The Co-Si (Cobalt-Silicon) System

By K. Ishida and T. Nishizawa Tohoku University and M.E. Schlesinger University of Missouri-Rolla

Equilibrium Diagram

The equilibrium phases in the Co-Si system are: (1) the liquid, L; (2) the Co-rich, fcc terminal solid solution, (α Co); (3) the Co-rich, cph terminal solid solution, (ε Co); (4) the tetragonal phase α Co₃Si, stable between 1193 and 1214 °C; (5) Co₂Si, with two modifications—low-temperature, orthorhombic α Co₂Si, stable below ~1320 °C, and high-temperature β Co₂Si, with an unknown

Table 1 Special Points of the Assessed Co-Si Phase Diagram

Reaction		Composition of th respective phases, at.	e % Si	Temperature, *C	Reaction type
L↔CoSi		50		1460	Congruent
L⇔βCo₂Si		33.3		1334	Congruent
L++CoSi2		66.7		1326	Congruent
L+βCo2Ši↔αCo2Si	-31	~32.6	~33	~1320	Peritectic
$L \leftrightarrow CoSi + CoSi_2$	61.8	~52	66.7	1310	Eutectic
$L \leftrightarrow \beta C_{02} Si + C_{0} Si$	39.7	35.8	-49	1286	Eutectic
$L \leftrightarrow CoSi_2 + (Si)$	77.5	66.7	~100	1259	Eutectic
$(\alpha Co) + \tilde{L} \leftrightarrow (\tilde{e} Co)$	16.5	21.4	17.6	1250	Peritectic
$\hat{\beta}Co_{2}Si \leftrightarrow \alpha Co_{2}Si + CoSi$	35.1	34	49	1238	Eutectoid
L+aCo ₂ Si↔aCo ₃ Si	24.4	-32.6	25.0	1214	Peritectic
$L \leftrightarrow (\epsilon Co) + \alpha Co_3 Si$	23.1	18.4	25.0	1204	Eutectic
$\alpha Co_3 Si \leftrightarrow (\epsilon Co) + \alpha Co_2 Si$	25.0	18.1	-32.6	1193	Eutectoid

Table 2 Experimental Data on Co-Si Invariant Reactions

Reference	Reaction	(resp	Composition of the ective phases, at.	e % Si	Temperature, °C	Reaction type
[34Vog](a)	L⇔(aCo) + aCo3Si	23.1	14.6	25.0	1200	Eutectic
	L+aCo2Si↔aCo3Si	24.8	33.3	25.0	1210	Peritectic
	$\alpha Co_3Si \leftrightarrow (\alpha Co) + \alpha Co_2Si$	25.0	13.7	33.3	1160	Eutectoid
	βCo2Si↔L		33.3		1332	Congruent
	L++BC02Si + CoSi	39.6	36.0	50.0	1270	Eutectic
	βCo2Si↔αCo2Si + CoSi	35.7	34.0	50.0	1208	Eutectoid
[37Has]	$L \leftrightarrow (\alpha C_0) + \alpha C_{03}S_1$	23.1	14.0	25.0	1195	Eutectic
	L+aCo2Si++aCo3Si	23.9	32.3	25.0	1212	Peritectic
	$\alpha Co_3Si \leftrightarrow (\alpha Co) + \alpha Co_2Si$	25.0	13.3	32.3	1170	Eutectoid
	βCo₂Si↔L		33.3		1332	Congruent
	L↔BCo2Si + CoSi	39.7	35.8	49.1	1286	Eutectic
	βCo2Si↔αCo2Si + CoSi	35.1	34.1	49.1	1238	Eutectoid
	CoSi↔L		50.0		1460	Congruent
	L⇔CoSi + CoSi2	61.8	52.1	66.7	1310	Eutectic
	CoSi2↔L		66.7		1326	Congruent
	$L \leftrightarrow CoSi_2 + (Si)$	77.5	66 .7	97.9	1259	Eutectic
[64Kal]	CoSi↔L		50.0		1465	Congruent
[68Kal1]	CoSi2↔L		66.7		1322	Congruent
[72Boo]	$L \leftrightarrow (\alpha C_0) + \alpha C_{03}S_1$		•••	25.0	1200	Eutectic
	αCo3Si↔(αCo) + αCo2Si	25.0		33.3	1170	Eutectoid
	L+aCo2Si↔aCo3Si	•••	33.3	25.0	1210	Eutectic
[73Kos](a)	$(\alpha C_0) + L^{\leftrightarrow}(\epsilon C_0)$	16.5	21.4	17.5	1250	Peritectic
	L++(ECo) + aCo3Si	23.1	18.4	25.0	1204	Eutectic
	$\alpha Co_3Si \leftrightarrow (\epsilon Co) + \alpha Co_2Si$	25.0	18.1		1193	Eutectoid
	L+aCo2Si++aCo3Si	24.4	•••	25.0	1214	Peritectic
(a) Data read from the figure.						

structure, stable between 1238 °C and the congruent melting temperature of 1334 °C; (6) the cubic intermediate phase CoSi, stable up to its congruent melting at 1460 °C; (7) the cubic phase CoSi₂, stable up to its congruent melting at 1326 °C; and (8) the cubic solid solution, (Si), with negligible solid solubility of Co. The assessed phase diagram of the Co-Si system is shown in Fig. 1, and a detail of the high-temperature equilibria between 14 and

42 at.% Si is shown in Fig. 2. The special points of the assessed diagram and reported experimental data are listed in Tables 1 and 2, respectively.

