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The mechanical properties (elastic, plastic, creep, and fracture) of cellular solids or foams are 
related to the properties of the cell wall material and to the cell geometry. The properties are well 
described by simple formulae. Such materials occur widely in nature and have many potential 
engineering applications. 

FOREWORD 

THIS paper was presented at a meeting convened to renew 
the memory of Professor Robert Franklin Mehl. It is easy to 
forget that the field in which we, most of us, work- - the  
broad field of Materials Science--  is not very old. He was 
one of the great pioneers, one of the first to explore and map 
out the origins of structure in materials and the way it con- 
trols properties. The work described below, and, above all, 
the approach to it, is in the tradition of which he was one of 
the founders. 

The Institute of Metals Lecture was established in 1921, at which time the 
Institute of Metals Division was the only professional Division within the 
American Institute of  Mining and Metallurgical Engineers. It has been 
given annually since 1922 by distinguished men from this country and 
abroad. Beginning in 1973 and thereafter, the person selected to deliver the 
lecture will be known as the "Institute of Metals Division Lecturer and 
R. F. Mehl Medalist" for that year. 

Dr. ASHBY received his B. A., M. A., and Ph. D. degrees at the Univer- 
sity of Cambridge, England. He has been the Editor of Acta Metallurgica 
since 1974 and is an Honorary Research Fellow at Harvard University. 
Dr. Ashby has served as Chairman of the NATO Study Group on Materials 
Resources and was a member of the National Economic Development 
Council Study Group on Materials in the British Economy. He was elected 
a Fellow of the Royal Society in 1979 and is the recipient of the L. B. Pfeil 
Medal and the Rosenhain Medal of the Metals Society. 

A large portion of this work was done in collaboration with Dr. L.J. 
Gibson. Dr. Gibson is now Assistant Professor of Structural Engineering, 
University of British Columbia. 

I. INTRODUCTION 

When modem man builds large load-bearing structures, 
he uses dense solids: steel, concrete, glass. When nature 
does the same,* she generally uses cellular materials: wood, 

*To give an idea of the scale of some natural "structures", a large 
dinosaur was about the length and weight of a 25-seater aircraft; a large 
redwood tree is about the height of a 30-floor building (100 m) and weighs 
around 2500 tonnes. 

bone, coral. There must be good reasons for this. It is, 
almost certainly, that cellular materials permit the simulta- 
neous optimization of stiffness, strength, and overall weight 
in a given application. Cellular solids are nature's equivalent 
of the I-beam. 

Man-made foams are common enough, of course: cushion- 
ing, insulation, padding, packaging are all functions filled 
by cellular solids. Nature uses them in these ways, too: 
orange peel to protect the orange, cork bark to insulate the 
tree. But while nature has, for aeons, used cellular materials 
to support large loads, man, until recently, has used only 
wood- -  a natural cellular so l id- -  in this role. His ability to de- 
sign and optimize his own cellular structures is still limited. 

In this article, I would like to summarize the under- 
standing - -  some of it old, some more recent--  of the mechan- 
ical behavior of cellular solids. The engineering potential 
of cellular materials is considerable, but its realization 
requires new and innovative methods of design, unfamiliar 
to traditional engineers. 
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(a) (b) (c) 

(d) (e) (]') 
Fig. l - -Man-made foams: (a) an open-cell polyurethane; (b) a closed-cell polyurethane; (c) aluminum honeycomb; (d) copper; (e) mullite; (f) zirconia. 

II. THE STRUCTURE OF CELLULAR SOLIDS 

Making foams is not difficult. Most polymers can be 
foamed easily, and techniques exist for doing the same 
thing with ceramics and glasses. Even metals can be formed 
into foams. 

A. Isotropic and Anisotropic, Open, and 
Closed-Cell Foams 

What do they look like? Figure 1 shows man-made cellu- 
lar solids: polymers, ceramics, and metals; Figure 2 shows 

natural cellular materials: cork, wood, sponge, coral, bone, 
and cuttle bone. They show that some foams are almost 
isotropic, meaning that their structure and their properties 
have no directionality. Others are anisotropic: their structure 
is axisymmetric (like cork) or orthotropic (like wood); and 
their properties reflect this. Man-made foams tend to be 
almost isotropic. Natural cellular solids are rarely so; a 
single piece of cork or bone differs in .strength and stiffness 
by a factor of 2 or more along two directions at right angles. 
Wood is more anisotropic still: many woods are 10 times 
stiffer and stronger when loaded along the grain than across 
it. So we cannot ignore the directionality of cell structures; 

(a) (b) (c) 

(d) (e) 
Fig. 2--Natural foams: (a) cork; (b) balsa wood; (c) sponge; (d) bone; (e) coral; (f) cuttle bone. 
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and it is a feature which can be built into man-made foams 
and exploited in engineering design (as it now is in design 
with wood). 

The pictures illustrate a second distinction. Some foams 
have closed cells (like a soap foam): the solid material is 
distributed in little plates which form the faces of the cells. 
Others have open cells (like a sponge): the solid material is 
distributed in little columns or beams which form the cell 
edges. The mechanical properties reflect, to some extent, 
this distribution. In reality, most man-made foams, even 
those with closed cell faces, behave like open-celled foams 
because surface tension draws much of the solid material 
into the cell edges during manufacture. 

