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The capillary force due to a wetting liquid between solid particles is responsible for agglomeration and 
the rearrangement stage of liquid phase sintering. The capillary force has been calculated for several 
situations using a numerical technique. Included in the calculations are variations in particle size, 
contact angle, liquid volume, and particle separation. The capillary force obtained from these calcu- 
lations is more accurate than prior estimates using a circular profile for the interparticle liquid bridge. 
A large attractive force exists between particles with small contact angles, particle sizes, and liquid 
volumes. Rupture of the liquid bridge is predicted using an energy analysis. At large contact angles, 
a zero force condition exists at an intermediate particle separation. 

I. INTRODUCTION 

IN liquid phase sintering and powder agglomeration, the 
system consists of solid particles, pores, and a liquid. In the 
initial stage of liquid phase sintering the solid particles often 
preserve their initial size and shape while undergoing re- 
arrangement without significant dissolution of the solid in 
the liquid.I Likewise, in agglomeration processes such as 
spray drying a wetting liquid is used to pull particles into a 
dense cluster. An important parameter necessary to mathe- 
matically treat these processes is the capillary force exist- 
ing between the solid particles and the liquid. The first step 
in calculating the capillary force is to consider a system 
consisting of two solid spherical particles connected by a 
liquid bridge. Even though such a system appears to be 
simple, the task of calculating the force may become quite 
formidable. The reason is that the capillary force depends on 
the shape of the liquid bridge which is a function of the 
contact angle, particle size, and amount of liquid. The true 
configuration of the bridge is called a nodoid and is de- 
scribed by a differential equation given below. 

II. BACKGROUND 

The capillary force F between two solid bodies connected 
by a liquid bridge depends on the shape of the liquid; an 
accurate description of the liquid profile is therefore de- 
sirable. In Figure 1, two spheres with radius A are shown 
separated by the distance D. The angle a is the semi-angle 
subtended by the perimeter where the solid, liquid, and 
vapor phases meet. The angle between the liquid-vapor sur- 
face tension vector Yl-v and the x-axis is ~b. The contact 
angle between the solid and the liquid is 0. The radius of 
curvature of the liquid surface in the x-y plane is S and its 
radius in the orthogonal plane is T. The equations describing 
these two radii are given by 2 

S = [1 + (y,)Z]3n/y,, [1] 
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Fig. 1 --The geometry and definition of variables ofa nodoid liquid profile 
which connects two identical spheres. 

and 

T = y/sin fl = y[1 + (y,)2]~n [2] 

where y describes the liquid profile as a function of x, y '  
designates dy/dx, y" designates d2y/dx 2, and fl is given in 
Figure 1. 

Due to the curvature of the liquid-vapor interface, there 
will be a pressure differential P between the liquid meniscus 
and the vapor phase. According to the Laplace equation, the 
pressure deficiency of the liquid (neglecting the gravity ef- 
fect) is given by 

, (1  1 ) : ,  i3, 
Substituting Eqs. [1] and [2] into Eq. [3] gives 

P/Y,-v = y"/[1 + (y,)213/2 _ l / [y(1  + (y,)2)]1/2. 

[41 

Since the pressure is equal everywhere in the liquid, the 
pressure deficiency P in Eq. [4] is a constant. Equation [4] 
is thus a differential equation describing the profile of the 
liquid-vapor interface, the nodoid. This equation is general 
and applies to the liquid shown in Figure 1 as well as the 
case where the spheres are in contact (D = 0). 

After the profile of the liquid bridge is found, the force 
between the spheres can be calculated by the force 
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equation 3-1~ 

F = 7ry2P + 27ry'yt-v cos 4). [5] 

The first term, ~y2p, is due to the pressure deficiency 
in the liquid acting on the area of any cross section of 
the liquid bridge which is perpendicular to the x-axis. The 
second term, 27ryyt-v cos ~b, is due to the surface tension 
acting along the contact perimeter of that cross section of 
the liquid. The capillary force caused by this surface tension 
is then its projection onto the x-axis. Equation [5] is gen- 
eral. It can be applied to any point along the liquid-vapor 
interface. 

