
of the h y d r o g e n - o r d e r e d  m a t e r i a l  m e a s u r e d  f rom 
Kikuchi  l ines  with B = (1010> is  0.808/~ c o m p a r e d  with 
0.805.~ d e t e r m i n e d  by X - r a y  powder  t echniques .  

On the b a s i s  of the r e s u l t s  of Margo l in  and P o r t i s c h  s 
on T i -AI  a l l o y s ,  hydrogen  would be expec ted  to occupy 
t e t r a h e d r a l  i n t e r s t i c e s  in TisSn. However ,  the a bse nc e  
of o r d e r i n g  r e f l e c t i o n s  o ther  than (0001) and {1121} 
i m p l i e s  that  the unit  ce l l  has  not changed.  Thus ,  us ing 
the Ti3Sn unit c e l l ,  s t r u c t u r e  f a c t o r s  have been ca l cu -  
l a ted  for the common r e f l e c t i o n s  a s s u m i n g  a s ingle  
hydrogen  a tom p e r  unit  ce l l  in a l l  p o s s i b l e  t e t r a h e d r a l  
i n t e r s t i c e s  and us ing  va lue s  for  the e l e c t r o n i c  s c a t t e r -  
ing a m p l i t u d e s  of Ti ,  Sn, and H taken f rom Smith and 
Burge .  9 The s t r u c t u r e  f a c t o r s  a r e  given in Table  I for 
one case .  

A hydrogen  concen t ra t ion  in solut ion of 11 at .  pct  or 
2000 ppm by weight  i s  n e c e s s a r y  to enable  each Ti3Sn 
unit ce l l  to contain one hydrogen  a tom.  This  i s  not un-  
r e a s o n a b l e  for a t i t an ium a l loy ;  indeed i t  has  been 
shown that  a T i - 8  AI-1 Mo-1 V a l loy  conta ins  800 ppm 
hydrogen in so l id  solut ion be fo re  hydr ide  p r e c i p i t a t i o n  
occu r s .  1~ F u r t h e r m o r e ,  Ti -12 .5  A1 can a b s o r b  ~4400 
ppm hydrogen ,  of which at  l e a s t  2700 ppm is  thought to 
be d i s s o l v e d  in the Ti3A1 phase ,  without  fo rming  hy-  
d r i d e s ,  s In the f o r m e r  a l loy  hydr ide  fo rma t ion  dur ing 
e l ec t ropo t i sh ing  has  been  r e p o r t e d .  1 

It i s  i n s t ruc t ive  to cons ide r  the d i s t o r t i on  a r i s i n g  
f rom the hydrogen o r d e r i n g  p r o c e s s  in t e r m s  of the ob-  
s e r v e d  domain  boundary  p l anes .  F o r  hydrogen  a t o m s  in 
t e t r a h e d r a l  i n t e r s t i c e s  the d i s to r t i on  in the c d i r ec t ion  
is  the s a m e  a c r o s s  the  domain  boundary  and the f r inge  
con t r a s t  a r i s e s  f rom the component  of d i s to r t i on  in the 
b a s a l  p lane .  Th i s  i s  cons i s t en t  with the  o b s e r v e d  ex t inc -  
t ion of a l l  f r inge  i m a g e s  with g = (0002). A s s u m i n g  d i s -  
to r t ion  in the b a s a l  p lane  along (1120>, i . e .  a~, a2, as, 
F ig .  4 shows each type of domain  wal l  s e p a r a t i n g  do-  
ma ins  with d i f fe ren t  a l  and a2 d i s t o r t i o n s .  Al l  t h r e e  
p lanes  a r e  coheren t  twin p l anes  a l though only (1100) 
and (1120) a r e  compound twins .  Both (1100) and (1120) 
wil l  be low ene rgy  domain  b o u n d a r i e s  b e c a u s e  the 
s t r a in  is  s y m m e t r i c a l l y  o r i en t ed  with r e s p e c t  to the 
boundary  plane n w h e r e a s  (1101) wi l l  have a h igher  
ene rgy  b e c a u s e  of the s t r a i n  a s y m m e t r y .  

