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The relationships between the Wagner interaction and Margules coefficients are derived to discuss 
their limitations and to clarify incorrect construction of the excess Gibbs energy from the partial ex- 
cess Gibbs energies, expressed as linear functions of mole fractions. Margules-type equations with 
Henrian reference states are obtained, and their significance is discussed. An estimate for the Gibbs 
energy of melting of graphite is obtained, and the use of activity coefficients for deriving the Gibbs 
energy of melting of refractory elements is suggested. This research is part of the effort in materials 
properties at the U.S. Bureau of Mines. 

I n t r o d u c t i o n  

The Wagner interaction coefficients (WIC) for dilute temary 
solutions [52Wag] continue to be the subject of a number of in- 
teresting publications [86Pel, 90Bal, 90Ni, 90Yua, 92Haj, 
92Wei]. The concept introduced by Wagner [52Wag] was used 
extensively for liquid metals (each as component 1 = the sol- 
vent) in which the activity coefficient of a solute metal or met- 
alloid (component 2) was affected by another solute 
(component 3). It was shown that WIC exhibited a very inter- 
esting pattern in a metal for each selected component 2, as 
component 3 followed Group I to VIII in the Periodic Table of 
the Elements [60Oht, 60Sch]. The purpose of the present paper 
is (1) to show the relationships between WIC and the Margules 
coefficients to elucidate their usefulness, (2) to clarify incor- 
rect construction of the excess Gibbs energy, G ex, from the ex- 
cess partial Gibbs energies, gi, expressed as linear functions of 
mole fractions, X i, (3) to obtain the Margules equations with 
Henrian reference states, and (4) to suggest a method for the 
estimation of Gibbs energies of melting of refractory elements. 
( W e  u s e  gi for the excess partial Gibbs energy to avoid the 
cumbersome notation, GT/x). 

W a g n e r  a n d  M a r g u l e s  E q u a t i o n s  

The WIC, designated as eij= OgilOX O, in terms ofgi, are the co- 
efficients ofX i in the Taylor expansion for g2 as in a dilute ter- 
nary solution: 

gz=R Tln ]t2 =A12 + E22 X2 

+,3X3=A12 ~.OX2) 2 t I (Eql)  

where X 1 ~ 1, R is the gas constant, Tis the temperature in K, 
T2 is the activity coefficient, and A12 is the value of g2 for 
X 2 = X 3 = 0. Note that the coefficient of X 3 in the last term is 
~23, which is also equal to E32, as can be obtained by differen- 
tiation of the Margules equation (Eq 3 that follows) and there- 

after setting X2 and X 3 to zero. The subscripts on E,j are in the 
same succession as in Ogi/OXj. Equation 1 is for dilute solu- 
tions; hence the lowest order Margules equations for the ex- 
cess molar Gibbs energy, G~x, and for the excess partial Gibbs 
energy, g2, are sufficient for our immediate purposes: 

G ex = A12 XlX 2 + A13 X1X 3 + A23 X2X 3 (Eq 2) 

g2 =A12 X~I +A23 X~3 + (A12 +A23 - A13)X1X3 (Eq 3) 

A higher order Margules equation [86Gok] can be used when 
the precision of a set of data justifies it. The standard state for 
each component is the pure element in the same state of aggre- 
gation as the alloy so that g, = 0 for each X, set to unity. The ex- 
change of two subscripts leaves Eq 2 unaffected, if we letAij = 
Aji; therefore, the equation forg 3 can be obtained from Eq 3 by 
interchanging the subscripts 2 and 3. The same procedure can 
be used to obtain the equation forg 1 of the solvent. We differ- 
entiate g2 ofEq 3 as in [75Gok] by using (dX 1 = --dX z) at con- 
stant X 3, and (dX 1 = -dX3) at constant X2 to obtain u_.,22 = -2A12, 
and e23 = A23- A12 - A13 and substitute them in Eq 1 to derive 
the Wagner equation with the Margules coefficients: 

g2 = Ax2 - 2A12 X2 + (A23 - a12 - At3)X3 (Eq 4) 

Acubic Margules equation [86Gok] would yield the same type 
of equation with an additional ternary constant inside the paren- 
theses in Eq 4. The corresponding equation for g3 can be 
obtained from Eq 4 by interchanging the subscripts 2 and 3: 

g3 = A13 - 2A13 X3 + (A23 - A13 - A12 )X2 

=a13 + E33 X 3 + E32 X 2 (Eq 5) 

There are 3 additional terms for a quaternary system in Eq 2, 
(AI4X1X4, AzaXzX4, and A34X3X4) , and the corresponding extra 
terms forg 2 ofEq 4 can be readily derived. As evident, gl and 
e~i for the solvent are both zero at very low solute concentra- 
tions if e,j formulation of Eq 1 is used. 