These are the finer distinctions of structure. We have 
overlooked the most important aspect of the structure: the 
relative density, p/ps ,  where p is the density of the foam 
and p, that of the solid of which the foam is made. The me- 
chanical properties of foams depend, above all else, on the 
relative density. It can vary from 1 to as little as 0.01. The 
familiar foamed plastics used for packaging have a relative 
density of around 0.05. 

B. Deformation Mechanisms and ldealized Foam Structures 

Detailed studies 1-4 of model foams have identified four 
deformation modes: linear elasticity, nonlinear elasticity, 
plastic collapse, and various sorts of fracture. The studies 
used two-dimensional hexagonal cells, like those in the 
diagrams shown later in this paper. A hexagonal network is 
a good starting point because the modes of deformation 
correspond to those of three-dimensional foams, yet the 
geometry is simple enough that a complete analysis is prac- 
tical. The understanding derived from the two-dimensional 
models has provided the foundation for the analysis of 
the more complicated problem presented by real, three- 
dimensional foams 4-1~ given below. 

In the analysis, the three-dimensional structure of the 
foam must be included. It is idealized, without loss of physi- 
cally important features, in the models shown in Figure 3. 
The open-cell foam is modeled as a cubic array of members 
of length l and square section of side t. Adjoining cells are 
staggered so that members meet at mid-points. The relative 
density of the cell, PIPs, (where p~ is the density of the cell 
wall material) is then given by: 

s  [1] 
Ps 

(a) (b) 
Fig. 3 -  The 3-dimensional structure of open- and closed-cell foams, ide- 
alized. The cell walls meet so that loads cause bending moments to be 
applied to the cell walls. Most foams behave like the open-cell foam. 

and the second moment of the section of a member (which 
we need later) is given by: 

t 4 
I = - -  [2] 

12 

A closed-cell foam is modeled similarly. The square struts 
are replaced by square plates of side l and thickness t. 
Adjoining cells are again staggered. Then: 

p t 

ps l 
[s] 

It 3 
1 = - -  

12 

As pointed out earlier, most foams behave more like the first 
model, because surface tension concentrates material into 
the cell edges during their manufacture. We will use it as the 
basis of the calculations given below, which treat isotropic 
foams. Refinements, results for the second model, and 
the generalizations to nonisotropic foams are given else- 
where. L/'l~ Symbols are defined in Table I. 

III. MECHANICAL PROPERTIES 

When a foam is compressed, the stress-strain curve shows 
three regions (Figure 4). At low strains, the foam deforms 
in a linear-elastic way; there is then a plateau of deformation 
at almost constant stress; and finally there is a region of 
densification as the cell walls crush together. The extent of 
each region depends on relative density P/Os. Elastic foams, 
plastic foams, and even brittle foams all have three-part 
stress-strain curves like this, though the mechanism causing 
the plateau is different in each case. 

The deformation of a regular, two-dimensional foam like 
that sketched in Figure 5 can be analyzed with precision. 
It is far more difficult to do the same analysis for a three- 
dimensional foam, because the response is an average of 

Table I. Symbols and Units 

o 
ps 
E 
Es 

cry 
k 

cr I 
K,c 
t 
I 
( l  

I 
F 
For 
Me 
Ms 
C~ to C8 
B~ to B8 

Density of foam (kg/m 3) 
Density of cell-wall material (kg/m 3) 
Young's Modulus of foam (MPa) 
Young's Modulus of cell-wall material (MPa) 
Elastic collapse stress of elastomeric foam (MPa) 
Plastic collapse stress of plastic foam (MPa) 
Yield strength of cell-wall material (MPa) 
Strain rate (s 1) 
Creep constants (s -l, MPa, -) 
Crushing strength of brittle foam (MPa) 
Modulus of rupture of cell-wall material (MPa) 
Fracture toughness of foam (MPa m ~/2) 
Cell wall thickness (m) 
Cell size or cell wall length (m) 
Half-length of crack (m) 
Second moment of area of cell wall (m 4) 
Force acting on a cell wall (N) 
Euler buckling load for cell wall (N) 
Fully plastic moment of cell wall (Nm) 
Moment which will just fracture cell wall (Nm) 
Dimensionless constants 
Dimensionless constants 
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Fig, 4 - - T h e  typical shape of the stress-strain curve for a foam. 

1.0 

~F ~F BENDING 

Fig. 5 - - T h e  linear-elastic deformation of a foam: the cell walls bend so 
that the bending deflection ~ is proportional to the force F. 

that of cell walls of random orientation in space, and with 
a distribution of length I and section t 2. It is better to use the 
dimensional argument given below, and then rely on experi- 
ment to determine a single, unknown constant of propor- 
tionality. This method, which we have used to analyze many 
properties of foams, will become clearer as it is applied in 
the following sections. 