It is  concluded that  the mode l  of one hydrogen a tom in 
a t e t r a h e d r a l  i n t e r s t i c e  pe r  unit TisSn ce l l  accounts  for  
the p r e s e n c e  of the e x t r a  r e f l e c t i o n s  in the d i f f rac t ion  
p a t t e r n s  and that  the domain  b o u n d a r i e s  a r e  on coheren t  
twin p l a n e s .  F u r t h e r  the hydrogen concen t ra t ion  r e -  
qu i r ed  i s  r e a s o n a b l e  in t e r m s  of that  r e p o r t e d  in so lu -  
t ion in o ther  t i t an ium a l l oys .  

The au tho r s  wish  to acknowledge f inancia l  suppor t  
for t h i s  work  f rom the Tin R e s e a r c h  Ins t i tu te ,  England.  
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The Mutual Solubilities of Titanium 

and Boron in Pure Aluminum 
N. J .  FINCH 

THE mutual  so lub i l i t i e s  of t i t an ium and boron  in 
A 1-T i -B  t e r n a r y  m e l t s  w e r e  d e t e r m i n e d  over  the t e m -  
p e r a t u r e  r ange  700 ~ to 1300~ and the r e s u l t s  i n t e r -  
p r e t e d  in t e r m s  of the a s sumpt ion  (for which the re  is  
c o n s i d e r a b l e  evidence  ~) that  the so lub i l i t i e s  of these  
e l e m e n t s  a r e  l imi t ed  by the i r  r e a c t i o n  toge ther  to fo rm 
t i t an ium d ibo r ide  (TiB2) p robab ly  containing a lumin ium 
d ibo r ide .  In the method used ,  t e r n a r y  m e l t s  we re  
s a m p l e d  at  p r o g r e s s i v e l y  l owered  t e m p e r a t u r e  l eve l s  
a f t e r  a l lowing t ime  for  t i t an ium d ibo r ide  p r e c i p i t a t e d  
to se t t l e  out. 

10 kg me l t s  we re  made  f rom supe r  pu r i t y  a lumin ium 
(99.99 pct) and A1-3.6 pe t  T i  and AI-I pc t  B m a s t e r  
a l l o y s .  Impur i t y  l eve l s  for  the h a r d e n e r  addi t ion  a l l oys  
a r e  l i s t ed  in Tab le  I .  

S tepwise  r educ t ions  in t e m p e r a t u r e  we re  made  da i ly  
and s a m p l e s  for  a n a l y s i s  we re  taken nea r  the s u r f a c e  
a f t e r  gent le  s k i m m i n g .  A min imum p e r i o d  of 21 h 
quiescence was allowed at  each  t e m p e r a t u r e .  S t i r r i n g  
dur ing  and a f t e r  se t t l ing  was  avoided as  i t  would have 
d i s t u r b e d  p r e c i p i t a t e d  t i t an ium d ibo r ide  p a r t i c l e s  a t  
the bo t tom of the c r u c i b l e  and thus r e s u l t e d  in high 
nonequi l ib r tum t i t an ium and boron concen t r a t i ons  in 
the s a m p l e s  taken for  a n a l y s i s .  S t i r r i n g  be fore  the 
s t epwise  t e m p e r a t u r e  r educ t ions  was not c o n s i d e r e d  
n e c e s s a r y .  T i t a n i u m  and boron addi t ions  w e r e  made 
at  t e m p e r a t u r e s  in e x c e s s  of the t e m p e r a t u r e  of the 
f i r s t  a na ly t i c a l  s a m p l e  and wel l  s t i r r e d  into the me l t .  
A l u m i n a - c o a t e d  c l a y - g r a p h i t e  c r u c i b l e s  w e r e  used  in 
an e l e c t r i c  r e s i s t a n c e  fu rnace .  T e m p e r a t u r e s  we re  
m e a s u r e d  by a fused a l u m i n a - s h e a t h e d  p l a t i n u m /  
p l a t i n u m - r h o d i u m  the rmocoup le  to •176 and w e r e  
cont inuous ly  mon i to r e d .  Mel t  t e m p e r a t u r e s  we re  con-  
t r o l l e d  to •176 or  l e s s .  

