The Nb-Pt (Niobium-Platinum) System

S.N. Tripathi, S.R. Bharadwaj, and S.R. Dharwadkar Bhabha Atomic Research Centre

Equilibrium Diagram

The Nb-Pt phase diagram was studied by [60Kna], [61Kim], and [85Wat]. The assessed phase diagram of the Nb-Pt system is shown in Fig. 1. The phase boundaries and the reaction temperatures are based primarily on the work of [85Wat], who investigated the system over the entire composition range in the temperature interval of 1000 to 2400 °C by metallography, electron microprobe, XRD, and thermal analysis of 35 arcmelted alloy samples prepared from 99.6% pure Nb and 99.9% pure Pt. The Nb-rich alloys up to 20 at.% Pt were given homogenization anneals in a vacuum furnace at 1900 °C for 3 hours, and the other compositions were annealed at 1600 to 1700 °C for 6 to 12 hours and quenched at rates of 30 to 100 °C per second. The compositions and the temperatures in Fig. 1 have an accuracy of ± 1 at.% and ± 10 °C, respectively.

The present diagram differs significantly from the one published by [61Kim] and the previous reviews of [Elliott], [Metals], [Hultgren, B], and [Massalski1].

Six nonstoichiometric intermetallic compounds exist: Nb₃Pt, " \sim Nb₂Pt," Nb_{1-x}Pt_{1+x}, α /Pt, NbPt₂, and NbPt₃. "Nb₂Pt" is usually referred to as σ phase. The two Nb-rich phases, Nb₃Pt and σ , are known as Frank-Kasper phases.

The equilibrium phases of the Nb-Pt system are: (1) the liquid, L; (2) the bcc solid solution of Pt in α Nb phase with a maximum solubility of Pt up to ~12 at.%, at 2040 °C; (3) the cubic Nb₃Pt crystallizing peritectically at 2040 °C; (4) the tetragonal σ phase forming peritectically at 1800 °C; (5) the orthorhombic Nb_{1-x}Pt_{1+x} phase crystallizing peritectically at 1750 °C; (6) the high temperature α' Pt phase of unknown structure, forming peritectically at 1780 °C; (7) the orthorhombic NbPt₂ forming by peritectic reaction at 1990 °C; the NbPt₃ phase so-

Table 1 Special Points of the Assessed Nb-Pt Phase Diagram

lidifying congruently at 2040 °C; and (9) the fcc solid solution of Nb in α Pt with solubility up to ~20 at.% Nb at 2000 °C.

Liquidus and Solidus

The melting point work of [60Kna] showed that the liquidus on the Pt-rich side of the phase diagram has a maximum near 75 at.% Pt. It was later confirmed by [85Wat], who made an approximate determination of the liquidus by microscopic examination of the melting point samples with visual estimates of the relative amounts of solid and liquid phases present in each sample. Therefore, the liquidus in Fig. 1 is shown by broken lines.

The solidus boundaries were determined by [85Wat] employing metallography, XRD, and thermal methods for phase analysis of the samples quenched after homogenization anneals. With solidus temperatures measured to an accuracy of ± 10 °C and compositions within ± 1 at.%, the solidus lines are known with a high degree of confidence and are, hence, represented by solid lines. Nine invariant reactions including eight three-phase equilibria were identified in addition to the normal melting of the pure end-members. The compositions of the phases involved in the invariant reactions and the temperatures of equilibria are presented in Table 1.