A. Linear Elastic Properties 

When a foam is loaded, the cell walls at first bend .  2'3"7'9'1~ 

Figure 5 shows this bending for the two-dimensional model; 
the same bending deformation occurs in three-dimensional 
foams. A force F, applied as shown, causes the nonvertical 

beams to deflect by (3, which is calculated from single beam 
theory as: 

CiFl 3 
(3 - [4] 

12Eft 

Here C1 is a resolution factor which depends only on the cell 
geometry, and E~ is the Young's modulus of the solid cell 
wall material. For the open-cell foam of Figure 3(a) the 
stress is proportional to F/l  2, the strain to (3/1. The second 
moment of area, I, is proportional to t 4 (Eq. [2]) giving: 

t 4 
E OC Es-[; 

Using Eq. [1] for the density, we find: 

E, [5] 

where C2 is a constant. The shear modulus scales in a simi- 
lar way, because shear deformation in a foam also causes 
simple bending of the cell walls. 2 

Data are compared with Eq. [5] in Figure 6. It shows 
Young's moduli for polymeric and ceramic foams plotted 
against p/p, on logarithmic scales. The full line is a plot of 
Eq. [5] with C2 = 1; it gives a good description of a wide 
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Fig. 6 - - T h e  relative Young's E/E. plotted against relative density, p/p,. 
Open symbols represent open-cell polymer foams; shaded symbols repre- 
sent closed-cell polymer foams; crosses are ceramic and glass foams. (The 
references, in order, are: 1,5, 8, 11-17; normalizing constants in Table II.) 
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range of materials and densities. Note that the modulus falls 
rapidly as the volume of void space in the foam increases. 
The range of moduli practically available by foaming is 
large: it spans a factor of 10 4. The modulus is important in 
the design of load-bearing structures which incorporate 
foams (sandwich panels, for example). 

B. Nonlinear Elastic Behavior 

Linear elasticity, of course, is limited to small strains, 
typically 5 pct in compression, rather more in tension. 
Elastomeric foams can be compressed far beyond this point. 
The deformation is still recoverable (and thus elastic), but is 
nonlinear; it is caused by the elastic buckling of the columns 
or plates which make up the cell edges or walls 2'5'6'1~ as 
shown in Figure 7, giving the plateau of the str6ss-strain 
curve* (Figure 4). It is exploited in cushions and packaging 

*Several authors 3,9.t4Jg'2~ studying the collapse of rigid foams sought to 
interpret their results as elastic buckling. Their calculations are in the spirit 
of that given here, but are inappropriate to the materials they studied. 

to give a restoring force (which we now calculate) which is 
independent of displacement. 

The critical load at which a column of length I, Young's 
modulus Es, and second moment of area I buckles is given 
by Euler's formula: 

n2,rr2E,l 
Fcr - -  12 [6 ]  

The constant n 2 describes the degree of constraint at the ends 
of the column. If this load is reached for a layer of cells 
spanning the section, they will buckle, initiating the elastic 
collapse of the foam. For the three-dimensional open-cell 
foam of Figure 3, the stress or* at which this occurs is 
proportional to F~,/12, so that: 

2 2 E J  

~F SF ELASTIC 
BUCKLING 

Fig. 7 - -  The nonlinear deformation of a foam: the cell walls buckle, giving 
large deformation at an almost constant stress. 

Using Eqs. [1] and [2] we obtain: 

= C3 [7] 

valid for relative densities below 0.3 because, at higher 
densities, the cell walls are too short and stocky to buckle. 

Data for tr,* for elastomeric foams are compared with 
Eq. [7] in Figure 8. They are well fitted by the equation 
with C3 = 0.05. Like the modulus, the elastic collapse 
stress spans a wide range: for a given material, a range of I04 
is accessible. This is important for the design of cushions, 
padding, and packaging. 

C. Plastic Yielding 

Cellular materials can collapse by other mechanisms. 
If the cell-wall material is plastic (as are metals and many 
polymers), then the foam as a whole shows plastic behavior. 
It is exploited in crash barriers and energy absorbing systems. 

Plastic collapse occurs when the moment exerted on the 
cell walls by the force F exceeds the fully plastic moment, 
creating plastic hinges 2J~ as shown in Figure 9. For a 
beam of square section of side t, the fully plastic moment is: 

1 
M p = --~ cry t 3 [8] 
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Fig. 8 - - T h e  relative elastic collapse stress, o-~a/Es, plotted against relative 
density, p/p,. Open symbols represent open-cell polymer foams; shaded 
symbols represent closed-cell polymer foams. (The references, in order, 
are: 1,5; normalizing constants in Table 11.) 
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~F ~F PLASTIC 

Fig. 9 - -  The yielding of a plastic foam: the fully plastic moment of the cell 
wall is exceeded, giving large deformation at an almost constant stress o-~p~. 

If a force F acts with a component normal to a beam of 
length l, the maximum bending moment is proportional to 
Fl. The stress on the foam, as before, is proportional to 
F/I 2. Combining these results we find the plastic collapse 
stress of the foam to be: 

o-~* ~ ~e3 ~ 

Using Eq. [1] we obtain: 

0"~_..~ = ( / 9 )  3/2 

O'y C4\ps/ [9] 

Data for the plastic deformation and for the plastic inden- 
tation of foams (discussed next) are plotted in Figure 10. 
They are well fitted by Eq. [9] with C4 = 0.3 for relative 
densities of less than one-third (at higher densities the cell 
edges are too short and stocky to bend plastically). The 
plastic collapse stress can be "tailored", by choosing a foam 
of the fight density, over a range of 103. It is of primary 
importance in the design of crash padding and energy- 
absorbing foams. 