Mel t s  s a m p l e d  in this  way had nomina l  t i t an ium:  
boron  r a t i o s  of 5:1 and 2.2:1 (the s t o i e h i o m e t r i c  r a t i o  
for  t i t an ium d ibor ide ) .  In the ease  of the 5:1 r a t i o  a l -  
loys  the so lub i l i ty  p roduc t s  for  the t h ree  lowes t  t e m -  
p e r a t u r e s  examined  were  not ca l cu la t ed  be c a use  the 
boron  concen t r a t i ons  we re  lower  than the l i m i t  of the 
a n a l y t i c a l  method (<0.0002 wt pet) .  The r e s u l t s  a r e  
given in Tab le  II toge ther  with r e s u l t s  obta ined f rom 
other  work .  2'3 A 1:2 r a t i o  s e r i e s  was a l so  included 
o r i g i n a l l y ,  but  a l l  the t i t an ium concen t r a t ions  were  
lower  than the l i m i t  of the a n a l y t i c a l  method (<0.002 
wt pet)  and these  r e s u l t s  have t h e r e f o r e  been omi t ted .  

The r e s u l t s  a r e  shown in F ig .  1 as  a l o g a r i t h m i c  
p lo t  of the w e i g h t - p e r c e n t  so lub i l i ty  p roduc t ,  (Ti) 
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x (B) 2, against the reciprocal  of temperature (K). The 
line shown in this graph has the relationship: 

This relationship is based only on resul ts  obtained in 
the present  tes t s  at temperatures greater than 1000~ 
at which concentrations of titanium and boron were  
not at the ex treme  l imits  of the analytical methods 
used and the accuracy was greater than at lower tern- 
peratures.  

The form of the relationship is partial confirmation 
of the assumption that titanium and boron are mainly 
present  as diboride, rather than, for example ,  a m i x -  
ture of TiAI3 and A1B2. The amounts of titanium and 
boron coprecipitated indicate a solid solution or mix -  
ture of TiB2 and e x c e s s  boron presumably as A1B2. 

The resul ts  agree c lose ly  with those from other 
work 2'a and these are included in Table II and Fig.  1. 

To indicate the requirements  for removing titanium 
from high-conductivity aluminum without e x c e s s  boron, 
Fig.  9. shows the solubil i t ies  of titanium and boron for 

Table I. Impurity Levels in AI-B and AI-Ti Master Alloys 

Impurities, Wt Pct 

Element A1-B Alloy Ai-T1 Alloy 

Fe 0 05 0.04 
Si 0.04 0 04 
Mg 0.007 0.003 
Mn 0.01 0.002 
Cu 0.006 0.03 
Ni n.d. <0.005 n.d. <0.005 
Pb tr. ~0 01 n .d .<0.01 
Cr n.d. <0.01 n.d. <0.01 
Zn tr. ~0.01 n.d. <0.01 
Sn n.d. <0.01 ~0.05 
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Table II. Solubilities of Titanium and Boron in Ternary AI-Ti-B Melts 

Nominal Imtlal 
TI.B Ratio and 

Composition, Wt Pct 

Temperature Analyzed Solubihty 
at Which  Composition, Product 

Sample Taken Wt Pet (Ti) X (B) 2 104 

K ~ T1 B Wt Pct T, K 

5:1 
(0.14 Ti, 0.027 B) 

2.2.1 
(0.06 T1,0.027 B) 

23:12 

(0.023 Ti, 0.010 B) 

1.7 12 
(0.0065 Tl, 0.0037 B) 

Not quoted, probably 
approximately 
2.2:13 

1573 1300 0.17 0.0090 1.38 X 10 "s 6.37 
1481 1208 0.16 0.0024 9.2 X 10 -7 6.76 
1391 1118 0.16 0.0016 4.1 X 10 "7 7.19 
1249 976 0.15 0.0002 6.0 X 10 .9 8.00 Z 

O 
1174 901 0.15 <0.0002 -- ft. 
1051 778 0.16 <0.0002 < --  IZ 

996 723 0.16 <0.0002 - 

1568 1295 0.055 0.011 6.7 X 10 -6 6.37 
z 

1531 1258 0.049 0.009 3.97 X 10 .6 6.54 0 
1333 1060 0.044 0.002 1.76 X 10 -7 7.52 u 
1303 1030 0.042 0.001 4.2 X 10 "s 7.69 
1235 962 0.043 0.0008 2.76 X 10 "a 8.06 
1168 895 0.040 0 0 0 0 4  6.4X 10 "9 8.54 m 
1073 800 0.038 0.0002 1 52 X 10 -9 9.34 