Terminal Solid Solutions

Both terminal solid solution phases exhibit considerable solid solubility. [60Kna] observed larger solid solubilities in the terminal phases of the Nb-Pt system as compared to those of Nb alloys with Rh, Ir, Ru, and Os. This was confirmed by [85Wat]. The heat treated and quenched alloys were examined for determination of composition by electron microprobe, XRD, and metallography. The terminal solid solution boundary of bcc Nb was established by analysis of equilibrated and quenched alloys in the composition range 10 to 18 at.% Pt. The solubility

Reaction	Compositions of the respective phases, at.% Pt 0			Temperature (a), °C 2469	Reaction type Melting
$L \leftrightarrow Nb$					
$L + (\alpha Nb) \leftrightarrow Nb_3Pt$	~26	~12	~19	2040	Peritectic
$L + Nb_3Pt \leftrightarrow \sigma$	36.4	28	31	1800	Peritectic
$L \leftrightarrow Nb_{1-x}Pt_{1+x} + \sigma$	43	51.2	38	1700	Eutectic
$\Box + \alpha' Pt \leftrightarrow Nb_{!-x} Pt_{1+x} \dots \dots$	47	57	52	1750	Peritectic
$L + NbPt_2 \leftrightarrow \alpha'Pt$	49	65	57	1780	Peritectic
$x'Pt \leftrightarrow Nb_{1-x}Pt_{1+x} + NbPt_{2}$	57.5	54	66	1670	Eutectoid
$L + NbPt_3 \leftrightarrow NbPt_2$	66	74	67	1990	Peritectic
$\Box \leftrightarrow NbPt_3$		75		2040	Congruent
$L + NbPt_3 \leftrightarrow (\alpha Pt)$	82.5	76	80	2000	Peritectic
∟ ↔ αPt		100		1769	Melting

Section II: Phase Diagram Evaluations

of Pt in α Nb solid solution reaches ~12 at.% at 2040 °C, but it decreases at lower temperatures and remains only 5 at.% at 1150 °C.

The fcc α Pt solid solution dissolves ~20 at.% Nb at 2000 °C and ~18 at.% Nb at lower temperatures. The metastable coherent structure [85Wat] of the 80 at.% Pt alloy annealed at 1500 °C suggests that the solvus boundary of the α Pt phase may be

metastable. It is quite likely that the true equilibrium boundary is located at lower Nb concentrations.

Crystal Structures and Lattice Parameters

The invariant reactions of Fig. 1 are presented in Table 1. Crystal structures for the equilibrium phases are presented in Table

Table 2 Nb-Pt Crystal Structure Data

Dham	Composition,	Pearson	Space	Strukturbericht	D	D.6
rnase	al. % Fl	symbol	group	uesignation	rototype	Reterences
(αNb)	0	c l 2	Im3m	A2	w	[Massalski2]
Nb3Pt	19 to 28	cP8	Pm3n	A15	Cr ₃ Si, βW	[56Gre], [55Gel]
σ(Nb ₂ Pt)	31 to 38	<i>tP</i> 30	P4 ₂ /mnm	$D8_b$	βU	[56Gre]
$Nb_{1-x}Pt_{1+x}$	51 to 53	oP4	Pmma	B 19	AuCd	[64Gie1], [64Mal]
α'Pt	57			Not determined		[64Gie2]
NbPt ₂	~67	<i>o</i> /6	Immm		MoPt ₂	[64Gie1], [65Gie], [64Mal]
αNbPt3	~75	<i>o</i> P8	Pmnm	$D0_a$	βTiCu ₃	[64Gie1], [64Mal]
βNbPt3	~76	mP48	$P2_1/m$		$\beta NbPt_3$	[64Gie1], [65Gie]
(αPt)	80 to 100	cF4	Fm3m	A1	Cu	[Massalski2]