D. Plastic Indentation 

Unlike dense solids, which are incompressible when 
deformed plastically to large strains, foams change their 
volume when compressed. The cells of the foam collapse as 
the foam is squeezed, so that axial compression produces 
almost no lateral spreading. (Poisson's ratio for the plastic 
compression of low density foam is, typically, 0.04. u0,24,25) 
Such foams yield plastically under a multiaxial state of 
stress when the maximum principal stress, not the octa- 
hedral shear stress, reaches the critical value o-e~ calculated 
in the last section. 
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Fig. 10--The relative plastic collapse stress, o-~pt/cr~., plotted against rela- 
tive density, pip,. Open symbols are for metal foams; shaded symbols are 
for closed-cell polymer foams. (The references, in order, are 10, 3, 23, 15, 
19, 16, 21; normalizing constants in Table II.) 

Because of this, the indentation hardness of a foam is 
lower than that of a dense solid of the same yield stress: 
elements of the foam, compressed beneath the indenter, do 
not expand, and so are not constrained by the surrounding 
material in the same way that elements in a dense solid 
are. An analysis of the problem 16 shows that, for relative 
densities less than about 0.3, the indentation pressure, or 
"hardness" H of the foam is simply: 

H = ~ [10] 

(instead of the result H = 3O'y for a dense solid). Two 
experimental studies ]6,24 confirm this result. The data from 
the second study are included in Figure 10. 

E. Creep 

At temperatures above about 0.3 TM (where TM is the 
melting point), metals and ceramics deform by creep: 
slow extension or compression under constant load. Poly- 
mers creep, too, particularly once the temperature exceeds 
the glass temperature Tg. Foams made of these materials, 
too, will creep. Let the creep rate k of the cell wall material 
be described by: 

k = e0 [11] 
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where k0, tr0, and n are creep constants. A beam of length l, 
thickness t, and width b, made of such a material, deflects 
at the rate: 

~oc kol {21y+t~Zn+ 1 
t 2 ;  bttr0J" [12] 

As before, for an open cell foam (Figure 3(a)), the load 
F is proportional to ot 2, and the strain-rate of the foam, 
k, is proportional to 6/L Expressing t/l in terms of the rela- 
tive density p/p, (Eq. [1]) for b = t, we obtain: 

__k _ C (2n + 1)" {C6tr~ n (p,] (3"+1)/2 
k o -  '(n + 2)n"~ tro) \ P /  [13] 

where C5 and C6 are constants. This result correctly reduces 
to the linear elastic relation (Eq. [5]) when n = 1 (set 
tr/k = E and Cro/ko = E,), from which we find that Cs = 1. 
It also reduces to the solution for plastic collapse of the 
foam (Eq. [9]) when n = ~ and tr0 = try, from which we 
find that C6 = 1.25. 

Although metal foams have been tested in the creep 
range, 22 the data are not complete enough to allow a test of 
Eq. [13]. It is valid for relative densities of less than 0.3, 
and has application whenever such foams carry steady loads 
at temperatures at which creep is possible. 

F. The Crushing Strength 

Brittle foams (ceramics and certain rigid polymers) 
collapse by yet other mechanisms: brittle crushing in 
compression 26 and brittle fracture in tensionY '28 The low 
crushing strength of refractory brick (a cellular solid) limits 
the loads that can be applied to it; and the low fracture 
toughness of foams can cause problems when they carry 
tensile loads, as they do in sandwich panels. 

Let the modulus of rupture* of the cell-wall material 

*The modulus of rupture of an elastic beam, loaded in bending, is the 
maximum surface stress in the beam at the instant of failure. The maximum 
stress is related to the moment by Eq. [14]. The modulus of rupture for a 
brittle solid is often close to the tensile fracture strength. 

be o'/. A cell wall will then fail (Figure 1 1) when the moment 
acting on it exceeds: 

1 
M / =  -~- tr;t s [14] 

As before, a force F, acting with a component normal to the 
wall of length l, exerts a moment which is proportional 
to Fl. The stress on the foam, as before, is proportional to 
F/l 2. Combining these results we find that collapse by 
crushing will occur at the stress: 

(t)3 
Using Eq. [1], we obtain: 

t r ,  = c7 [15] 

There are few experimental measurements of the crushing 
of brittle foams. The limited data, ]8'22 shown in Figure 12, 
are insufficient to give confidence that Eq. [15] is a good 
description. But certain other observations do suggest that 

~F ~F BENDING 

Fig. 11 - -  The crushing of a brittle foam: the modulus of rupture of the cell 
walls is exceeded, causing them to fracture. 
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Fig. 12- -The  relative crushing strength, o-?/o?, plotted against relative 
density p/p, for brittle foams. (The references, in order, are: 18, 22; 
normalizing constants in Table I.) 
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the model has the correct physical ingredients. First (and 
remarkably) the tensile and compressive fracture stress of  
unnotched foams should, according to the model, be equal 
(for brittle solids, the crushing strength is roughly 10 times 
the tensile strength). Measurements on foamed TM glasses 
show that this is so. And, second, an extension of  the model 
to describe crack propagation, and to predict the fracture 
toughness of foams, describes data well. This extension 
is described next. 

G. The Tensile Fracture Strength 

Compressive fracture is insensitive to d e f e c t s - - s u c h  
things as flaws, cracks, or a few exceptionally large cells. 
But this is not so for tensile fracture. A completely unflawed 
sample, it is true, should sustain a tensile stress as high as 
that given by Eq. [15] before failing. But if it contained a 
crack or flaw, then the stress concentration it induces will 
fracture cell walls locally, extending the flaw and leading to 
sudden fracture (Figure 13). 