It has been shown correctly by [67Dar], [85Sch], [86Pel], 
[88Sri] and [90Bal] that the relationships such as Eq 1 and 4, 
and those based on Taylor or Maclaurin expansion, violate the 
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Gibbs-Duhem relation for finite concentrations of solutes even 
if they represent the experimental data reasonably well. An ad- 
ditional point is to be made here regarding the linear equations, 
such as Eq 1 with eij. When G ex is obtained by substituting g2 
and g3, both containing eij , in a ex = X 2 g2 + X3 g3, as was  car- 
d e d  out in [65Lup], and gz is rederived herein from G ex, we ob- 
tain: 

g2 = aex + (1 -X2) (aG~x) 

1/X3 

A~z + 2ezz X z + 2~23 X 3 (Eq 6) 

where the additional quadratic terms are ignored for dilute so- 
lutions. This equation contains the extra coefficients 2 in the 
second and the third terms after the second equality as can be 
seen by comparing it with Eq 1. Therefore, Eq 1 and 5 are not 
in the proper functional forms to yield an appropriate func- 
tional form of C~x. The mathematical reason for this is that the 
linear functions forg i yield quadratic functions for C~x. 

The use of  the first and the higher order WIC to construct vari- 
ous equations created staggeringly and unnecessarily compli- 
cated equations when far simpler Margules equations or other 
polynomials have already existed since 1895; see [67Hal], 
[75Gok], and [86Gok]. Further, it was shown that the activity 
coefficient data on one solute (e.g., g2) in the dilute range could 
be used to obtain all the coefficients in Eq 2 and 3, and addi- 
tional data for g3 could determine the coefficients in the higher 
order Margules equations [82Gok]. Therefore, it is far better to 
use Eq 3 than Eq 1, even with the second order WIC as the co- 
efficients of the additional quadratic terms for Eq 1. Experi- 
mental data seldom justify the use of the second and third order 
WIC, but even then, it would be preferable to use the third or- 
der Margules equations. Most importantly, use of Eq 3 avoids 
the difficulties ably pointed out by [92Wei] in the numerical 
computation of WIC. Further, the coefficients from Eq 3, 
based on the data for g2, may be used to obtain reliable values 
of the WIC if desired. However, it seems preferable to use the 
existing reliable values of WIC to obtain the coefficients of Eq 
3, or reexamine the original data and substitute them in Eq 3 to 
accomplish this purpose. Also, Eq 3 and its higher order forms 
would permit convenient optimization of data, e.g. by the least 
squares approximation. 

A wealth of data has been presented in terms of WIC [82Sig, 
84Ans, 88STE] and is useful to metallurgists. Therefore, to 
save the WIC formalism, first [85Sch] and later [86Pel] sug- 
gested adding gl = -0-5EzEX~ - E23 XEX3 - 0.5E33 X~ to Eq 1 to 
eliminate successfully the thermodynamic inconsistency of Eq 
1. Their resulting equation for a dilute ternary solution con- 
tains two more terms than Eq 9 to be presented later. All the 
controversies among [84Suk], [86Pel], [88Sri], and [89Nag] 
on the WIC formalism were resolved by [85Sch] and [90Bal]. 

It is evident that the Margules-type equations are preferable to 
the equations with linear terms even after their successful 
modification by [85Sch] and [86Pel]. Other proper power se- 
ries satisfying the boundary conditions and the Gibbs-Duhem 
relation can also be used, and such equations for multicompo- 
nent solutions should reduce to lower-component equations 

for each X i set to zero. Here we stress that any other type of 
proper equation representing a set of  data is equivalent to the 
Margules equation with an adequate number of terms. There- 
fore, it is recommended that a Margules-type equation be used 
for representing the data on activity coefficients. The use of 
one type of equation, preferably the Margules equation, would 
enhance communication among thermodynamicists of  al- 
loys. 

