
S h o r t  C o m m u n i c a t i o n s  

A Note  on  So lub i l i ty  and E x c e s s  Gibbs Ene r g y  o f  Graphite  in  Liquid Iron 

The solubility of graphite (gr) in liquid 
iron, assessed in [93Oka], and addi- 
tional data by Oden in [89Ode] are in 
very good agreement as shown in Fig. 
1. This note presents the related ther- 
modynamic properties of carbon dis- 
solved in liquid iron at graphite 
saturation. The dissolution process and 
the corresponding change in the partial 
heat capacity, ACp, are: 

C(gr) = C[in Fe(L)], (dissolution) 

ACp = Cp[C in Fe(L)] - C~p(gr) (Eq 1) 

The same process for hypothetical ideal 
dissolution of graphite is ACp(ideal) = 
Cp[ideal C in Fe] - C~p(gr), and the sub- 
traction of this equation from Eq 1 
yields the excess partial heat capacity 
of dissolution, C~x= Cp[C in F e ] -  
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Cp[ideal C in Fe]. Q x can be expressed 
as a linear function of temperature, T, in 
K, with constants A and B, as follows: 

Cep x = AA + 2ABT (Eq 2) 

The accuracy of high temperature data 
seldom justifies a cubic or higher order 
equation in T, and AB = 0 does not rep- 
resent the solubility data well. 

Graphite is usually taken as the stand- 
ard state [94Gok] so that the activity of 
dissolved carbon at saturation is unity; 
i.e., a c = 1 = 7cXc(satn), where 7c and 
Xc(satn) are the activity coefficient and 
the mole fraction, respectively. The ex- 
cess partial Gibbs energy, G ? ,  desig- 
nated as gc for simplicity in notation, is 
then: 

gc =- RT  In gc = - R T  In Xc(satn) = H 0 
- AATln T -  ABT 2 + IT  (Eq 3) 

where R is the gas constant; H 0 is the 
integration constant in the excess par- 
tial enthalpy of solution, H ~x = H0 + 
A A T  + A BT2; and I is the integration 
constant related to the entropy term 
[75Gok]. Four well spaced values are 
used in Fig. 1 to obtain the constants in 
Eq 3: 

gc (J/mol) = - R T  In Xc(satn) = 
-1572 - 3.652 Tln T -  0. 002316 T 2 

+ 45.613 T (Eq 4) 

Selected values of Xc(satn) are as fol- 
lows: 0.1773 [1500 K]; 0.1951 [1700 
K]; 0.2241 [2000 K]; 0.2788 [2500 K]. 
The value of H ~x computed from the 
foregoing constants is about +15 

kJ/mol, in line with the enthalpy of for- 
mation of Fe3C, though this is not a rig- 
orous comparison. The value of C~ x 
computed from Eq 2 at 2000 K is 
+12.92 J/mol-K. According to [85Ber], 
large positive values of C~ x are usually 
associated with large negative values of 
H ~x, contrary to the foregoing results,, 
though no such qualitative correlation 
exists for the interstitial solutes. There- 
fore, it is recommended that Eq 3 be 
regarded as an empirical equation rep- 
resenting the solubility well, and the de- 
rived thermodynamic properties should 
be considered as very approximate re- 
lations. 

Cited R e f e r e n c e s  

75Gok: N.A. Gokcen, Thermodynamics, Ch. 
XII, Techscience, Hawthorne, CA (1975) 
(revised second edition to be published in 
1995). 

85"Ber: C. Bergman and K. Komarek, Cal- 
phad, 9(1), 1 0985). 

89Ode: L.L. Oden, Metall. Trans. A, 20, 2703 
(1989). 

93Oka: H. Okamoto, Phase Diagrams of Bi- 
nary Iron Alloys, 64-83, ASM Interna- 
tional, Materials Park, OH 44073 (1993). 

94Gok: N.A. Gokcen, Steel Res., 94(4), 125 
(1994). 

Above remarks by: 

N.A. Gokcen and L.L. Oden 
Bureau of Mines 
U.S. Department of the Interior 
Albany, OR 97321-2198 

Gokcen I recently discussed the rela- 
tionships between the Wagner interac- 
tion coefficients 2 defined by the 
formalism for dilute solutions 

ln72 : ln~ + ~2_~2 + g23X3 + ' "  (Eq 1) 

and Margules coefficients, which in 
principle apply to the whole range of 

C o n v e r s i o n  f rom the  Wagner e F o r m a l i s m  to  a Margules  F o r m a l i s m  
D i s c u s s i o n  o f  a paper  by  G o k c e n  

composition. He stated that even if the ~; 
formalism is modified to obey the 
Gibbs-Duhem relation, as proposed by 
Schuhmann3 and Pelton and Bale? "it 
is evident that the Margules-type equa- 
tions are preferable to the equations 
with linear terms...." The argument is 
that the e formalism is a dilute solution 
approximation whereas the Margules 

equation applies to the whole range of 
composition. Gokcen further mentions 
that other power series could be used, 
but, "the use of one type of equation, 
preferably the Margules equation, 
would enhance communication among 
thermodynamicists of alloys." Note 
that the use of a single type would also 
simplify the software used for corn- 
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puter calculations. The expression rec- 
ommended by Gokcen is: 

