Mg-Y (Magnesium-Yttrium)

H. Okamoto

The Mg-Y phase diagram in [Massalski2] was redrawn from [88Nay], in which the phase boundaries of (β Y) and (α Y) were estimated due to lack of experimental data. By optimization of thermodynamic and phase diagram data, [88Ran] calculated the Mg-Y phase diagram (Fig. 1). Special points of Fig. 1 are given in Table 1. The temperatures and compositions are calculated values. The calculated boundaries and the experimental data agree well. The calculated phase diagram shows more plausible phase relationships of the Mg-Y system.

Mg-Y crystal structure data are given in Table 2.

Cited References

- 60Gib: E.D. Gibson and O.N. Carlson, Trans. ASM, 52, 1084-1096 (1960).
- 61Miz: D. Mizer and J.B. Clark, Trans. AIME, 221, 207-208 (1961).
- 65Smi: J.F. Smith, D.M. Bailey, D.B. Novotny, and J.E. Davison, Acta Metall., 13, 889-895 (1965).
- 67Mia: D. Miannay, P. Gregoire, P. Azov, and P. Bastien, Compt. Rend. C, 265, 1107-1112 (1967) in French.

Table 1 Special Points of the Mg-Y Phase Diagram

Reaction	Composition, at.% Y		n,	Temperature, °C	Reaction type	
L ↔ Mg		0		650	Melting	
$L \leftrightarrow (Mg) + \varepsilon$	8.1	3.4	13.3	567.4	Eutectic	
$L + Mg_2 Y \leftrightarrow \epsilon$	14.3	33.3	16.4	624.8	Peritectic	
L+MgY↔Mg ₂ Y	46	25.9	33.3	782.3	Peritectic	
$L + (\beta Y) \leftrightarrow MgY$	61.8	41.5	48.5	934.5	Peritectic	
$(\beta Y) \leftrightarrow MgY + (\alpha Y)$	72	49.7	83.4	774.8	Eutectoid	
L↔βY		100		1522	Melting	
βΥ↔αΥ		100		1478	Allotropic	

Table 2 Mg-Y Crystal Structure Data

Phase	Composition, at. % Y	Pearson symbol	Space group	Strukturbericht designation	Prototype
(Mg)	0 to 3.4	hP2	P63/mmc	A3	Mg
ε	13.3 to 16.4	cI58	I43m	A12	αMn
Mg ₂ Y	33.3	hP12	P63/mmc	C14	MgZn ₂
MgY	46 to 49.7	cP2	Pm3m	B2	CsCl
(BY)	61.8 to 100	cI2	Im3m	A2	W
(αΥ)	83.4 to 100	hP2	P63/mmc	A3	Mg

68Svi: Z.A. Sviderskaya and E.M. Padezhnova, *Izv. Akad. Nauk* SSSR, Met., (6), 183-190 (1968) in Russian; TR: Russ. Metall., (6), 126-130 (1968). 88Nay: A.A. Nayeb-Hashemi and J.B. Clark, *Phase Diagrams of Binary Magnesium Alloys*, ASM International, Metals Park, OH, 344-349 (1988).

88Ran: Q. Ran, H.L. Lukas, G. Effenberg, and G. Petzow, *Calphad*, 12(4), 375-381 (1988).

Pd-S (Palladium-Sulfur)

H. Okamoto

The Pd-S phase diagram in [Massalski2] was redrawn from [76Mat]. [85Tay] reported an improved phase diagram (Fig. 1), which is based on more data points obtained by DTA. Special points of Fig. 1 are summarized in Table 1. Crystal structure data are given in Table 2.

68Ros: E. Rost and E. Vestersjo, Acta Chem. Scand., 10, 1620-1624 (1968).

76Mat: P. Matkovic, M. El-Boragy, and K. Schubert, J. Less-Common Met., 50, 165-176 (1976).

85Tay: J.R. Taylor, Metall. Trans. B, 16, 143-148 (1985).

Cited References

35Wei: F. Weibke and J. Laar, Z. Anorg. Allg. Chem., 224, 49-61 (1935) in German.

Table 1 Special Points of the Pd-S Phase Diagram

Reaction		Composition, at.% S	Temperature, °C	Reaction type	
L ↔ Pd		0		1555	Melting
$L + (Pd) \leftrightarrow Pd_{1}S$	20	0	20	774	Peritectic
$L + Pd_4S \leftrightarrow Pd_2S$	26.5	20	25	646	Peritectic
$Pd_2S \leftrightarrow Pd_4S + Pd_{12}S_7$	25	20	30.4	556	Eutectoid
$L \leftrightarrow Pd_2S + Pd_1cS_7$	28	25	30.4	625	Eutectic
$L + PdS \leftrightarrow Pd_{1c}S_{7}$	29.5	50	30.4	639	Peritectic
$L \leftrightarrow PdS$		50		~1000	Congruent

Table 2 Pd-S Crystal Structure Data

Phase	Composition, at.% S	Pearson symbol	Space group	Strukturbericht designation	Prototype	Reference
(Pd)	0	cF4	Fm3m	A1	Cu	[Massalski2]
Pd ₄ S	20	<i>tP</i> 10	P421c		•••	[35Wei]
Pd ₁ S	25	oC16	Ama2	•••		[68Ros]
Pd16S7	30.4	cP64	Pm3m		•••	[76Mat]
PdS	50	1 16	$P4_2/m$	B34	PdS	[35Wei]
PdS ₂	66.7	oP12	Pbca			[35Wei]