Table 3 Nb-Pt Lattice Parameter Data

	Composition.	Lattice parameters, nm					
Phase	at.% Pt	a	Ь	с	Comment	References	
aNb	0	0.33004				[Massalski2]	
	5	0.3277		•••		[85Wat]	
	10	0.3260				[85Wat]	
Nb3Pt		0.511				[56Gre]	
		0.5153		•••		[55Gel]	
	20	0.5182				[85Wat]	
	25	0.5152		•••	•••	[68Reu]	
	28	0.5139		•••		[85Wat]	
	19 to 28	0.5147 to 0.5166			•••	[61Kim]	
σ	32	0.9940		0.5145		[83Wat], [85Wat]	
	38	0.9902		0.5132	•••	[83Wat], [85Wat]	
		0.991		0.512	·	[61Kim]	
$(Nb_{1-x}Pt_{1+x})?$	50	0.2780	0.4983	0.4611		[83Wat], [64Gie1]	
	50	0.278	0.498	0.462		[65Dwi]	
αNbPt3	75	0.5534	0.4873	0.4564		[64Gie1]	
βNbPt3	75	0.5537	0.4870	0.2733	$\alpha = 90^{\circ} 32'$	[64Gie1]	
αPt	82	0.3940		•••		[85Wat]	
	85	0.3935		•••		[85Wat]	
	90	0.3927		•••		[85Wat]	
	95	0.3924			•••	[85Wat]	
Pt	100	0.39236				[Massalski2]	

2. The lattice parameters of a number of alloys with different compositions for four intermediate phases and two terminal solid solutions are given in Table 3.

Intermediate Alloy Phases

Six intermediate phases exist: Cr_3Si -type, cubic Nb₃Pt; β Utype, tetragonal close-packed σ phase, ~Nb₂Pt; AuCd-type, orthorhombic Nb_{1-x}Pt_{1+x}; α' Pt phase of unknown structure; MoPt₂-type, orthorhombic NbPt₂; β TiCu₃-type, orthorhombic low-temperature form, α NbPt₃; and monoclinic high-temperature modification, β NbPt₃.

Nb₃Pt Phase

First discovered by [55Gel], Nb₃Pt was identified by [56Gre] as having a Cr₃Si-type (β W, A15) structure, as a result of their studies of 7 alloys in the composition range 25 to 57 at.% Pt, annealed and quenched at 1000 °C. Nb₃Pt was further confirmed by [61Kim], [64Gie1], [65Gie], [83Wat], and [85Wat].

[85Wat] found a homogeneity range in Nb₃Pt with a composition span of 19 to 28 at.% Pt at 1800 \pm 10 °C; this span narrows at lower temperatures. The solvus and the solidus boundary of the phase are known to good precision. Nb₃Pt forms as an ordered structure from the disordered bcc α Nb at 2040 \pm 10 °C by peritectic reaction: L + α Nb \leftrightarrow Nb₃Pt.

Nb₃Pt is a highly ordered (order parameter, S = 0.93) phase [55Gel]. The ideal composition is A₃B, but the phase is also stable at significantly deviating compositions implying that the crystallographic sites in the lattice are not exclusively occupied by only one chemical element. The remarkable stability of Nb₃Pt and other A15-type phases [68Reu] in alloys of the transition metals is attributed to the intimate involvement of the d-electrons in the bonding and the interdependence of the electronic structure and the ability of the atoms to undergo deformation to conform to the geometrical packing requirements.

Section II: Phase Diagram Evaluations

Table 4 C_p data for σ phase at 38 at. % Pt

Temperature, K	C _p , J/g-atom K
5	0.2339
10	0.0950
13	0.1904

Table 5 Gibbs Energy Limits of Solid Alloys at 1727 °C

Phase	Composition, at. % Pt	$\Delta_{\mathbf{f}}G, \mathbf{kJ/g}$ -atom	
Nb3Pt	25	<-10	
Nb2Pt	38	< -16	
$Nb_{1-x}Pt_{1+x}$	52	< -20	
NbPt2	67	< -29	
NbPt3	75	<-33	

In a recent investigation by [88Rob] on Nb-Pt alloys with compositions ranging between 16 and 32 at.%, undercooling by as much as 585 K was reported for liquid alloys. The Nb-Pt alloys of 16 to 18 at.% Pt yielded, on undercooling, a single Nb₃Pt phase in contrast to the α Nb and Nb₃Pt phases expected on the basis of Fig. 1.