Terminal Solid Solubilities

The $(\alpha Co)/(\epsilon Co)$ phase equilibria illustrated in Fig. 1 and 2 were determined by differential thermal analysis (DTA) [73Kos] and

Section II: Phase Diagram Evaluations

electron probe microanalysis (EPMA) [90Eno], with both sets of data in good agreement at high temperatures. These studies of phase equilibria show that (ϵ Co) is stable up to the peritectic temperature of 1250 °C, and that the maximum Si solubility in (ϵ Co) is 18.4 at.% Si at the Co-Co₂Si eutectic temperature of 1204 °C [73Kos]. The high-temperature terminal solid solubilities

shown in Fig. 1 are comparable to those reported by [63Luo], [67Pan], and [88Lik], but the exact lower-temperature solubility is less certain. Experimental data on the solid solubilities of (α Co) and (ϵ Co) are presented in Table 3. The solid solubility of Co in (Si) is very small; data reported by [57Col] and [77Kit] are given in Table 4.

Table 3	Co-Si	Solid	Solubility	y Data
---------	-------	-------	------------	--------

				(Composition	, at.% Si					
	Temperature,		(ε (Co)	- αC	02Si	βC	02Si	C	oSi	
Reference	°C	(aCo)	Si-poor	Si-rich	Si-poor	Si-rich	Si-poor	Si-rich	Si-poor	Si-rich	Comment
[34Vog]	1275	•••	•••				34.0				(a, b)
	1255						34.4	•••			
	1221						35.1		•••		
[64Zel]	1200								48.5	50.9	(c)
	800 to 1100								49.0	50.6	
[72Fro]	700 to 1000				33.0	33.6	•••				(d)
[73Kos]	1221		17.2								(a, b)
[90Eno]	1100	14.4	15.2								(e)
[]				16.9	32.3						ທີ
	1000	12.7	13.8								(e)
	1000			15.6	32.3						ต้
	900	11.6	13.3	14.4	32.2						(=) (e)
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1010	14.5	32.6		•••		•••		(Ť)
	850	10.6	12.1	12.9	317	•••	•••	•••	•••	•••	(-) (e)
		10.0	12,1	13.6	327	•••	•••	•••	•••		Ű
	800	10.0	11 4	12.0	31.8	•••	•••	•••	•••	•••	
	750	10.0	10.7	11.1	32.1	•••	•••	•••	•••	•••	
	750	•••	10.2	10.6	32.1	•••	•••	•••	•••	•••	
	/00	•••		10.5	52.0	•••	•••	•••	•••		(e)

(a) Data read from the figure. (b) Thermal analysis. (c) X-ray data. (d) Metallography. (e) EPMA (diffusion couple). (f) EPMA (two-phase specimen).

Liquidus and Solidus

Co-Si liquidus and solidus temperatures were measured by DTA in the composition ranges 15 to 50 at.% Si [34Vog], 0 to 100 at.%

Table 4	Solid	Solubility	of Co in	(Si)
		COMMONIAN I		100.00

Reference	Temperature, °C	Solubility (N _{Co}), cm ⁻³
[57Col]	1200	1016
[77Kit]	1270	1.3×10^{16}
	1250	1.1×10 ¹⁶
	1200	6.3×10 ¹⁵
	1200	4.7×10 ¹⁵
	1150	3.0×10 ¹⁵
	1100	9.9×10 ¹⁴
	1100	1.0×10 ¹⁵
	1000	1.3×10 ¹⁴
Note: As measured by radiotrac	cer method.	

Si [37Has], and 17 to 26 at.% Si [73Kos]. These data are shown in Table 5.

Intermediate Phases

αCo₃Si. The stable αCo₃Si illustrated in Fig. 1 is the subject of considerable controversy, and was not yet conclusively identified in quenched samples. The evidence for its existence relies almost solely on thermal analysis results and microstructural observation of its presumed eutectoid decomposition [34Vog, 37Has, 72Boo, 73Joh, 73Kos], which [37Kos], [63Kuz], and [67Pan] could not detect. According to the metallographic and DTA studies of [72Boo], αCo₃Si is stable between 1170 and 1210 °C, and [73Kos] ascertained the existence of αCo₃Si by DTA between 1193 and 1214 °C. One possible cause for the disagreement may lie in the purities of the material used in the particular investigation; [76Liv] showed that adding small quantities of Al, Ta, or W to a stoichiometric αCo₃Si alloy suppressed the formation of a eutectoid structure. [73Joh] examined the crystal structure of αCo₃Si quenched to room temperature by X-ray diffraction

Table 5 Co-Si Liquidus and Solidus Data from Thermal Analysis

Composition, at.% Si	Liquidus	Solidus		Invarian	ıt	Composition, at.% Si	Liquidus	Solidus		Invariant	
From [34Vog](a)						From [37Has](cont.)					
15.4	1375		1196			38.2	1307		1285	1239	
18.9	1301		1204	1153		41.2	1342		1290	1238	
20.6	1257		1204	1147		42.5	1386		1286	1238	
22.3	1219		1200	1149	•••	44.3	1415		1285	1237	
23.9	1211	•••	1201	1155		47.4	1447		1289	1241	
24.7	1220		1207	1160		50.8	1458	•••			
25.5	1235		1201	1157		55.2	1444	•••	1309		
27.0	1257	•••	1208	1162	•••	58.3	1400	•••	1310		
28.6	1277	•••	1212	1164		61.3	1320		1310	1256	
31.6	1327		1208	1152		63.2	1321		1310	1260	
33.4	1332	•••		•••		65.1	1323		1310	1259	
34.0	1330	1327	1275			66.0	1324		1310	1259	
34.4	1334	1313	1255	1199		67.7	1323		1260		
35.1	1321	1301	1221	1203	•••	70.3	1318		1260	•••	
36.4	1311		1259	1207	•••	74.4	1291		1258		
37.2	1301	•••	1262	1206	•••	75.1	1283		1257		
38.4	1291	•••	1273	1213		75.9	1276		1259		
39.2	1278		1266	1205		77.4		•••	1258	•••	
40.0	1307		1269	1205	•••	79.6	1273		1259	•••	
42.1	1358	•••	1276	1207	•••	83.1	1300	•••	1258	•••	
43.7	1388		1269	1207		89.4	1346	•••	1255	•••	
50.3	1441				•••	95.0	1385		1255		
						97.6	1401	•••	1258	•••	
From [37Has]						98.1	1405	•••		•••	
5.1	1452	1400									
10.0	1421	1289	•••	•••		From [73Kos](a)					
14.5	1358		1196	1121		17.2			1250		
18.9	1289		1195	1135		18.9	1300	•••	1245	1206	1103
23.1			1195	1212	1171	20.6	1274	•••	1248	1200	1106
25.0			1212	1170		22.3	1225	•••	1204	1103	1170
27.0	1256		1210	1170		23.9	1210		1204	1103	
30.8	1304		1162			24.7	1227	•••	1222	1205	1193
33.4	1334					25.5	1245		1214	1190	1175
34.0	1331					26.3	1264		1214	1196	•••
34.4	1330	1316	1265				• ·				•••
35.1	1327	1304	1236	•••	•••						