Graphical, analytical, and numerical solutions to the cap- 
illary force problem have been supplied for a few specific 
cases 3'4'6'u-15 where the contact angles, particle sizes, and 
distances between particles are specific. In this study, we 
have further extended the solutions to the general case where 
spheres of different radii are either in point contact or are 
separated by a distance, and have included variable contact 
angles and liquid quantities. 

III. CALCULATION METHODS 

When gravity is neglected, the differential Eq. [4] defines 
the profile of the liquid and must be solved first in order to 
evaluate the capillary force. Gravity can be neglected for 
particles since the gravitational force is typically a very 
small fraction (10 -4 to 10 -5 for 100/xm particles) of the 
capillary force. 16 In Figure 2, two spheres with radii As and 
At are separated by a distance D. The liquid-vapor interface 
intercepts both spheres with a contact angle 0. The boundary 
conditions of Eq. [4] in such a system is that the contact 
angle must be maintained at points "a" and "b" 

at x = x~ y' = tan(Tr/2 + a~ + 0) [6] 

at x = Xb y' = tan(Tr/2 -- al + 0) [7] 

where as and c~ are the semi-angles subtended by the liquid 
bridge to the centers of the small and large particles, re- 
spectively (Figure 2). 

Equation [4] and boundary conditions [6] and [7] com- 
pletely specify the mathematical problem. The numerical 
procedure to solve this problem for a given combination of 
liquid volume, contact angle, particle sizes, and inter- 

Fig. 2 - - T h e  geometry and definition of variables 6f a nodoid liquid profile 
which connects two unequal sized spheres. 

particle distance is described by Hwang. 16 After the profile 
of the liquid-vapor interface is found, the capillary force can 
be calculated from Eq. [5]. Based on the above procedure, 
computer programs were written to calculate the configu- 
ration and capillary force; listings of these programs are also 
given in the thesis by Hwang. 

IV. RESULTS 

The capillary force depends on the shape of the liquid 
bridge, which depends on the following main variables: 
(i) the contact angle 0 measured between the solid-liquid 
and the liquid-vapor interface; (ii) Al and As, the radius of 
the large and small spheres; these radii are also represented 
by a size ratio variable C which is defined as AtlAs (where 
At is greater than As so that C is greater than 1); (iii) the 
interparticle distance D; and (iv) V~iq, the absolute volume of 
the liquid bridge. Since the absolute value of the liquid 
volume depends on the scale of the system, we use a normal- 
ized liquid volume which is defined by 

V = 3 V l i q / 4 " l r A  3 . [8] 

The capillary force is a function of the above variables 
and can be represented using a normalized force/7,. The 
normalized force is defined as the ratio of the capillary force 
divided by the surface tension of the liquid and the radius of 
the small sphere, 

F 
F , -  (yt-~as---~" [9] 

Since the computer program developed for studying the 
liquid profile and capillary force can produce extensive 
results, only the results of the calculations for specific com- 
binations of contact angle, interparticle distance, liquid 
volume, and particle size ratio are presented. The size ratios 
C are 1, 5 and ~ (the latter corresponding to a sphere and 
a plate); contact angles are 0 deg, 45 deg, and 85 des; inter- 
particle distances are from 0 to 0.2As (where As is the radius 
of the small particle); and normalized liquid volumes are 
0.01 and 0.1. These liquid volumes are for one contact 
point; thus, they are realistic considering the multiple con- 
tact points between particles in a typical powder compact. 

The capillary force results for various conditions will be 
divided between cases of small and large contact angles. 
There is a fundamental difference between these two cases. 
For small contact angles the capillary forces decrease with 
increasing distance D between the spheres but they remain 
attractive even for large distances. Nevertheless, even with 
attractive forces at these small contact angles, the configu- 
ration consisting of two spheres connected by a liquid bridge 
will become unstable at large interparticle distances and 
rupture will occur. On the other hand, for very large contact 
angles the capillary forces are repulsive for small distances 
between particles. As the distance increases the curves for 
capillary force pass through zero and become attractive for 
large separations. 