When a brittle foam is loaded, the cell walls at first 
deform elastically. The load is transmitted through the foam 
as a set of  discrete forces and moments acting on cell walls. 
But since the foam is linear elastic until the cell walls 
buckle, the average force and moment on a given cell wall 
can be calculated from the stress field in the equivalent 
linear-elastic continuum. We solve the discrete problem by 
taking the solution of the equivalent continuum problem 
(just as we do on a smaller scale in replacing the discrete 
bonds between atoms by a continuum) and using it to calcu- 
late the forces and moments on the discrete cell walls. 

A crack of length a in an elastic solid, lying normal to a 
remote tensile stress o -=, creates a singular stress field: 

~r~X/-~a 
o' = ~ [16] 

t t 

c 

Fig. 13--Mode 1 crack propagation in a brittle foam: the field of the crack 
subjects cell walls to a bending moment and to tension. When the breaking 
strength of the cell wall is exceeded, the crack propagates. 

at a distance r from its tip. Consider the first unbroken cell 
wall, which we take to be I /2  beyond the tip; it is subjected 
to a force: 

where 

F ~ o"I 2 

o" : o ' ~ a / /  

This exerts a bending moment  on the walls marked A 
and C, and bending moment plus a tensile stress on the wall 

Table II. Properties of Cell-Wall Materials 

Reference Material ps (Kg m -2) Es (MPa) o-y (MPa) r (MPa) 

Baxter and Jones" 
Brighton and Meazey 15 
Chan and Nakamura 14 
Gent and Thomas 5 
Gibson and Ashby 1~ 
Gibson and Ashby 1~ 
Gibson and Ashby 1~ 
Lederman 8 
Matonis 19 
Moore et al. i3 

Patel and Finnie 3 
Phillips and Waterman 12 
Traeger 13 
Wilsea et al. 16 
Mclntyre and Anderton 27 
Fowlkes (1974) 28 
Thornton and Magee 21 

Thornton and Magee 22 
Walsh et al. 17 
Pittsburgh-CorninglS 

expanded polystyrene 1020" 265011 - -  
expanded polyvinyl chloride 140029,30 300029'30 4929'30 
extruded polystyrene 1050 TM 140014 - -  
rubber latex foam - -  2.645 - -  
open-cell flexible polyurethane 120029 4531 - -  
closed-cell flexible cross-linked polyethylene 91032 20052 - -  
closed-celI rigid polyurethane 120029 16003 1273~ 
rubber latex foam - -  - -  - -  
rigid polystyrene 105029 138019 7919 
polypropylene copolymer 90233 113033 - -  
polystyrene acrylonitrile 106513 367013 - -  
rigid polyester-based polyurethane 12303 16003 1273 
rigid polyurethane 120029 16003 - -  
rigid polyurethane foam 120029 16003 1273 
rigid polyurethane 120029 16003 1273 
rigid polyurethane 120029 16003 1273 
rigid polyurethane 120029 16003 1273 
aluminum 52.2 
AI 7 pet Mg~ 270017 69000 229 
AI 7075 J 342 
Zn at -196 ~ 5200 43000 - -  
glass 251117 7500017 __ 
glass 250034 700034 - -  

1273 
127 
127 

20722 
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marked B (Figure 13). If, as before, the walls fail when the 
moment, proportional to F, exceeds the fracture moment 
given by Eq. [14], then the crack advances. Assembling 
these results gives: 

t 3 ~f 
o'~ ~ i"3 X~a// 

where o" s, as before, is the modulus of rupture of the cell 
wall. Using Eq. [11 we obtain: 

(]r ~  c8(P-~]  3/2 o'f [17] 
\p~/ X/-~a / l 

where o'~ is the remote stress which will cause the crack to 
propagate. The equation is valid only when a > l (otherwise 
there is no crack). 

The result is just what would be expected. The fracture 
strength equals that for the unnotched material (Eq. [15]) if 
the crack size is equal to the cell size. In an open-cell foam, 
a wall is either broken or it is not. If the crack size is less 
than the cell size, no cell walls are broken and the foam 
is undamaged. Comparing Eq. [17] with the definition of 
Ktc (the plane-strain toughness) for a through-crack in an 
infinite sheet: 

we find: 

g / c  = o ' ~ / - ~ a  

K,c__ - C8[P} 3 / 2 / \  [18] 
~s X/ Trl kPs/ 

Data for crack propagation in a brittle polymeric foam are 
plotted in Figure 14. Eq. [18], with C8 = 0.65, gives a good 
description of the data. Unlike all the other properties, Ktc 
depends on cell size. This, too, is expected: K~c contains a 
dimension of length; the only lengths which enter the prob- 
lem are the cell size l and the wall thickness t, but that is 
related to I through the relative density p/p~ (Eq. [1]). The 
result is important whatever forms are used in load-bearing 
applications in which tensile forces appear--as they do in 
sandwich panels. 
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Fig. 14 - -The  normalized fracture toughness K~c/O? ~ plotted against 
0 /0 ,  for crack propagation in brittle foams. The references, in order, are: 
27, 28; normalizing constants in Table II.) 

a map with axes of compressive stress and compressive 
strain, showing the fields in which each mechanism is domi- 
nant. Superimposed on the fields are contours of constant 
(initial) relative density. 