(a) Data read from the figure.

Section II: Phase Diagram Evaluations

(XRD), and tentatively assigned an unspecified tetragonal structure.

Co₂Si. [34Vog] and [37Has] studied the transformation behavior of Co₂Si by thermal analysis; both data sets on the stability range of high-temperature β Co₂Si are in good agreement. However, neither investigation was able to produce retained β Co₂Si, and the calorimetric experiments of [72Fro] could not reproduce the transformation. More explicit confirmation of this phase is desirable. Low-temperature α Co₂Si melts peritectically at 1320

Table 6 Co-Si Transformation Temperatures

	Composition,	Temper	ature, "C	
Reference	at.% Si	Heating	Cooling	Method
[37Has]	2.1	537	469	Dilatometric
		536	468	Magnetic
	4.1	597	524	Dilatometric
		596	525	Magnetic
	8.1	687	594	Dilatometric
		688	595	Magnetic
	11.4	738	635	Dilatometric
[37Kos](a)	2.1	482	384	Magnetic
	5.1	658	458	Dilatometric
		654	468	Magnetic
	10.0	795	550	Dilatometric
		795	555	Magnetic
	14.5	1025	982	Magnetic
[70Kra]	1.77	526	459	Dilatometric
	8.15	454	402	Dilatometric
	9.86	449	400	Dilatometric
[73Kos](a)	2.1	533	463	Dilatometric
		526	470	Thermal
	4.1	602	513	Thermal
	6.1	684	558	Dilatometric
		672	565	Thermal
	8.1	728	580	Dilatometric
		739	590	Thermal
	10.0	782	596	Dilatometric
		778	596	Thermal

(a) Data read from the figure.

Table 7 Co-Si Crystal Structure Data

°C (L + β Co₂Si $\leftrightarrow \alpha$ Co₂Si) and also participates in eutectoid reactions at 1193 and 1238 °C and the peritectoid reaction at 1214 °C. The homogeneity range of α Co₂Si was reported to be 33.0 to 33.6 at.% Si between 700 and 1000 °C from metallographic observations [72Fro].

CoSi. Cubic CoSi is stable below its congruent melting temperature of 1460 °C. The homogeneity range determined by X-ray measurements is from 49.0 to 50.6 at.% Si in the temperature range 800 to 1000 °C and from 48.5 to 50.9 at.% Si at 1200 °C [64Zel].

CoSi2. Cubic CoSi2, with an almost stoichiometric composition, is stable below its congruent melting temperature of 1326 °C.

Metastable Phases

[63Luo] reported that an (α Co) solid solution up to 15 at.% Si was obtained by rapid quenching from the melt, which is within the solubility limit of equilibrium (α Co). It was recognized that the formation and transformation behaviors of aCo₃Si and aCo₂Si are complex and are quite different on heating from those on cooling [72Boo, 73Joh, 73Kos, and 74Boo]. This is mainly due to suppression of the formation of $\alpha Co_3 Si$ on cooling. The metastable eutectic reaction L \leftrightarrow (α Co) + α Co₂Si at ~1192 °C was found by [72Boo] and was supported by [74Boo] and [75Liv], whereas [73Kos] did not detect this reaction. According to [73Joh], α Co₃Si transforms ultimately to a eutectoid structure of α Co₂Si and the Co-rich solid solution, but the reaction only was observed to proceed via a transition phase with an orthorhombic structure not distinguished from that of $\alpha Co_2 Si$. This phase appears to form by a massive transformation. [73Kos] found a metastable ordered phase of $\beta Co_3 Si$ with DO_{19} structure, with a composition of -8at.% Si at temperatures below about 570 °C.

The tetragonal phase Co₂Si₃, formed at pressures >4 GPa and temperatures of 500 to 750 °C, is metastable under ordinary conditions. After annealing at 700 °C, it decomposes into α CoSi₂ and CoSi [82Lar].