A. Low Contact Angles 

Families of curves of capillary forces for various condi- 
tions are shown in Figure 3 when the contact angle equals 
0 deg. These curves show that with a zero contact angle the 
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Fig. 3--The capillary force acting between two spheres or a sphere and a 
plate connected by a liquid bridge as a function of the normalized inter- 
particle distance for a contact angle 0 = 0 deg, and particle size ratios 
C = 1,5, and~. 

capillary force between two spheres is positive (attractive), 
and its magnitude depends on the interparticle distance D, 
liquid volume V, and size ratio of particles C. The attractive 
force indicates that particle contact with D = 0 is preferred 
with wetting liquid bridges. For small values of D, the 
capillary force increases with decreasing values of liquid 
volume. This dependence can be seen by comparing the 
curve (1,0.01) with curve (1,0.1) and curve (5, 0.01) with 
(5, 0.1) nearD = 0, where the first number denotes the size 
ratio C and the second number denotes the normalized liq- 
uid volume V. 

Next, consider the effect of the particle size ratio on 
the capillary force. It is seen in Figure 3 that the normal- 
ized capillary force depends on the size ratio C. Compar- 
ing the curve (1,0.1) with (5,0.1) and (o%0.1) or the 
curve (1,0.01) with (5, 0.01) and (~, 0.01), it is seen that 
the normalized capillary force increases with increasing 
size ratio. 

This dependence is based on the type of normalization of 
liquid volume V used in these results. With a different 
normalization of liquid volume, the influence of the size 
ratio on the capillary force will appear different. An ex- 
ample of the dependence of the capillary force on the size 
ratio based on the volume of both spheres is shown in Fig- 
ure 4. (Note that the sphere-plate combination can not be 

IO  , i i 
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Fig. 4 - - T h e  capillary force acting between two spheres connected by a 
liquid bridge as a function of interparticle distance for a contact angle 
O = 0 deg, particle size ratios C = 1 and 5, and with the liquid volume 
normalized by the total solid volume. 

shown using this format.) At a small interparticle distance D 
the capillary force for identical spheres (C = 1) is slightly 
smaller than for spheres with a size ratio of 5. As D in- 
creases, the difference of the capillary force between the two 
case becomes larger rather than smaller as in the case shown 
in Figure 3. 

When D is small the capillary force increases with de- 
creasing liquid volume and decreasing particle size uni- 
formity. Therefore, when a strong capillary force is needed 
for a system consisting of spheres separated by a small 
distance, the liquid should be uniformly distributed so that 
the amount of liquid at each contact point is small. In 
addition, benefit may be gained by a wide particle size 
distribution. 

As shown in Figure 3 for 0 = 0 deg, even though the 
normalized capillary force decreases with interparticle dis- 
tance D, it nevertheless stays attractive in the range of D 
studied. It has often been assumed TM that permanent sepa- 
ration of the two spheres (liquid rupture) will occur when the 
interparticle distance is very large because the capillary 
force passes through zero and becomes repulsive for large 
D. This is not correct. Configurations which consist of 
two spheres each of them with a cap of liquid, as shown 
in Figure 5, can have a lower free energy than when the 
liquid forms a bridge with a nodoid profile between the 
two spheres. Under this condition rupture of the bridge 
is expected. 

Rupture can be explored by comparing the surface energy 
of a system consisting of two spheres connected by a bridge 
with a nodoid profile and the surface energy of two spheres 
with liquid caps. As shown in Figure 5, each of the caps is 
part of a sphere because the surface energy in that condition 
is at its minimum. In Figure 6 the difference in surface 
energy for the two configurations (nodoid and spherical 
caps) is plotted as a function of the interparticle distance for 
various liquid volumes. Rupture is expected when the en- 
ergy difference is negative. This approach does not include 
the energy difference associated with the two different liquid 
pressure states. Since the pressure is higher in the spherical 
caps, inclusion of this factor will shift the rupture point to 
larger interparticle distances. 