Other  S t a n d a r d  S t a t e s  

Next, we consider the equations based on other standard states 
than those in the foregoing equations. For this purpose, we 
consider fn-st a binary system for which Gex for a single phase 
can be represented by the following Margules power series: 

2 2 
G ex =X1Xz(AzlX 1 +A12X 2 ) + X  1X 2(B21X 1 + B12X2 ) (Eq 7) 

-]- ... 

If  we retain the first term (with the first set of parentheses), it is 
third order. If we set Alz = A21, it then is quadratic, i.e. G ex = 
AlzXxXz. We note that for a third order equation, gz is given 
by 

g2 = X~I[A21 + 2X2 (A12 -A21 )] (Eq 8) 

The limiting value of g2 for X2 = 0 is A21 here, which also 
should be equal to Alz in g2 = AlzX 2 (see also Eq 3). Thus the 
limiting value would be the same for whatever the appropriate 
selected maximum power is for Eq 8, provided that the data are 
reliable at low concentration ranges of component 2, where the 
contribution from higher power terms becomes negligible. 
Further, in an appropriate power series with a proper number 
of terms representing a set of  data, the coefficients should not 
be inordinately different from one another in their numerical 
values. However, it has been the author's experience that most 
high-temperature data yield different limiting values with dif- 
ferent maximum powers in Eq 7, attributable to the uncertain- 
ties in experimental data, particularly at low concentrations. 

When the standard state is changed to the Henrian scale, i.e., 
gz(Henrian) = 0, (ory2 --~ 1) forXz = 0, then Eq 8 must contain 
the separate added term -Azl, and its quadratic equivalent, 
-A12 so that for the latter g2(Henrian)=-A12+A1zXZl. A 
constant added term c, as in g2 (Henrian) = c + AlzOf ~, chang- 
ing the activity to the Henrian scale, is therefore not an adjust- 
able parameter, contrary to [67Dar], despite the fact that such 
an arbitrary adjustment could not violate the Gibbs-Duhem re- 
lation when used with g l = 2 AlZ ~f 2 for the solvent. Since any set 
of data, however complicated, can be represented with a Mar- 
gules equation having an adequate number of terms, an arbi- 
trary value of c cannot be assigned to  A21 in the Henrian 
modification of Eq 7 or 8. It is believed that the arbitrary as- 
signment of values to c by [67Dar], based on experimental data 
as stated in [67Dar], was intended to extend optimistically the 
compositional range of validity of  the quadratic Margules 
equation. Therefore, Eq 2 for G~x, with component 2 and 3 on 
the proper Henrian scale is: 

G ex (Henrian) -- -A12X 2 + AlzXIX 2 - A13X3 

+ A13X1X3 + AE3X2X3 (Eq 2a) 
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This equation is used to derive: 

g2 (nenrian) = -A12 + A12X~I + AE3X~3 

+ (A12 + Az3-A13)X1X3 (Eq 9) 

A similar equation for g3 can be obtained by exchanging the 
subscripts 2 and 3. It can be seen that the elements, such as H, 
N, O, and S, could each be taken as component 2, and the vari- 
ation of gE(Henrian) could be investigated by using Eq 9; see, 
among numerous such applications, [73Wag], [93Gokl], and 
[93Gok2]. 

Next, we consider a pure solid high melting element as a stand- 
ard state and use the resulting excess Gibbs energy equation to 
estimate the Gibbs energy of melting of a pure high melting 
element, e.g., graphite, (gr.). Pure graphite is not in the same 
state of aggregation as the liquid Fe-C alloys below 4130 K. 
The partial (molar) Gibbs energy G 2 of dissolved C then refers 
to graphite: 

G 2 = GO (gr.) + R T  In X2"~2 2 (Eq 10) 

where Go(gr.) is for pure graphite, the remaining symbols are 
for the liquid, and ~t22 in liquid alloy refers to graphite as the 
standard state. The activity measurements are usually made 
conveniently by investigating the equilibria in 2CO = [C in Fe] 
+ CO 2, in which the activity of carbon is one when C(gr.) is 
present in this reaction instead of [C in Fe]. The partial (molar) 
Gibbs energy of [C in Fe] in the dilute range with pure hypo- 
thetically existing liquid C as the standard state is: 