Phase	Composition, at.% Si	Pearson symbol	Space group	Strukturbericht designation	Prototype	Comment	Reference
(αCo)	0 to 16.4	cF4	Fm3m	A 1	Cu	422 <t<1495 td="" °c<=""><td>[83Nis]</td></t<1495>	[83Nis]
(εCo)	0 to 18.4	hP2	P63/mmc	A3	Mg	<i>T</i> <1245 °C	[83Nis]
αCo ₁ Si	25	<i>t</i> **				1193 <i><t<< i="">1214 °C</t<<></i>	[73Joh]
αCo ₂ Si	-32 to -34	oP12	Pnma	C23	Co ₂ Si	<i>T</i> <~1320 ℃	[Pearson1]
βC0 ₂ Si	-32 to 35.8	?	?	?	$\overline{\tilde{?}}$	1238 <t<1334 td="" °c<=""><td></td></t<1334>	
CoSi	49 to ~52	cP8	P213	B 20	FeSi	<i>T</i> <1460 °C	[Pearson1]
CoSi2	66.7	cF12	FmĴm	<i>C</i> 1	CaF ₂	<i>T</i> <1326 °C	[Pearson1]
(Si)	~100	cF8	Fd3m	A4	C(diamond)	<i>T</i> <1414 °C	[King1]
Metastable phases							
βC03Si	8 to 25	hP8	P6_mmc	$D0_{19}$	NiaSn	<i>T</i> <570 °C	[73Kos]
Co₄Ši	20	?	?	?	ž	Thin film	[86Apr]
γCo ₂ Si	~25	0**				(a)	73Joh
Co ₂ Ši ₃	60	tP20	P4c2m		Ru ₂ Sn ₃	<i>P</i> >4.0 GPa 500 < <i>T</i> <700 °C	[82Lar]

	Composition,	Lati	ice parameters	i, nm		
Phase	at.% Si	a	Ъ	C	Comment	Reference
(αCo)	0	0.35446		•••	Pure aCo	[83Nis]
	4	0.35420		•••	(a, b)	[63Luo]
	8	0.35395		•••	(a, b)	[63Luo]
	11.5	3.35365			(a, b)	[63Luo]
	13	0.35355			(a, b)	[63Luo]
	15	0.35350			(a, b)	[63Luo]
(ECo)	0	0.25071		0.40695	Pure ECo	[83Nis]
. ,	5.1	0.24925		0.4050		[37Has]
	10.0	0.2486		0.4015		[37Has]
	14.5	0.2474		0.3970	$(\epsilon Co) + \alpha Co_2 Si$	[37Has]
	18.9	0.2475		0.3970	$(\epsilon Co) + \alpha Co_2 Si$	[37Has]
	4	0.2500 to 0.2503	•••	0.4050 to 0.4084	800 to 1200 °C	[88Lik]
αCo ₃ Si	25	0.842	0.3738	0.581		[73Joh]
$\alpha Co_2 Si$	33	0.4918	0.3730	0.7109		[Pearson1]
-		0.4908	0.3725	0.7095		[Pearson2]
		0.4919	•••	0.7104		[72Fro]
CoSi	50	0.4447				[Pearson1]
	49.1	0.44477				[64Zel]
	49.4	0.44467	•••			[64Zel]
	49.6	0.44464				[64Zel]
	49.8	0.44446			•••	[64Zel]
	49.9	0.44445	•••			[64Zel]
	50.1	0.44444	•••	•••		[64Zel]
	50.4	0.44426	•••			[64Zel]
	50	0.4448				[71Wal]
CoSi ₂	66.7	0.5365				[Pearson1]
-		0.53526				[87Wei]
Si	100	0.54306	•••	•••		[King1]
Metastable phases						
βCo ₃ Si	25	0.4976	•••	0.4069		[73Kos]
Co ₂ Ši ₃	60	0.5234	•••	0.8543		[82Lar]
(a) Data read from the figure. (b) Splat que	ched from the mel	t.				

Table 8 Co-Si Lattice Parameter Data

 Table 9 Enthalpy Coefficients and Heats of Fusion for Cobalt Silicides

		Coefficie	nts, J/mol		Heat of
Phase	8	b	c×10 ³	d×10 ⁻⁵	fusion
aCo2Si(s)	-24906	70.785	4.532	2.443	54 300
Co ₂ Si(L)	-30708	136.74			
CoŠi(s)	-15400	47.1	5.95	5.67	69 200
CoSi(L)	2920	87.4			
CoSi ₂ (s)	-25200	71.64	7.569	9.501	100 200

Laser irradiation of thin Co films on single-crystalline Si was studied by [79Gur]. In the 0.1-µm Co film, Co₂Si, CoSi, and CoSi₂ were formed. CoSi₂ films on (111) Si substrates were obtained by solid phase epitaxy [80Sai] and by evaporation of Co onto Si [82Sor]. CoSi₂, CoSi, Co₂Si, and Co₄Si were obtained by solid-state reaction at 800 °C within thin bilayers of amorphous Si and Co evaporated onto SiO₂ substrates. The crystal structure of Co₄Si could not be determined [86Apr].

As with many other silicides, the fabrication of amorphous Co-Si alloys is of interest; [88Kim] showed that a minimum of 13.5

Table 10Fitted Thermodynamic Parameters for Co-SiLiquid Alloys

Regular solution $\Delta G^{ex} = -112\ 073X_{Co}X_{Si}\ (R^2 = 0.958)$ Subregular Solution $\Delta G^{ex} = X_{Co}X_{Si}(-92\ 481X_{Co}-133\ 151X_{Si})\ (R^2 = 0.971)$ Subsubregular solution $\Delta G^{ex} = X_{Co}X_{Si}(-34\ 179X_{Co}-99\ 958X_{Si}-193\ 065X_{Co}X_{Si})\ (R^2 = 0.990)$ Quasiregular solution $\Delta G^{ex} = -275\ 995X_{Co}X_{Si}(1-T/3075)\ (R^2 = 0.971)$

at.% Si was necessary to produce amorphous Co-Si films by sputtering. An estimate of the glass transition temperature for $Co_{1-x}Si_x$ (x = 0.33, 0.397, 0.618, 0.775) was reported by [79Nie].

The martensitic transformation of $(\alpha Co) \leftrightarrow (\epsilon Co)$ was studied by [37Has], [37Kos], [70Kra], and [73Kos]; the transformation temperatures are given in Table 6.