The values of interparticle distance at a given liquid vol- 
ume when the surface energy difference is zero is shown in 
Figure 7 as a plot of capillary force v s  interparticle distance. 
The points where the energy difference between the two 
configurations is zero is marked by circles and it is noted 
that the capillary forces at these points are still attractive. 

Experimentally, the rupture phenomenon described above 
has been observed by Mason and Clark. ~9 Their data are the 

Y 

Fig. 5 -  The geometry and definition of variables of the liquid cap adhered 
to a sphere. 

METALLURGICAL TRANSACTIONS A VOLUME 18A, JANUARY 1987--13 



0.05 

004 ~ ~ 0 0 ~  
( E spherical caps o o3 
- E n~ ~ id)/7'l-vAZ __~_! 

0.02 __0~_.00~i 
0.01 

O - 

- O01 I 
O.lO 015 

3 0~ LNormolized 

~ ~ ~ L~l~u~e~O 7 

0.20 0.25 0,30 
Normalized Interparticle Distance D/A 

Fig. 6--Surface energy difference between a nodoid liquid bridge and 
spherical liquid caps in an identical spheres system. 
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Fig. 7 - - T h e  rupture point and the capillary force acting between two equal 
sized spheres connected by a liquid bridge as a function of the normalized 
interparticle distance for a contact angle 0 = 0 deg. 

points plotted in Figure 8. Also shown are the distances for 
different liquid volumes when rupture should occur on the 
basis of equal configurational energies. The predicted inter- 
particle distances for rupture are somewhat smaller than 
those measured experimentally. This is expected since the 
capillary force at the critical rupture distance is still attrac- 
tive as shown in Figure 7, and the energy associated with 
differences in liquid pressure is not included. Also, from 

to occur, the free energy after rupture must be smaller than 
before. The measured rupture distances therefore should be 
larger than the values predicted for equal surface energies. 

B. Large Contact Angles 

In order to study how the contact angle 0 affects the 
capillary force, the data in Figure 3 (0 = 0 deg), Figure 9 
(0 = 45 deg), and Figure 10 (0 = 85 deg) should be 
compared. The data in Figure 9, in which the capillary 
forces are plotted as a function of interparticle distance at a 
contact angle of 45 deg, are similar to those in Figure 3 
(0 = 0 deg) except that the magnitude of capillary forces is 
smaller (less attractive). The situation is very different when 
capillary forces are calculated for a contact angle of 85 deg. 
The results of the calculation are shown in Figure 10. The 
capillary forces are negative (repulsive) for a small inter- 
particle distance. As the distance increases, the curves of the 
capillary force pass through zero and become attractive for 
large values of D. At an interparticle distance of De the 
system is at equilibrium. If the system departs from De, it 
will return to the equilibrium position eventually. 

Mason and Clark 2~ found that the geometry of the liquid 
bridge must be a portion of a sphere when the force is zero 
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I 0  i , , 
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21-- ( I .  0 . 0 1 )  / 
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0 0.05 O.lO 0.15 0.20 

Normalized Interparticle Distance, D/A s 

Fig. 9 - - T h e  capillary force acting between two spheres or a sphere and a 
plate connected by a liquid bridge as a function of the normalized inter- 
panicle distance for a contact angle O = 45 deg, and the size ratios C = 1, 
5, and :~. 
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Fig. 8 - - A  comparison between the calculation and the experimental data 
for the variation of bridge rupture distance with various liquid volumes for 
two identical spheres (C = 1) with a contact angle 0 = 0 deg. 
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Fig. 10--The capillary force acting between two spheres or a sphere and 
a plate connected by a liquid bridge as a function of  the normalized inter- 
panicle distance for a contact angle 0 = 85 deg, and size ratios C = 1, 
5, and ~. 
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at D = 0. The current calculations show that even when the 
spheres are separated by a distance, the liquid profile is still 
spherical for the zero capillary force condition. 