G2 = ~22 (L) + R Tin X2~t2L (Eq 11) 

where'/ZL indicates that the activity coefficient refers to the hy- 
pothetically existing pure liquid as the standard state. The par- 
tial (molar) Gibbs energy G2 is independent of the choice of 
standard states so that Eq 10 and 11 are equal; hence, we de- 
rive: 

~22 (L) - GO (gr.) = AG~z (melt) = R T ln['/2z/Y2 L] (Eq 12) 

Thus,  the ratio of  activity coefficients is a constant  at a 
given temp er atu r e b e c a u s e  t h e  left-h an d side is a con- 
stant equal to the standard Gibbs energy of melting of 
graphite. If, in a sufficiently dilute range, we can write 
gz (ref.L)= R T lnT~ =Alz  X 2, where (ref.L) refers to liq- 
uid C, then from Eq 12, we obtain g2(ref.gr.), referring to 
graphite. Thus, we obtain: 

g2 (ref.gr.) = R T In ~/22 = A~22 (melt) + A 12 X 2 (Eq 13) 

Therefore, A12 (and the additional coefficients of X, if Eq 8 
were used) would be the same irrespective of the choice of 
standard states, i.e., A 0 is the same whether a pure liquid or a 
pure solid is used as a standard state for a component of a liquid 
alloy. We consider that the equality of Aij in both types of stand- 
ard states, as obtained from Eq 13, is an important new corre- 
lation. Two selected best values of g2 (ref.gr.) would be 
sufficient to determine the constants in Eq 13 for a selected 
temperature, which is 1833 K in this case. The range of com- 
position where the experimental data are likely to be more re- 
liable is about X 2 = 0.02 to 0.07 (0.44 to 1.59 mass% C). If we 
take X 2 = 0.02 and 0.07, and use the results in [58Ris], 

[61Ban], and [84Oht (also quoted in [86Gok])], we obtain the 
following approximate result: 

g2 = 68 000 - 80 000X 2 J/mol (Eq 14) 

where the constants are probably reliable to within 10 000. (A 
more extensive analysis on the activity of C in liquid Fe will be 
in a forthcoming paper). The first term on the right in Eq 14 is 
the standard Gibbs energy of melting of graphite at 1833 K, i.e. 
68 kJ/mol. It is possible to justify this value by using the fol- 
lowing estimates for graphite based on the properties of Sn, 
Ge, and Si from [89Bar] in the following table: 

AS~ Cp0iquid) - Cp(soHd), Melting 
Element J/mol - K, J/mol - K point, K 

Sn ................. 13.9 -1.0 505 
Ge ................. 30.5 -1.1 1210 
Si .................. 29.8 -2.0 1685 
C .................. 30(a) -3.0(a) 4130 

(a) Estimated by the author. 

The melting point of graphite, determined by [76Gok], using 
an HF-laser, is 4130 K. The standard enthalpy of melting of 
graphite is given by AH0(melt) = 30 x 4130 = 123 900 J/mol 
at 4130 K. From the heat capacity change of -3.0, we derive 

AG O (melt) = 136 290 - 57.98 T+ 3.0 Tin T JAnol (F_,q 15) 

From this equation, AG O (melt) = 71 330 J/mol at 1833 K. The 
foregoing value from Eq 15 is within - 3.3 kJ of the value in Eq 
14, which is in fortuitously good agreement. Thus, it is sug- 
gested here that similar but more accurate activity coefficient 
measurements be carried out for solid elements having high 
melting points as one of the components in binary liquid alloys 
for reasonable estimation of their standard Gibbs energies of 
melting. Suitable galvanic cells could be used for this purpose, 
particularly at temperatures below 1500 K to obtain reliable 
data. For example, the alloys of Zr-Sn, W-A1, Ta-Au, Hf-Au, 
and Th-Ag [90Mas] are suitable for such measurements on Zr, 
W, Ta, Hf, and Th, respectively. In fact, highly accurate data, 
not yet attainable, could also give the temperature dependence 
of AGo(melt), the standard enthalpy of melting, and even the 
melting point. 
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