 Table 11
 Experimental and Estimated Heats of Formation of Cobalt Silicides

	Heat of formation, kJ/mol					
Reference	acCo2Si	CoSi	CoSi ₂			
[37Oel]	-115.4	92.0	-102.9			
[73Cha]	-113.1	-95.0	-98.7			
79Kau]	-176.7	-144.9	-201.1			
[81Mac]	•••	-92.0	•••			
[84Pas]	99.2	89.5	104.2			
[88Nie]	-90	62	-45			

Table 12 Co-Si Curie Temperatures

Reference	Composition, at.% Si	Curie Temperature, 'C	
		(acCo)	(EĆo)
[37Has]	2.1	1074	
	4.1	1014	•••
	8.1	882	
	11.5	754	
[37Kos](a)	2.1	1050	
	5.1	945	•••
	10.0	790	
	14.5	625	735
[70Kre](a)	1.0	1078	
	2.1	1058	
	6.1	962	
[73Kos](a)	8.1	827	

(a) Data read from the figure.

Crystal Structures and Lattice Parameters

The crystal structures of most of the phases in the Co-Si system are well-established; exceptions include α Co₃Si and β Co₂Si, neither of which was unambiguously identified as a stable phase. Crystal structure and lattice parameter data for the stable and metastable phases of the Co-Si system are summarized in Tables 7 and 8, respectively.

Thermodynamics

Several thermodynamic investigations of both liquid and solid alloys in the Co-Si system were reported, the first of these being the enthalpy of formation determinations made by [37Oel]. Hightemperature heat capacity measurements were made for α Co₂Si [72Fro], CoSi [68Kal1], and CoSi₂ [64Kal]. The parameters for the standard H_T - H_{298} equation (a + bT + c T^2 + d T^{-1}) are given in Table 9, along with the measured heats of fusion. For α Co₂Si, the allotropic transformation had no apparent impact on the thermodynamic results. Subambient heat capacity measurements were made for CoSi [64Kal] and CoSi₂ [68Kal2].

Three experimental investigations of Gibbs energies of formation in molten Co-Si alloys were made. [68Mar] obtained activity coefficients of Si by equilibrating various Co-Si alloys with Ag-Si melts; their results are in substantial agreement with those of [64Sch], performed by determining the equilibria between these alloys and a calcium silicate melt. As might be expected, a strong negative deviation from ideal behavior was demonstrated, showing some asymmetry with respect to composition; this was also shown by the two activity measurements of [64Bow], obtained by equilibrating liquid alloys with an SiO_2 -H₂-H₂O environment. [80Kha1] and [80Kha2] analyzed the cause of the large negative value of the entropy of mixing in the liquid state determined by [64Sch] and concluded that it is due to an electronic contribution. Regression analysis was performed against the combined results of [64Sch] and [68Mar] to determine the coefficients of some common thermodynamic model equations; these are listed in Table 10. Heats of formation of molten alloys in this system were measured by [60Gel] as well as [37Oel]; the terminal heat of solution of Co in liquid Si was more negative in the former results. The enthalpy of mixing in the liquid state was calculated by [71Pet], [83Pas], [84Pas], and [85Fro]. The work of [37Oel] also yielded ΔH_{298}^0 values for the solid silicides, which are compared in Table 11 to the modeling results of [73Cha], [79Kau], [84Pas], and [88Nie].

The specific heat of CoSi was measured in the temperature range 0.5 to 9 K, and the electronic specific heat coefficient was determined to be $1.1 \text{ mJ/mol} \cdot \text{K}^2$ [74Mar].

The order-disorder transition temperatures for $A2 \leftrightarrow B2$ and $B2 \leftrightarrow D0_3$ reactions in the bcc phase were evaluated by analyzing the experimental data on Fe-Co-Si alloys [79Ind]. [79Kau] presented an analytical description of thermodynamic properties of the liquid, (α Co), (ϵ Co), (Si), and the compound phases, and from these, he computed a phase diagram.

Thermal diffusivity and conductivity of Co alloys with 0 to 6 at.% Si were measured, and deep troughs at the Curie temperature were observed by [70Kre].

Magnetism

The Curie temperature of (α Co) phase was determined by [37Has], [37Kos], [70Kre], and [73Kos]; values are listed in Table 12.

Several studies of magnetic susceptibility of cobalt silicide alloys and compounds were made, including [55Ben1], [55Ben2], [66Shi], [72Ama], and [75Dov]; the results showed that CoSi is diamagnetic, and CoSi₂ paramagnetic. Debye temperatures were derived by a variety of experimental techniques [64Kal, 65And, 72Ama, 74Mar, 84Hen, 86Apr, 87Nav]. For CoSi₂, a single value of 220 K is reported [86Apr], whereas for CoSi, reported values range between 487 and 600 K, and for CoSi₂ between 450 and 500 K. Saturation magnetization and intrinsic coercivity measurements were made for high-Co eutectic/eutectoid compositions by [73Joh] and [75Liv], and studies of the thermoelectric properties of CoSi were made by [64Asa] and [81Zai].