IV. OVERALL MECHANICAL 
RESPONSE: DEFORMATION MAPS 

When an elastomeric foam is compressed, it first deforms 
in a linear-elastic way; then its cells buckle to give nonlinear 
elasticity; and, finally, the cells collapse completely and 
the stress rises rapidly as opposing cell walls are forced 
together. A plastic foam behaves in a somewhat similar 
way, except that, now, linear elasticity is followed by plastic 
collapse, and, finally, the forcing together of the cell walls. 
With brittle foams, progressive crushing can again lead to a 
plateau, ending when the material is completely crushed. 
The relevant formuli for open cell foams are summarized in 
Table III, together with the equivalent results for true 
closed-cell foams (Figure 3(b)). Most man-made foams 
behave mechanically as if they had open cells, because 
surface tension (or other factors) concentrates the solid into 
the cell edges. 

The extent of each phase of deformation depends on the 
relative density. It is convenient to display this behavior as 

A. Deformation Map for Elastomeric Foams 

Figure 15 shows a map for elastomeric foams. The linear 
elastic regime terminates when elastic buckling starts. The 
boundary of this field (heavy solid line) lies at the strain at 
which elastic collapse starts. From Eqs. [5] and [7], this 
strain is: 

e = C3 = 0.05 [19] 

At relative densities above 0.3 the cell walls become so 
stocky that they can no longer buckle elastically. The curva- 
ture of the field boundary is such as to make the linear- 
elastic loading line for p/p~ = 0.3 tangent to the boundary. 

The field of elastic buckling ends at the strain at which 
the foam finally "bottoms out", or densities, with a rapid 
increase of load with displacement. This starts when the 
folding of the cells is so great that the walls begin to touch. 
We find that this begins when the foam has been compressed 
to a new relative density of about 0.5 (that is, the void space 
occupies half the volume), and it is complete when the foam 
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Table III. The Equations for Stiffness and Strength of Foams 

Property Open-Cell Foams* Closed-Cell Foams '~ 

E p 2 E Bz Linear elasticity E, C2 E, 

C2 - 1 (Eq. [5]) 

Elastic collapse OF~ C3 OF~ E-~ = ~ = B3 

C3 ~ 0.05 (Eq. [7]) 

Plastic collapse OF} C4 p 3/2 OF} = B4 
OFy \ p , /  OFy 

C4 = 0.3 (Eq. [9]) 

Creep 

Brittle crushing 

Fracture toughness 

[2n + 1 ~" / C  OF\"/- \(3.+2)/2 k _ C ~ I I 6 ~ IV" ~ 

C, = 1; C6 ~- 1.25 (Eq. [13]) 

k (2n + 1)" (B6___~l"(p~l 2"+' 
~o- Bs(n + 2)n~\ OFo/ \ p /  

_ 

OF7 / p \ 3,z 0"7 - B7 
O'f -- C 7 ~ ; )  OFf Ps 

C7 ~ 0.65 (Eq. [15]) 

K~c = C8 OFsX/--~t K,c = B8 OFiV-~l 

C8 ~ 0.65 (Eq. [18]) 
*In most foams the solid is concentrated into the cell edges; then the open-cell formulae are appropriate. The maps shown in Figures 15 and 17 were 

constructed using them. 
*These equations refer to true, closed-cell foams with no thickening of the cell edges. They are derived by the method given in the text, but using Eqs. [3] 

in place of Eqs. [1] and [2]. The quantities B, to B2 are dimensionless constants. 

) 
COMPRESSIVE STRAIN ~' 

Fig. 1 5 - - A  deformation-mechanism map for elastomeric foams, for rela- 
tive densities from 0.02 to 1. 

has been compressed to a new relative density of 1 (no void 
space left). 

During elastic buckling the foam compresses axially with 
no lateral spreading (u = 0). Then the relative density after 

a nominal compressive strain* e is just ( p / p , ) ( 1 / ( 1  - e)). 

*Nominal compressive strain e = (ho - h ) /ho  where ho is the original 
height and h the height after a compressive strain of e. 

Equating this to 0.5 gives the strain at which densifica- 
tion starts. 

es = 1 -- 2 p [20] 
P, 

and equating it to 1 gives the strain at which densification 
is complete: 

ec = 1 P [21] 
P, 

(where p i p ,  of course, is the ini t ial  relative density). Within 
the elastic buckling field, the stress is related to the density 

�9 by Eq. [7]; using Eq. [20] gives the equation of the field 
boundary (heavy solid line) for the start of densification: 

/ o ' \  1/2 
e, ~ 1 -  10~E ) [22] 

The contours are stress-strain curves for foams of relative 
density between 10 -2 and 1. They show a linear elastic 
regime (Eq. [5]), and a plateau corresponding to elastic 
buckling (Eq. [7]); they start to bend upward when densi- 
fication starts (Eq. [22]) and approach a limiting slope of E, 
when densification is complete (Eq. [21]). Within the field 
of elastic buckling the material can exist in two states at 
almost the same stress (rather like the p - v  response of an 
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Fig. 1 6 - - T h e  progressive collapse of cork, an elastomeric foam. 
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Fig. 1 7 - - A  deformation-mechanism map for a plastic foam, for which 
o~/E, = 0.05, for relative densities from 0.05 to I. 

ideal gas). It collapses in bands which broaden as strain 
increases: Figure 16, of cork, illustrates this. 

The figure describes the overall response of all isotropic 
foams in compression. Elastomeric foams in tension show 
roughly linear-elastic response to rupture. 

B. Plastic Foams 

Plastic foams (Figure 17), like the elastic ones, show 
three regions: linear elasticity, plastic collapse, and 
densification--though now the strain beyond the linear- 
elastic regime is not recoverable. 

