut [e_z - ZEn(Z)] [15]

forn=1,2,3,...... . Setting # = 1 in Eq. [15] and
using the resultant expression with [14], we obtain
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W, = %[ meim— Z3eZi + E\(Z;) - Ey(Z,,)]. [16]

The E, function can be expressed, to a relatively high
degree of accuracy, in terms of certain well-known
polynomial and rational expansions"’*" as well as in
terms of Padé approximations.’ (Expansions of this
function in infinite series also exist,*® including ex-
pansions in terms of Chebyshev polynomials.’) Conse-
quently, the time dependence of W%, can be accurately
expressed in terms of a sum of elementary functions.

One can show that Eq. [16] is well-behaved in the
limit as ¥ — 0. Indeed, evaluation of this limit on the
right-hand side of (18] yields

lim W2, = At,, e%, (17]
r — 0.

Eq. [17] being equivalent to Eq. [4] above for the case
v = 0 (Eq. [4] being correct, of course, for this special
case).

The initial condition assumed in the analysis leading
to Eq. [16], namely, that W(¢ = 0) = 0 could be general-
ized by taking W(¢ = 0) = W; where W, is some given
initial value for the weight-gain. For this situation,
the left-hand side of Eq. {16] would simply be replaced
with the quantity W5, — W2. In addition, it should be
noted that Eq. [16] is also valid if » < 0 {in which case
Ty < Ty).

It should be noted that the analysis presented here
is also applicable to other rate-laws (see Ref. 3); for
example, Eq. [10] could be generalized to dW//dt = K;
where j = 1, 2, and 3 for linear. parabolic, and cubic
rate-laws, respectively. (In this notation, Kp, as de-
fined above, is equal to K,.) If the temperature de-
pendence of the K;’s is that expressed in Eq. [2], then
Eq. [16] would remain unchanged except that W5,
would be replaced with W{n . Also, similar analyses
could, in principle, be carried out for other types of
time-temperature relationships, although numerical-
integration methods might be needed, for given cases,
to determine the explicit relationship between weight-
gain and time.

The author is grateful to Dr. Ian G. Wright of Bat-
telle’s Columbus Laboratories for his helpful com-
ments.
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