Gem x = XIX2(A21X 1 + A21X2) 

+ .~llX~2(B21Xl + B21X2)... (Eq 2) 

Note that the expression most generally 
recommended is instead based upon 
Redlich-Kister polynomials: 

Gex = X I X 2 ( L ~  + L I 2 ( X I  - X2) 

+ L~I(X l - X2)2 + . . .  (Eq 3) 

For a binary system, Eq 2 and 3 are 
completely equivalent but not for ter- 
nary and higher-order systems. 5 

The wealth of data presented in terms of 
the Wagner ~ formalism may be used 
directly by applying the modification 
proposed by Schuhmann 3 and Pelton 
and Bale. 4 However, in order to trans- 
form the information to a power series 
formalism covering the whole range of 
composition, a reassessment is neces- 
sary. It would be of great value if the in- 
formation could be directly converted 
to a Margules type of representation. 
That can in fact be done by introducing 
a hypothetical standard state for each 
solute. 6 This is in essence what Darken 7 
did when proposing his quadratic for- 
malism because his basic equation can 
be written as: 

?/ 

a m = X1G~ -.I- Z Xk(G~ -I- Mk) 
2 

n n 

+ R T Z X I n X  + 0.5 Z s X XL u + . . .  

i=1 J=, 

(Eq 4) 

where all L,=0 and L0=Lj,. The quan- 
tity G~ + M~ defines the hypothetical 
standard state. Of  course, this expres- 
sion only applies to dilute solutions, but 
that is the region where the e coeffi- 
cients have been determined. They 
should be applied only there. 

Equation 2 yields the following expres- 
sion for the chemical potential of a sol- 
ute, j> l ,  if all the L parameters are 
constants; i.e., all L~=0 for n>0 in Eq 3: 

Gj = GO + Mj + L1j 

n 

+ RnnXj + y~ (Lkj - L~ - L~k)X ~ + 
k=-2 

n n 

0.5 ~ ~ (L,k + L . -  L~)XkX t (Eq S) 
k=-2 /--2 

Comparison with the e formalism, Eq 1, 
yields: 

Lkj - LIj - Llk : EkjRT (Eq 6) 

and with k=j we obtain, because Lj0=0, 

-2L  b = EjjRT (Eq 7) 

and withj=k, 

-2Llk = ekkRT (Eq 8) 

Combination yields: 

Lkj = [ekj -- (ejj + ekk) / 2]RT (Eq 9) 

Finally, 

Mj= [ l n ~ + e T / 2 ] R T  (Eq 10) 

The last summation in Eq 9 is identical 
to the modification of the Wagner e for- 
malism proposed by Schuman3 and 

Pelton and Bale. 4 The introduction of 
hypothetical standard states is thus 
equivalent to their method of modify- 
ing the e formalism to obey the Gibbs~ 
Duhem relation. With the present 
method, the data on solutes on Fe melts, 
compiled by Sigworth and Elliott 8 were 
recently converted to the Redlich-Kis- 
ter formalism and successfully intro- 
duced into the TERMO-CALC data 
bank system. 9 
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N.A. Gokcen,  Author ' s  reply 

I appreciate the discussion by Professor 
Hillert, allowing me to clarify and re- 
emphasize important points in my pa- 
per. (In this reply, the numbers for 
references and equations in Hillert's 
discussion are preceded by H, and those 
in my paper are preceded by G. My new 
equations use letters only.) 

The modifications of the linear e,j for- 
malism by Schuhmann (H3) and Pelton 
and Bale (H4) are equivalent to the 

quadratic Margules equation, Eq G3, in 
terms of x 2 and x 3. Thus, the substitu- 
tion of 1 - x  2 - x  3 for x 1 in (G3) yields: 

G2ex- g2 =A12 - 2AI2X~ 

+(A23 - A I 2 - A I 3 ) X 3  

+ [A12x ~ +Al3X 3 

+(AI2+AI3 -A23)x2x3]  (EqA) 

The first three terms are the linear Wag- 
ner equation, G4, and the terms in 
brackets [ ] are gl - gl(solvent). Pelton 
and Bale added gl(solvent) to the linear 
Wagner equation, which is identical 
with the terms in brackets [ ], so that the 
Gibbs-Duhem relation is obeyed at fi- 
nite solute concentrations. It is evident 
that such a procedure takes us right 
back to the original quadratic Margules 
equation. This point was not mentioned 
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