σ **Phase**

The σ phase, $\sim Nb_2Pt$, also first reported by [56Gre] together with Nb₃Pt, was first identified with a tetragonal close-packed crystal structure that was later confirmed by [61Kim], [64Gie1], [64Mal], and [85Wat]. Like Nb₃Pt, the σ phase is also nonstoichiometric and highly stable. It has a homogeneity range of 31 to 38 at.% Pt at 1700 °C narrowing at lower temperatures. The lattice parameters of the optimum compositions are listed in Table 3. The σ phase crystallizes from a mixture of Nb₃Pt + melt at 1800 ± 10 °C by the peritectic reaction, Nb₃Pt + L $\leftrightarrow \sigma$ phase.

$Nb_{1-x}Pt_{1+x}$ Phase

[61Kim] found evidence for an equiatomic composition alloy which was identified by [64Gie2] and [65Gie] to possess the AuCd-type (B19) orthorhombic structure. The phase is reported to be hyperstoichiometric [85Wat] and is represented as $Nb_{1-x}Pt_{1+x}$. It forms at 1700 ± 10 °C and ~43 at. % Pt by a eutectic reaction, $L \leftrightarrow \sigma + Nb_{1-x}Pt_{1+x}$, and there is agreement [61Kim, 85Wat] as to the temperature and nature of the reaction. There is no structural data on 50 and 51 at.% Pt alloys at 1700 °C, so it is not justifiable to anchor the Nb-rich phase boundary of the single-phase field of Nb_{1-x}Pt_{1+x} at 1700 °C at ~51.2 at.% Pt, as seen in Fig. 1 of [85Wat] and [Massalski2]. Microprobe analysis [85Wat] demonstrated the existence of a phase boundary at 1150 °C at 52 at.% Pt and at 1500 °C at 51 at.% Pt. The existence of a two-phase field at 49 at.% Pt in the temperature range 1500 to 1700 °C is consistent with the likely farming out of the single-phase field from 52 at.% Pt at 1150 °C to ~50 at.% Pt at 1700 °C via 51 at.% Pt at 1500 °C. Hence the Nb-rich phase boundary at 1700 °C is shifted to ~50 at.% Pt. XRD of 53 at.% Pt alloy showed the single phase down to 1600 °C, but two phases at 1500 °C and below, indicating a decomposition that is in contradiction with the microprobe results. In view of insufficient information in the range 1500 to

1700 °C and conflicting observations at and below 1500 °C, the Nb-rich phase boundary all along, and the Pt-rich one below 1600 °C are considered tentative and are shown by dashed lines in the assessed phase diagram. Hence the extent of the phase field of Nb_{1-x}Pt_{1+x} in the assessed diagram is different from those of [85Wat] and [Massalski2]. A 50 at.% alloy is a two-phase mixture according to [85Wat], hence the lattice parameters determined for this composition by [64Gie1], [65Dwi], and [83Wat] are not representative of Nb_{1-x}Pt_{1+x}.

α' Pt Phase

[64Gie1], [64Gie2], and [65Gie] reported a phase with a composition close to Nb_{1-x}Pt_{1+x}. [64Gie1] found the phase to be stable only at high temperatures, *i.e.*, 1670 to 1780 °C. [75Flu] established the existence of α' Pt on the basis of their solidus measurements by DTA and metallography. The thermal arrests observed by [75Flu] in 57 and 62 at.% Pt alloys agree completely with the temperatures of the peritectic and eutectoid reactions of α' Pt [85Wat]. The temperature of the eutectoid decomposition of α' Pt is precisely known from the metallography of 55 and 57.5 at.% Pt alloys quenched from above and below 1670 °C.

The crystal structure of α 'Pt remains undetermined. By analogy to V-Pt and Nb-Pd, [85Wat] speculated that this phase was an extension of fcc α Pt solid solution. XRD at high temperatures is expected to reveal the structure conclusively.

This phase forms from NbPt₂ by a peritectic reaction at 1780 \pm 10 °C and undergoes another peritectic reaction at 1750 \pm 10 °C: α' Pt + L \leftrightarrow Nb_{1-x}Pt_{1+x}. On cooling to 1670 \pm 10 °C, it decomposes eutectoidally to a mixture of Nb_{1-x}Pt_{1+x} and NbPt₂.