! ; =  ..... i._ 

Fig. 1 8 - - T h e  progressive collapse of cells in an aluminum honeycomb. 

The boundary of the linear-elastic field (heavy line) is 
obtained from Eqs. [5] and [9]; its equation is: 

O" // O"y\ 4 1 
= [231 

In constructing this map we have taken %/E, to be 0.05. 
Next to the linear-elastic field is the field of plastic collapse. 
As before, two states of strain coexist at almost the same 
stress, so that complete collapse of part of the structure can 
occur while the rest is still elastic (Figure 18); the bands of 
dense material broaden with increasing strain. Densification 
starts (as before) when the cell walls touch (Eq. [20]) and is 
complete when the relative density reaches 1 (Eq. [22]). The 
field boundary (heavy line) defining the start of densifica- 
tion is given, by the arguments leading to Eq. {22] by: 

e = 1 - 4.5 ~ / ~ /  [24] 

Superimposed on the fields are stress-strain curves for 
foams of initial relative density between 0.05 and 1. They 
show a linear elastic regime (Eq. [5]) and a plateau corre- 
sponding to plastic collapse (Eq. [9]); they start to bend 
upward when densification starts (Eq. [24]) and reach a 
limiting slope of E, when densification is complete (Eq. [211). 

The figure shows the overall response of isotropic, plastic 
foams compression. It is less general than the map for elas- 
tomeric foams because it must be constructed for a particular 
value of o-y/E,, but the equations show that the boundaries 
are not very sensitive to its value, and, for a given material, 
the diagram shows the behavior for all densities. 

The behavior of plastic foams in tension resembles that in 
compression, truncated by fracture. 

C. Rigid Foams 

Rigid foams show linear-elastic behavior (Eq. [5]) to 
fracture. In compression, the foam crushes at constant stress 
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(Eq. [15]), and since the crushing equation has the same 
form as that for plastic collapse, the behavior will resemble 
that of Figure 17. If the foam is contained, it will densify at 
the strain given approximately by Eq. [24], with O'y/Es 
replaced by tri /E  ~. 

In tension, linear elastic behavior is truncated by fast, 
brittle fracture at the stress given by Eq. [17]. 

V. APPLICATIONS 

This approach to the mechanics of cellular solids 
has many applications. It helps in design and selection of 
materials for cushions and packaging. It contributes to the 
understanding of the mechanics of natural materials such as 
w o o d ,  35 and it gives a foundation for the design with foams 
in load-bearing structures like sandwich panels. 36 We con- 
clude with three examples in each of which the unique 
properties of cellular solids are, or could be, exploited. 

A. The Anisotropy of  Cork 

Cork has a remarkable combination of properties. It is 
light yet resilient; it is an excellent insulator for heat and 
sound, it has a high coefficient of friction; and it is imper- 
vious to liquids, is chemically stable and fire resistant. It 
owes its special properties to its chemical composition, quite 
different from that of wood, and to its cellular structure. 37 

Cork is a closed-cell foam with a specific gravity of about 
0.15. Figure 19 shows that the cells are about 30/xm 
across, and that the cell shape is anisotropic: the cells are 
hexagonal prisms, with the prism axis of each cell parallel 
to a common direction. The asymmetry of the shape makes 
the cork properties anisotropic: Young's modulus in the 
plane normal to the prism axis is constant, but differs from 
that parallel to the prism axis. Because of the cell shape, 
compression down the prism axis produces no lateral expan- 
sion: Poisson's ratio in this direction is zero. 

Since Roman times, cork has been used to stop wine 
bottles; Horace speaks of it in his Odes. 38 Today, despite 
attempts to replace it by plastics, real cork remains the only 
choice of the true connoisseur of wines. Why does cork 
make such good stoppers? 

Part of the reason is the chemical stability. But part is the 
special elastic behavior of a cellular solid. Its stress-strain 
curve is shown in Figure 20: it has exactly the shape 
expected of an elastomeric foam. In cutting a cork, it obvi- 
ously makes sense to make the axis of the cork parallel to the 
axis of symmetry of its structure: then the cork presses 
uniformly on the neck of the bottle (because the radial 
Young's modulus is constant), and it can be inserted easily 
(because Poisson's ratio is zero for compression down the 
prism axis). 

The reasoning is sound, but there is a problem. Natural 
cork contains tubular channels or lenticels to allow gases to 
pass through to the wood beneath; they are visible on any 
piece of cork (e.g., Figure 21). The lenticels lie parallel to 
the prism axis, so corks cut parallel to this axis would leak. 
This is why cheap corks are cut with the lenticels (and axis 
of symmetry) across the cork, as shown in Figure 21(a). 
But when good wine is to be bottled, only the best will do, 
and the best requires the proper alignment of cork. The 
solution is shown in Figure 21(b): the cork is made of two 
or more slices, properly aligned, and bonded together so that 

AXIAL  

- ~ . |  U" /,,,, \ 

/ , 

. ' . " I  

. .  ~,i 
i' 

, T A N G E N T I A L  

DIAL 

Fig. 19 - -The  cells in cork. They are hexagonal prisms. The cork proper- 
ties have hexagonal symmetry. The upper section is cut normal to the radial 
direction; the lower one is cut normal to the axial direction. 

the lenticels do not connect, thus using the elastic anisotropy 
of the structure to maximum advantage. 