Cited References

- 34Vog: R. Vogel and K. Rosenthal, "Co-Si Phase Diagram," Arch. Eisenhüttenwes., 12, 689-691 (1934) in German. (Equi Diagram; Experimental)
- *37Has: U. Hashimoto, "The Equilibrium Diagram of the Cobalt-Silicon System," J. Jpn. Inst. Met., 1, 135-143 (1937) in Japanese. (Equi Diagram, Meta Phases, Crys Structure, Magnetism; Experimental;#)

- 37Kos: W. Köster and E. Schmid, "Effect of Elements of Be, C and Si on the Polymorphic Transformation of Co," Z. Metallkd., 29, 232-233 (1937) in German. (Equi Diagram, Meta Phases, Magnetism; Experimental)
- 37Oel: W. Oelsen and W. Middel, "Thermochemistry of Alloys I. Determination of the Heats of Formation of the Alloy Systems Cobalt-Silicon, Iron-Aluminum, Cobalt-Ahuminum, Nickel-Aluminum, Copper-Aluminum and Antimony-Zinc for the Cast State," Mitt. Kaiser-Wilhelm Inst. Eisenforsch. Dusseldorf, 19, 1-20 (1937) in German. (Thermo; Experimental; #)
- 55Ben1: R. Benoit, "Paramagnetic Study of Binary Compounds," J. Chim. Phys., 52, 119-132 (1955) in French. (Magnetism; Experimental)
- 55Ben2: R. Benoit, "The Binding Valence of Some Binary Compounds," J. Chim. Phys., 52, 201-212 (1955) in French. (Magnetism; Experimental)
- 57Col: C.B. Collins and R.O. Carlson, "Properties of Silicon Doped with Iron or Copper," *Phys. Rev.*, 108, 1409-1414 (1957). (Equi Diagram; Experimental)
- 60Gel: P.V. Geld and Yu.M. Gertman, "The First Heats of Solution of Molten Transition Metals (4 Series) in Liquid Silicon," Fiz. Metal. Metalloved., 10, 299-300 (1960) in Russian; TR: Phys. Met. Metallogr., 10(2), 137-139 (1960). (Thermo; Experimental)
- 63Kuz: Yu.B. Kuz'ma and E.I. Gladyshevskii, "The Co-Mn-Si System," Zh. Neorg. Khim., 9, 674-682 (1963) in Russian; TR: Russ. J. Inorganic Chem., 9, 373-377 (1963). (Equi Diagram; Experimental)
- 63Luo: H. Luo and P. Duwez, "Face-Centered Cubic Cobalt-Rich Solid Solutions in Binary Alloys with Aluminum, Gallium, Silicon, Germanium and Tin," Can. J. Phys., 41, 758-761 (1963). (Meta Phases, Crys Structure; Experimental)
- 64Asa: S. Asanabe, D. Shinoda, and Y. Sasaki, "Semimetallic Properties of Co_{1-x}Fe_xSi Solid Solutions," *Phys. Rev., 134*, A774-A779 (1964). (Magnetism; Experimental)
- 64Bow: P.J. Bowles, H.F. Ramstad, and F.D. Richardson, "Activities of Silicon in Metals and Alloys," *J. Iron Steel Inst.*, 202, 113-121 (1964). (Thermo; Experimental)
- 64Kal: G.I. Kalishevich, P.V. Geld, and R.P. Krentsis, "Thermal Capacity, Enthalpy, and Entropy of Cobalt Monosilicide," *Teplofiz. Vys. Temp.*, 2, 16-20 (1964) in Russian, TR: *High Temp.*, 2, 11-14 (1964). (Thermo, Magnetism; Experimental)
- 64Sch: K. Schwerdtfeger and H. Engell, "The Free Enthalpy of Formation of Silicon Dioxide and the Activities of Silicon in Liquid Iron and Cobalt," Arch. Eisenhüttenwes., 35, 533-540 (1964) in German. (Thermo; Experimental)
- 64Zel: L.P. Zelenin, F.A. Siderenko, and P.V. Geld, "Structural Features of ε-Phase in the Co-Si System," *Izv. V. U. Z. Tsvetn. Metall.*, 7(2), 146-151 (1964) in Russian. (Equi Diagram, Crys Structure; Experimental; #)
- 65And: L.P. Andreyeva, F.A. Sidorenko, and P.V. Geld, "Valency States of Atoms in the Monosilicides of Certain 3d-Transition Metals at Low Temperatures," *Fiz. Metal. Metalloved.*, 19, 784-786 (1965) in Russian; TR: *Phys. Met. Metallogr.*, 19(5), 129-131 (1965). (Magnetism; Experimental)
- 66Shi: D. Shinoda and S. Asanabe, "Magnetic Properties of Silicides of Iron Group Transition Elements," J. Phys. Soc. Jpn., 21, 555 (1966). (Magnetism; Experimental)
- 67Pan: L.A. Panteleimonov, A.A. Babitsyna, and L.A. Roiter, "Interaction of Cobalt with Co₂Si," Vestn. Mosk. Univ., Ser. II, 22(6), 87-89 (1967) in Russian. (Equi Diagram, Crys Structure; Experimental; #)
- 68Kal1: G.I. Kalishevich, P.V. Geld, and R.P. Krentsis, "Heat Capacities of the Higher Silicides of Vanadium, Cobalt and Nickel between 60

and 300 K," Zh. Fiz. Khim., 42, 1288-1289 (1968) in Russian; TR: Russ. J. Phys. Chem., 42, 675-676 (1968). (Thermo; Experimental)