NbPt₂ Phase

NbPt₂ is essentially a nonstoichiometric compound having a narrow homogeneity range spanning over 2 to 3 at.% at 1780 °C [85Wat]. It forms by the peritectic reaction, NbPt₃ + L \leftrightarrow NbPt₂, at 1990 ±10 °C as observed in a solidus study of a 70 at.% Pt alloy. It crystallizes with orthorhombic MoPt₂-type structure [64Gie, 64 Mal, 65 Gie].

[61Kim] suggested that the NbPt₂ phase is an extension of α Pt solid solution, but [65Gie], [64Mal, and [85Wat] assigned NbPt₂ a distinct crystal structure.

The Nb-rich boundary of the NbPt₂ phase [85Wat] is tentative because there is no information as to whether the alloys in the composition range 62.5 to 67 at.% Pt are monophasic or biphasic. Hence it is presumptuous to draw the Nb-rich phase boundary as shown in [85Wat]. A judicious choice would be a tentative phase field extending up to 62.5 at.% Pt below 1780 °C and to higher compositions in the range 1780 to 1990 °C. Hence the Nb-rich phase boundary of NbPt₂ in the assessed phase diagram is tentatively shifted towards the left as compared to those of [85Wat] and [Massalski2].

NbPt₃ Phase

The 75 at.% Pt melt solidifies congruently to NbPt₃ on cooling to 2040 ± 10 °C. Two polymorphs of NbPt₃ were identified and characterized. The low-temperature phase designated as α NbPt₃ [64Gie1, 64Mal] possesses an orthorhombic Cu₃Ti-

 $D0_a$ type structure with two-layer stacking sequence. The high-temperature polymorph is $\beta NbPt_3$, identified as a monoclinic structure, confirmed by [85Wat] with twelve-layer stacking sequence and the same layer type as α NbPt₃. Earlier [61Dwi] reported a tetragonal structure $(D0_{22})$ for NbPt₃, which was isotypic with Al₃Ti. It is isomorphous with β TaPt₃. [64Gie1] suggested that the α NbPt₃ phase maybe be stabilized with respect to BNbPt₃ by the trace amount of interstitial impurities. [64Mal] indicated that α NbPt₃ is stable below 1000 °C and $\beta NbPt_3$ has a Pt content higher than the stoichiometric composition. The regions of thermal stability of the two forms of NbPt₃ are not yet established. Additional work by XRD, including high-temperature measurements, is required to clarify the stability ranges of the α and β forms. NbPt₃ undergoes peritectic reactions at 1990 \pm 10 °C, NbPt₃ + L \leftrightarrow NbPt₂, and at 2010 \pm 10 °C, NbPt₃ + L $\leftrightarrow \alpha$ Pt.

The Nb-rich boundary of the homogeneity region of NbPt₃ is substantiated by microprobe results from a 74 at.% alloy [85Wat] whereas on the Pt-rich end no structural information is available about intermediate alloys between 75 and 77.5 at.% Pt, as to whether they are monophasic or biphasic. Hence the Pt-rich phase boundary of NbPt₃ is considered tentative and is drawn accordingly by a dashed line in Fig. 1.

Thermodynamics

 C_p measurements were reported by [64Buc] for a 38 at.% Pt alloy in the temperature range 4 to 13 K. Selected values are listed in Table 4.

The only experimental data on Nb activity from 50 ± 4 at.% Pt alloy was reported by [84Gib], and these are given by $G_{\rm Nb}/R = -4.3 \pm 2.0$ kK at 2594 K. [73Bre] calculated the limits of Gibbs energies of the solid phases of the Nb-Pt system from the fact that the reaction NbC + 3Pt \rightarrow NbPt₃ + C occurs spontaneously at 1727 °C, i.e., $\Delta G_{\rm R} \leq 0$. The data on limits of ΔG are presented in Table 5.