This is just one example of the use of the anisotropy of a 
cellular solid. Design with wood, an exceedingly aniso- 
tropic material, is another. At present, most man-made 
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Fig. 2 0 - - T h e  stress-strain curve of cork. It follows the pattern shown in 
the map of Fig. 15. 
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Fig. 21 --Sect ions through corks. The axis of symmetry of the cork struc- 
ture is parallel to the lenticels (dark lines). 

foams are isotropic. The potential for designing anisotropy 
into foams, and exploiting it in packaging, soles for shoes, 
seating or crash padding, is considerable. 

B. Cellular Solids in Nature: Scaling of Trees 

Why are cellular solids so common in nature? The size 
and scale of a tree is determined by the mechanical proper- 
ties of the materials of which it is made. A tall and spreading 
tree has a clear advantage in exposing more of its leaves to 
light (Figure 22), but if the branches are too long (for their 
diameter) they will bend too far, defeating their purpose of 
carrying the leaves out of the shade of higher branches. If 
the trunk is too tall (for its girth) it will buckle elastically, 
as trees do when heavy snow overloads them. It has long 
been known that the height h of a tree is related to the 
diameter, d, of its trunk, by Kleiber's law: 39 

h ~ d 2/3 [25] 

and the branch length, I, bears the same relation to the 
branch diameter) 9 This law follows directly from these 
mechanical criteria: 4~ if the force Mg due to the mass 
M = 7rd2hp of the tree is equated to the buckling force 

' L 

h 

1.0 ~ 

Fig. 2 2 - - T h e  scale of a tree. Cellular materials permit a taller tree. 

(Eq. [6]), Eq. [25] is obtained immediately; and if the droop 
(Eq. [4]) of a branch under its self-weight is set equal to 

a fraction of its length, the same result is found. The same 
procedure gives the height and spread of a tree in terms of 
the mass of material it contains. The result is: 

( M ~ I/'( E~ TM 

h and l o c\--g-] \ ~ ]  [26] 

(where g is the acceleration due to gravity). The most effi- 
cient use of material, then, is that which distributes it such 
that E/p 2 is a maximum. 

This is where a cellular structure works so well. Table IV 
compares E, E/p,  and E~/2/p for the cellulose-hemi- 
cellulose-lignin composite of which the cell walls of wood 
are made, and the wood itself. The modulus of wood (along 
the grain) is much less than that of the cell wall; the 
specific modulus is about the same as that of the cell wall; 
but the value of E ,~2/p is much greater. A cellular tree can 
grow to roughly twice the height of a solid one, using the 
same quantity of cellulose. This efficiency in material use 
must be one of the reasons cellular structures are so common 
in nature. 

C. Sandwich Construction 

Higher forms of life have more complicated structures. 
The bones of mammals are an example: they have a cellular 
interior, but they also have a solid outer skin; they are a sort 
of sandwich panel (Figures 2(d), 2(f), and (23)). 

Sandwich panels are increasingly used in engineering. 42 
Cheap doors are a sandwich of flimsy plywood with a paper 
honeycomb. Modem refrigerators are only half the weight 
of older ones, partly because the sides and door are made of 
a thinner sheet steel, bonded to polyurethane foam which 
gives both stiffness and insulation. Yacht hulls and decks 
can be made of thin fiberglass skins bonded to a foam or to 
balsa wood. These ideas derive from the aerospace industry: 
balsa-filled sandwiches were first used during World 
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Table IV. Moduli and Specific Moduli for 
Woods in Units of Those of the Cell Walls 

E E / p  E l:2/p 

Solid tree (Cel lulose/Lignin/  
Hemicellulose) 1 1 1 

Cellular tree, 
P/Ps = 0.1 --> 0.5 0.1 to 0.5 1 2 to 4 

Data for moduli and densities from Dinwoodie. 4~ 

J-- ~ -  t 
h 

I -J 
BENDING 

been analyzed fully. The results assembled in this paper 
show, I think, that the foam itself is now well understood. 
We are now in a position to analyze natural and man-made 
sandwiches more completely. 
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Fig. 23--The modes of deformation and failure of a sandwich panel. The 
panel stiffness may be controlled by bending or shear, and failure may be 
by the failure of the skin or the core. 

War II, and metal and polymer sandwiches form parts of the 
airframe, wing structure, and flooring of most modem 
planes. Skis are perhaps the most highly-tuned sandwiches 
of all: in many designs, the right combination of longi- 
tudinal and flexural stiffness is achieved by a foam-filled 
sandwich. And sandwiches are common in nature: bone, the 
wing casing of beetles, the cuttle-bone of the cuttle fish. 

The aim, in every case, is a structure with the minimum 
weight for a given stiffness or strength. It is interesting to 
ask whether these natural and man-made structures are 
optimal, that is, whether they achieve the minimum weight 
for a given stiffness or strength. The problem is compli- 
cated. There are many variables--the skin thickness, 
density and strength, the core thickness and its density and 
strength--and there are several failure modes: fracture, 
crushing, skin buckling, or tensile fracture (Figure 23). The 
full answer is not yet known--though there are some indi- 
cations that bone may be close to the optimum, and, of 
course, there are enormous advantages to the animal to 
being optimized. Some man-made panels have been opti- 
mized approximately by empirical methods. 

The reason that the question is incompletely answered is 
that the properties of the cellular core had not, until now, 
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