The values of the contact angle when the capillary force 
is zero at zero interparticle separation (D = 0) were calcu- 
lated for different amounts of liquid and various size ratios 
of the spheres. The results are shown in Figure 11. The 
critical contact angle for zero force decreases with in- 
creasing volume. For each of the three curves for different 
size ratios (C = 1, 5, oo) the region below the curve is the 
one where an attractive force is exerted while above the 
curve the force is repulsive and the spheres will be pushed 
apart. Contact angles of real materials are usually smaller 
than the critical values plotted in Figure 11, so that shrink- 
age or agglomeration of loose powders due to the attractive 
capillary force is expected. 

V. DISCUSSION 

Since the results include small numerical errors, they 
were compared with the available analytical solutions to 
assess their validity. For two contacting spheres the ana- 
lytical solution which includes incomplete elliptical inte- 
grals was first found by Fisher. 1i A comparison of capillary 
forces at twelve liquid volumes shows Fisher's results and 
our numerical solutions agree within 0.1 pct or better for 
all cases. 

In addition to the above comparison, three other checks 
were made by simple analytical solutions for the capillary 
forces which are possible for particular geometries. They 
occur when the pressure deficiency P in Eq. [3] is equal to 
O, 34-v/H, and 2~l-v/n where H is the liquid neck radius 
as shown in Figure 1. 

For P = 0, the meridian curve is called catenoid and is 
described by a hyperbolic cosine function. For P = 7~-v/H, 
the geometry is a cylindrical profile which occurs when the 
liquid-vapor interface is parallel to the x-axis. The third 
geometry occurs when the liquid bridge is part of a sphere. 
This configuration satisfies Eq. [3], because the two prin- 
cipal radii are both equal to H and the pressure deficiency 
is therefore equal to 27~_v/H at any point along the liquid- 
vapor interface. 

To compare the results calculated by the numerical 
method with the three geometries, the volumes of the liquid 
bridge based on the geometries were first calculated ana- 
lytically. From the same liquid volume and the same system 
variables (D, 0, C), the coordinates of the liquid profile of 
the system were calculated. The coordinates of the liquid 
profile were compared with the function representing each 
of the three particular geometries, i.e., catenoid, cylinder, 
and sphere. In all three cases, no difference on the profile 
between the two results was found. Based on these checks, 
it is reasonable to say that the numerical method and the 
computer program written for it are correct. 

Results of capillary forces calculated numerically for 
two systems consisting of identical spheres (C = l) and 
a sphere and a plate (C --- oo) can be compared with experi- 
mental results reported by Mason and Clark 19 (Figures 12 
and 13). In Figure 12, the theoretical calculations of capil- 
lary forces at three different liquid volumes for the system 
consisting of two identical spheres are drawn in solid lines. 
The calculated values agree fairly well with the experi- 
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Fig. 12- -A comparison between experimental data measured by Mason 
and Clark and theoretical calculations obtained from this study on capil- 
lary forces for a system consisting of two identical spheres with a contact 
angle 0 = 0 deg. 
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Fig. 11 - -  The critical contact angle (in degrees) for zero capillary force as 
a function of the liquid volume for three size ratios C = l ,  5, and oo. 
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Fig. 13--Comparison of experimental data measured by Mason and Clark 
and theoretical calculations obtained from this study on capillary forces for 
a system consisting of a sphere and a plate with a contact angle 0 = 0 def. 
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mental results except when the liquid volume equals 0.0071. 
In Figure 13, the theoretical calculations agree with the ex- 
perimental results for all three liquid volumes for the system 
consisting of a sphere and a plate. 