The σ phase exhibits a superconducting transition. [61Bla], and [64Buc] reported T_c values of 3.73, 2.4, and 4.21 K for compositions of 37.5, 37.5, and 38 at.% Pt, respectively. Having largest mean atomic volumes, V, among the various phases of the Nb-Pt system [85Wat], the Nb₃Pt and σ phases are expected to have the highest T_c values in accordance with the direct proportionality relationship between V and T_c [57Mat]. As a result, it is highly likely that Nb₃Pt has T_c very close to that of σ phase (~4 K) whereas Nb_{1-x}Pt_{1+x}, NbPt₂, and NbPt₃ are likely to have progressively decreasing T_c parallel to their respective V. Nb_{1-x}Pt_{1+x} and NbPt₂ exhibit normal conductivity [66Sad] down to 1.39 and 1.46 K respectively, but their T_c are not yet known. No conductivity data exist for NbPt₃.

Suggestions for Future Experimental Work

Despite an in-depth study of the Nb-Pt system by [85Wat] and others, discrepancies exist, and some areas in the phase diagram remain inconclusive. The features deserving careful reinvestigation are:

• The αPt solvus needs to be reexamined carefully in samples equilibrated for longer periods.

- The low temperature domain of stability of $Nb_{1-x}Pt_{1+x}$ below 1500 °C is yet to be established.
- The crystal structure of the high-temperature α' Pt phase needs to be determined by high-temperature XRD.
- The Nb-rich end of NbPt₂ (up to ~63 at.% Pt) and the Ptrich boundary of NbPt₃ (up to ~77 at.% Pt) need to be redetermined for authentic compositional information.
- Nb_3Pt , $Nb_{1-x}Pt_{1+x}$, $NbPt_2$, and $NbPt_3$ deserve close scrutiny for their superconducting behavior, the first one around 4 K and the remaining three below 1.4 K.

Acknowledgments

The authors gratefully express their thanks to Dr. P.N. Moorthy, Head, Applied Chemistry Division and to Dr. R.M. Iyer, Director, Chemical and Isotope Group, for sponsoring the participation of the first two in the Alloy Phase Diagram Program. We wish to record our sincere thanks to our colleague, Dr. G. Chattopadhyay, for his help in translation of some German reprints. The bibliographic assistance of ASM International is greatly appreciated.

Cited References

- 55Gel: S. Geller, B.T. Mathias, and R. Goldstein, "Some New Intermetallic Compounds with β-Wolfram Structure," J. Am. Chem. Soc., 77, 1502-1504, (1955). (Crys Structure; Experimental)
- 56Gre: P. Greenfield and P.A. Beck, "Intermediate Phases in Binary Systems of Certain Transition Elements," *Trans. AIME, 206*, 265-276 (1956). (Crys Structure; Experimental)
- 57Mat: B.T. Matthias, "Superconductivity in the Periodic System," *Progress in Low Temperature Physics*, Vol. 2, C.J. Gorter, Ed., North-Holland Publ. Co., 138-150 (1957). (Thermo; Review)
- 60Kna: A.G. Knapton, "Constitution, Structure and Physical Properties-Niobium and Tantalum Alloys," J. Less-Common Met., 2, 113-124 (1960). (Equi Diagram; Review)
- 61Bla: R.D. Blaugher and J.K. Hulm, "Superconductivity in the σ and α-Mn Structures," J. Phys. Chem. Solids, 19, 134-138 (1961). (Thermo)
- 61Kim: H. Kimura and A. Ito, "The Platinum-Niobium System," Trans. Natl. Res. Inst. Met. (Jpn.), 3, 27-34 (1961). (Equi Diagram, Crys Structure; Experimental;#)
- 64Buc: E. Bucher, F. Heiniger, and J. Muller, "Superconduction and Electronic Properties of Some Binary Complex Phases of Transition Metals," *Phys. Konden. Mater*, 2, 210-240 (1964). (Thermo; Experimental)
- 64Gie1: B.C. Giessen and N.J. Grant, "New Intermediate Phases in Systems of Nb or Ta with Rh, Ir, Pd or Pt," *Acta Crystallogr.*, 17, 615-616 (1964). (Crys Structure; Experimental)
- 64Gie2: B.C. Giessen, D. Parker, and N.J. Grant, "The Intermediate Phases AB, AB₂ and AB₃ in the Nb-Pd and Nb-Pt Systems," J. Met. (Abs), 16, 92-93 (1964). (Crys Structure; Experimental)
- 64Mal: A. Maldonado and K. Schubert, "Crystal Structure Investigations in Some Alloy Systems Homologous and Quasihomologous to T₅-T₁₀," Z Metallkd., 55, 619-626 (1964) in German. (Crys Structure; Experimental)
- **65Gie:** B.C. Giessen and N.J. Grant, "The Crystal Structures of VNi₂, VPd₂, VPt₂ and Related AB₂ Phases," *J. Less-Common Met.*, 8, 114-119 (1965). (Crys Structure; Experimental)
- 65Dwi: A.E. Dwight, R.A. Conner, Jr., and J.W. Downey, "Equiatomic Compounds of the Transition and Lanthanide Elements with Rh, Ir, Ni and Pt," *Acta Crystallogr.*, 18, 835-839 (1965). (Crys Structure; Experimental)
- 66Sad: V. Sadagopan and H.C. Gatos, "Superconductivity in the Close Packed Intermediate Phases of the V-Ir, Nb-Ir, Nb-Rh, Ta-Rh, Nb-Pt,