- 68Kal2: G.I. Kalishevich, P.V. Geld, and Yu.V. Putinsev, "High Temperature Changes in the Enthalpy of the Higher Vanadium, Cobalt and Nickel Silicides," *Teplofiz. Vys. Temp.*, 6, 1003-1006 (1968) in Russian; TR: *High Temp.*, 6, 959-962 (1968). (Thermo; Experimental)
- 68Mar: L. Martin-Garin, I. Ansara, and P. Desri, "Isothermal Sections of the Systems Ag-Ni-Si and Ag-Co-Si and Activity of Silicon in the Liquid Alloys (Ni, Si) and (Co, Si) at 1580 °C," C.R. Acad. Sci., Ser. C, 266, 1595-1597 (1968) in French. (Thermo; Experimental)
- 70Kra: W. Krajewski, J. Krunger, and H. Winterhanger, "Allotropic Transformation and Thermal Expansion of Cobalt Binary Alloys Between 100 and 800 °C," Cobalt, 48, 120-128 (1970) in German. (Meta Phases; Experimental)
- 70Kre: R.P. Krentsis, V.Y. Zinovyev, L.P. Andreyeva, and P.V. Geld, "Thermal Diffusivity and Conductivity of Solid Solutions of Silicon in Iron and Cobalt," *Fiz. Met. Metalloved.*, 29(1), 118-123 (1970) in Russian; TR: *Phys. Met. Metallogr.*, 29(1), 122-127 (1970). (Thermo, Magnetism; Experimental)
- 71Pet: M.S. Petrushevskii and P.V. Geld, "Interatomic Interaction Energy and Heat of Mixing in Molten Cobalt-Silicon Alloys," *Izv. V.U.Z. Chem. Metall.*, 14(10), 9-12(1971) in Russian. (Thermo; Theory)
- 71Wal: F. Wald and S.J. Michalik, "Ternary System Co-Ge-Si," J. Less-Common Met., 24, 277-289 (1971). (Crys Structure; Experimental)
- 72Ama: A. Amamou, P. Bach, F. Gautier, and C. Robert, "Measures of Specific Heat and Susceptibility and NMR of CoSi Around Stoichiometry," J. Phys. Chem. Solids, 33, 1697-1712 (1972) in French. (Magnetism; Experimental)
- 72Boo: J.V.D. Boomgaard and F.M.A. Carpay, "The Eutectoid Co₃Si Phase in the Co-Si System," *Acta Metall.*, 20, 473-476 (1972). (Equi Diagram, Meta Phases; Experimental)
- 72Fro: A.A. Frolov, Y.V. Putintsev, F.A. Sidorenko, P.V. Geld, and R.P. Krentsis, "Special Features of the Crystallization of Ni₂Si and Co₂Si and Some Characteristics of These Compounds," *Izv. Akad. Nauk SSSR, Neorg. Mater.*, 8, 468-471 (1971) in Russian; TR: *Inorg. Mater.*, 8, 408-411 (1972). (Equi Diagram, Crys Structure, Thermo; Experimental)
- 73Cha: T.G. Chart, "Thermochemical Data for Transition Metal-Silicon Systems," *High Temp.—High Pressures*, 5, 241-252 (1973). (Thermo; Review)
- 73Joh: R.E. Johnson, H.W. Rayson, and W. Wright, "Structure and Magnetic Properties of Phases Occurring in a Cobalt Silicon Alloy of Eutectic Composition," *Acta Metall.*, 21, 1471-1477 (1973). (Equi Diagram, Meta Phases, Crys Structure, Magnetism; Experimental)
- *73Kos: W. Koster, H. Warlimont, and T. Godecke, "The System Cobalt-Co₂Si," Z. Metallkd., 64, 399-405 (1973) in German. (Equi Diagram, Meta Phases, Crys Structure, Magnetism; Experimental)
- 74Boo: J.V.D. Boomgaard and F.M. Carpay, "On the Existence of a Metastable Eutectic Between Co and Co₂Si," *Scr. Metall.*, *8*, 23-26 (1974). (Meta Phases; Experimental)
- 74Mar: K. Marklund, M. Larsson, S. Bystrom, and T. Lindqvist, "The Specific Heat of the Binary Compounds FeSi, CoSi, FeGe and CoGe," *Phys. Scr.*, 9, 47-50 (1974). (Thermo; Experimental)
- 75Dov: S.P. Dovgopol, V.A. Antropov, I.Z. Radovskii, and P.V. Geld, "Magnetic Susceptibility and Electronic Structure of Co-Si and Co-Ge Alloys at High Temperatures," *Phys. Status Solidi, (b), 70,* 439-449 (1975). (Magnetism; Experimental)
- 75Liv: J.D. Livingston, "Properties of Aligned Co-Si Eutectoid," Acta Metall., 23, 521-527 (1975). (Meta Phases, Magnetism; Experimental)