Some past investigations of the capillary force have used 
an approximate force calculation based on a circular profile 
for the liquid bridge. In this case the pressure inside the 
liquid is not homogeneous. The errors introduced by using 
this approximation instead of the numerical solutions based 
on the nodoid profile were calculated for a wide range of 
contact angles, interparticle distances, liquid volumes, and 
particle sizes. In Figure 14 the percentage error of the ap- 
proximate method is plotted as a function of the interparticle 
distance for various liquid volumes and contact angles for a 
system consisting of identical spheres. Note that the dashed 
line represents zero error. In the case of a small contact angle 
(0 = 0 deg), the percentage error at D = 0 is greater than 
5 pct. As the interparticle distance increases, the error of the 
approximate method increases. Also the percentage error of 
the approximate method depends on the liquid volume. As 
the liquid volume decreases, the discrepancy between the 
results from the approximate method and the numerical 
method increases, especially when the interparticle distance 
is large. It was also found that as contact angles increased, 
the percentage error decreased. For spheres of different 
sizes, the errors generally increase as the particle size ratio 
C increases. 

From the above examination it is seen that the approxi- 
mate method is not reliable for small contact angles, low 
liquid volumes, large particle size differences, and large 
interparticle distances. For this reason the force method has 

led to wrong conclusions with regard to capillary f o r c e s  17'18 

under such conditions. For example, Smolej and Pejovnik ~7 
used the approximate method to calculate the capillary force 
for low contact angles, large interparticle distances, and 
small liquid volumes. Their data are shown in Figure 15 as 
dashed lines, indicating a metastable equilibrium at point Du 
where the capillary force is zero. However, no such meta- 
stable equilibrium exists when the capillary forces are calcu- 
lated using the nodoid profile. The curves calculated in this 
study are shown as solid lines in Figure 15. The circled 
points indicate the calculated conditions for which rupture is 
expected to occur. This indicates that the capillary force 
never reaches zero or a negative value before rupture. 

Finally, a comparison can be made between the capillary 
force and the weight of the sphere. As an example, the case 
of two identical spheres connected by a liquid bridge with 
a normalized volume V = 0.01 and the contact angle 
0 = 8 deg is studied. The capillary force exerted on the 
sphere is 4.94Ayt_v atD = 0.01A and 0.97Ayt_v at rupture, 
where A is the radius of the sphere and "/l-v is the surface 
tension of the liquid. If 7t-v = 1 N/m, A = 10/zm and 
the density of the sphere p = 10 g/cm 3, then the capillary 
force exerted on the sphere is about l0 s and 2 x l04 times 
that of its own weight at D --- 0.1 /xm and at rupture, re- 
spectively. Thus, if spheres are connected by a liquid 
bridge, they will be pulled toward each other by this large 
capillary force, and the time of the movement should be 
very short. Accordingly, the short period needed for particle 
agglomeration (such as in spray drying) and rearrangement 
in liquid phase sintering seems reasonable in light of the 
relatively large forces calculated for a wetting liquid. 
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Fig. 14--The percentage error of the capillary force calculated by the 
approximate method as a function of the interparticle distance for a system 
consisting of identical spheres (C = 1). 
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VI. CONCLUSIONS 

The calculation of capillary forces has been performed 
using a numerical method based on a nodoid profile. A wide 
range of system variables, i .e. ,  interparticle distance D, 
contact angle 0, liquid volume V, and particle size ratio C, 
is considered in this study. The effect of each variable on the 
capillary force has been discussed. A large capillary force is 
associated with a small separation distance between the 
spheres, a small contact angle, and uniform distribution of 
the liquid. At small contact angles rupture can occur even 
when the capillary force is attractive. The critical condition 
for rupture is calculated from the free energy of the system. 
At large contact angles a zero force condition exists for 
which the system is at an equilibrium separation between 
spheres. When the calculation is based on a circular liquid 
profile, the errors are small only for large liquid volumes, 
large contact angles, and small interparticle distances. 
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