Section II: Phase Diagram Evaluations

Ta-Pt and Related Systems," *Phys. Status Solidi, 13*, 423-427, (1966). (Thermo; Experimental)

- 68Reu: E.C. Van Reuth and R.M. Waterstrat, "Atomic Ordering in Binary A15 Type Phases," Acta Crystallogr. B, 24, 186-196 (1968). (Crys Structure; Experimental)
- 73Bre: L. Brewer and P.R. Wengert, "Transition Metal Alloys of Extraordinary Stability: An Example of Generalised Lewis-Acid Base Interactions in Metallic Systems," *Metall. Trans.*, 4, 83-104 (1973). (Thermo; Review)
- 75Flu: R. Flukiger, University of Geneva, Geneva, Switzerland, Unpublished Research (1975). (Crys Structure; Experimental)
- 83Wat: R.M. Waterstrat and B.C. Giessen, "Alloy Chemical Comparison of Refractory Metal-Noble Metal Phase Diagrams, T₅-T₁₀ (T₅ = V, Nb, Ta; T₁₀ = Pd, Pt)," *Alloy Phase Diagrams, MRS Proc.*, L.H.

Bennett, T.B. Massalski, and B.C. Giessen, Ed., North-Holland, NY, 19, 423-428 (1983). (Crys Structure; Experimental)

- 84Gib: J.K. Gibson, L. Brewer, and K.A. Gingerich, "Thermodynamics of Several Acid-Base Stabilized Transition Metal Alloys," *Metall. Trans. A*, 15, 2075-2085 (1984). (Thermo; Experimental)
- 85Wat: R.M. Waterstrat and B.C. Giessen, "The Niobium (Columbium)-Platinum Constitution Diagram," *Metall. Trans. A, 16*, 1943-1949 (1985). (Equi Diagram, Crys Structure, Thermo; Experimental; #)
- 88Rob: M.B. Robinson, "The Effect of Undercooling on the Niobium-Platinum and Niobium-Silicon Systems," Dissertation, Vanderbilt Univ., Diss. Absts. Int., 49(5), p 222 (Nov., 1988). (Crys Structure; Experimental)

#Indicates presence of a phase diagram.

Nb-Pt evaluation contributed by S.N. Tripathi, S.R. Bharadwaj, and S.R. Dharwadkar, Applied Chemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay-400085. Translation of German reprints was provided by G. Chattopadhyay, Bhabha Atomic Research Centre. Bibliographic assistance was provided by ASM International. Literature was searched through 1990. Dr. Tripathi and Dr. Bharadwaj are Contributing Editors for the binary platinum group alloys.