1023 750 0.003 0.0002 10 "1~ 9.8 

973 700 0.0004 0.0004 5.0X l0 "H 10.2 

1373 1100 Not quoted 6 X 10 "s 
1243 970 Not quoted 1 X 10 "s 
1123 850 Not quoted 2 X l0  "9 

7.28 TI TANI UM C O N C E N T  R A T I O N ,  wt.~ 

8.05 F i g .  2 - - P r e d i c t e d  s o l u b i l i t i e s  of t i tan ium and boron  in A I - T i - B  
8 90 t e r n a r y  m e l t s  a t  v a r i o u s  t e m p e r a t u r e s .  
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va r ious  t e m p e r a t u r e s  and compos i t ions ,  as  predic ted  
by the re la t ionsh ip  obtained f rom the solubi l i ty  d e t e r -  
mina t ions .  The cu rves  indicate  that me l t s  become 
sa tura ted  with r e spec t  to TiB2 at  very  low c o n c e n t r a -  
t ions of t i t an ium and boron.  For  example  at 1300~ 
the solubi l i ty  l im i t  was 0.035 pct T i ,  0.016 pct  B, 
equivalent  to 0.051 pct TiB2. 

The author is indebted to London and Scandinavian 
Meta l lu rg ica l  Co. L imi ted ,  by whom the work was 
fully supported,  for p e r m i s s i o n  to publ ish  this com-  
munica t ion .  

1 A. Cibula" J. Inst. Metals, 1951-52, vo]. 80, no. 1, pp. 1-16. 
2. A. ClbuIa: 1950, unpubhshed work. 
3. C. E. Ransley: Producing or Refining Aluminium, U. S. Patent No. 3,028,324, 

3rd Apnl 1962. 

At about 775~ the compaction r a t e  dec reased  
sharply ,  Fig.  1. To inves t iga te  this  dec rease ,  the m i -  
c r o s t r u c t u r e s  of spec imens  h o t - p r e s s e d  up to t e m p e r a -  
t u re s  just  below and jus t  above the Cur ie  point (de te r -  
mined as 775~ by DTA ana lys i s )  were  studied. The 
r e s u l t s  of this  meta l iograph ic  study a r e  i l l u s t r a t ed  by 
the m i c r o s t r u c t u r e s  of F igs .  2 and 3 for powder spec i -  
mens  p r e s s e d  re spec t ive ly  up to 750 ~ and 825~ It can 
be seen that,  between 750 ~ and 825~ the g ra ins  grow 
from about 8 to 80 ~t diam.  This  abno rma l  growth co- 
inc ides  with the abrupt  dec rease  in the compact ion ra te  
at 775~ 

The extensive  gra in  growth at the Cur ie  point can be 
explained by assuming that, below the Curie tempera- 
ture, each grain or powder particle is a distinct mag- 
netic domain. This assumption is reasonable since 

Abnormal Grain Growth 
at the Curie Point 
During Hot-Pressing of Iron 

R. TREMBLAY AND R. ANGERS 

DURING h o t - p r e s s i n g  expe r imen t s  on i ron  powder,  it 
was observed  that extensive g ra in  growth occur red  nea r  
the Cur ie  point.  These  e x p e r i m e n t s  cons is ted  in heat ing 
4N i ron powder at the constant  r a t e  of 7~  f rom 
room t empe ra tu r e  to 1000~ in a vacuum ho t -p r e s s ing  
appara tus  with a 1200 psi  uniaxial  p r e s s u r e  applied on 
the powder. The compaction ra te  was cont inuously 
recorded .  
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Fig. 1--Compaction rate and bulk density vs temperature 
during hot-pressing of 4N iron powder. 
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Fig. 2--Microstructure of a specimen hot-pressed from room 
temperature to 750~ (Black areas are pores; density is 5.6 
g/cc.) Magnification 500 times. 

Fig. 3--Microstructure of a specimen hot-pressed from room 
temperature to 825~ (Black areas are pores; density is 5.7 
g/cc.) Magnification 500 times. 
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