Section II: Phase Diagram Evaluations

- 76Liv: J.D. Livingston, "Aligned Co-Co₂Si Eutectics," J. Mater. Sci., 11, 246-250 (1976). (Equi Diagram; Experimental)
- 77Kit: H. Kitagawa and K. Hashimoto, "Solid Solubility of Cobalt in Silicon," Jpn. J. Appl. Phys., 16, 857-858 (1977). (Equi Diagram; Experimental)
- 79Gur: G.J.V. Gurp, G.E.J. Eggermont, Y. Tamminga, W.T. Stacy, and J.R.M. Gijsbers, "Cellular Structure and Silicide formation in Laser-Irradiated Metal-Silicon Systems," *Appl. Phys. Lett.*, 35, 273-275 (1979). (Meta Phases; Experimental)
- 79Ind: G. Inden, "Determination of the Interchange Energies W_{CoSi}(1), W_{CoSi}(2) for B.C.C. Solid Solutions from High Temperature Neutron Diffraction on Ternary Fe-Co-Si Crystals," *Phys. Status Solidi, (a),* 56, 177-186 (1979). (Thermo; Theory)
- 79Kau: L. Kaufman, "Coupled Phase Diagrams and Thermochemical Data for Transition Metal Binary Systems-VI," *Calphad, 3,* 45-76 (1979). (Thermo; Theory)
- 79Nie: H.J.V. Nielsen, "An Estimate of the Glass Transition Temperature of Transition Metals Alloyed with Metalloids," Z. Metallkd., 70, 606-608 (1979). (Meta Phases; Theory)
- 80Kha1: S.N. Khanna, F. Cyrot-Lackmann, and P. Hicter, "Electronic Contribution to the Entropy of Mixing of Liquid Transition Metal Based Alloys," J. Phys., 41(C8), 582-585 (1980). (Thermo; Theory)
- 80Kha2: S.N. Khanna and F. Cyrot-Lackmann, "On the Entropy of Mixing of Liquid Transition Metal Based Alloys," J. Chem. Phys., 73, 4636-4639 (1980). (Thermo; Theory)
- 80Sai: S. Saitoh, H. Ishiwara, and S. Furukawa, "Double Heteroepitaxy in the Si (111)/CoSi₂/Si Structure," *Appl. Phys. Lett.*, 37, 203-205 (1980). (Meta Phases; Experimental)
- 81Mac: E.S. Machlin, "Correction Terms to Pair Potential Model Values of the Energy of Formation for Transition Element-Polyvalent Element Phases," *Calphad*, 5, 1-17 (1981). (Thermo; Theory)
- 81Zai: V.K. Zaizev, M.I. Fedorov, and A. Yu. Zyuzin, "On the Figure of Merit of Cobalt Monosilicide-Based Materials," *Geliotekh.*, 17(4), 18-21 (1981) in Russian; TR: Appl. Solar Energy, 17(4), 17-21 (1981). (Magnetism; Experimental)
- 82Lar: V.I. Larchev and S.V. Popova, "The New Chimney-Ladder Phases Co₂Si₃ and Re₄Ge₇ Formed by Treatment at High Temperatures and Pressures," J. Less-Common Met., 84, 87-91 (1982). (Meta Phases, Crys Structure; Experimental)
- 82Sor: Y. Sorimachi, H. Ishiwara, H. Yamamoto, and S. Furukawa, "Electrical and Structural Properties of Ion-Implanted and Post-Annealed Silicide Films," *Jpn. J. Appl. Phys.*, 21, 752-756 (1982). (Meta Phases; Experimental)

- 83Nis: T. Nishizawa and K. Ishida, "The Co (Cobalt) System," Bull. Alloy Phase Diagrams, 4(4), 387-390 (1983). (Crys Structure; Review)
- 83Pas: A. Pasturel, P. Hicter, D. Mayou, and F. Cyrot-Lackmann, "An Estimation of the Thermodynamic Data of Liquid Transition Metal Based Alloys," *Scr. Metall.*, 17, 841-846 (1983). (Thermo; Theory)
- 84Hen: J.C. Hensel, R.T. Tung, J.M. Poate, and F.C. Unterwald, "Electrical Transport Properties of CoSi₂ and NiSi₂ Thin Films," *Appl. Phys. Lett.*, 44, 913-915 (1984). (Magnetism; Experimental)
- 84Pas: A. Pasturel, P. Hicter, and F. Cyrot-Lackmann, "On the Heats of Formation of Solid Germanides and Silicides of Transition Metals," *Physica B+C*, 124B, 247-250 (1984). (Thermo; Theory)
- 85Fro: M.G. Frohberg and S. Anik, "Thermodynamic Relations Between Compound Activities and Gas Solubilities on Binary Metallic Systems," *Ber. Bunsenges. Phys. Chem.*, 89, 130-134 (1985). (Thermo; Theory)
- 86Apr: G. Aprilesi, E. Mazzega, M. Michelini, and F. Nava, "Electrical Transport Properties in Co-Silicides Formed by Thin-Film Reactions," J. Appl. Phys., 60, 310-317 (1986). (Meta Phases, Crys Structure; Experimental)
- 87Nav: F. Nava, K.N. Tu, E. Mazzega, M. Michelini, and G. Queirolo, "Electrical Transport Properties of Transition-Metal Disilicide Films," J. Appl. Phys., 61, 1085-1093 (1987). (Magnetism; Experimental)
- 87Wei: F. Weitzer and J.C. Schuster, "Phase Diagrams of the Ternary Systems Mn, Fe, Co, Ni-Sn-N," J. Solid State Chem., 70, 178-184 (1987). (Crys Structure; Experimental)
- 88Kim: H.J. Kim, I.K. Kang, and J.S. Chun, "Glass Forming Ranges of Cobalt-Base Thin Film Alloys," J. Mater. Sci., 23, 4165-4170 (1988). (Meta Phases; Experimental)
- 88Lik: L.S. Likhoded and L.A. Dvorina, "Formation of a Solid Solution in the System Co-Si," *Izv. Akad. Nauk SSSR, Met.*, (2), 197-199 (1988) in Russian; TR: *Russ. Met.*, (2), 188-190 (1988). (Equi Diagram; Experimental)
- 88Nie: A.K. Niessen, A.R. Miedema, F.R. de Boer, and R. Boom, "Enthalpies of Formation of Liquid and Solid Binary Alloys on 3d Metals. IV. Alloys of Cobalt," *Physica B*, 151, 401-432 (1988). (Thermo; Theory; #)
- *90Eno: H. Enoki, K. Ishida and T. Nishizawa, "Phase Equilibria in Corich Portions of the Co-Si and Co-Ge Systems," J. Less-Common Met., 160, 153-160 (1990). (Equi Diagram; Experimental; #)

#Indicates presence of a phase diagram.

Co-Si evaluation contributed by K. Ishida and T. Nishizawa, Department of Materials Science, Faculty of Engineering, Tohoku University, Sendai 980, Japan, and M.E. Schlesinger, Generic Mineral Technology Center for Pyrometallurgy, University of Missouri-Rolla, 215 Fulton Hall, Rolla, MO 65401-0249. This work was supported by the Japanese Committee for Alloy Phase Diagrams. Part of the literature search was provided by ASM International. Literature searched through 1990. Professor Nishizawa is the Alloy Phase Diagram Program Category Editor for binary cobalt alloys.

^{*}Indicates key paper.