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Because  of i n c r e a s i n g  ecological  concern ,  the Bureau of Mines is  inves t iga t ing  the use of 
chlor ina t ion  technology in ex t rac t ive  meta l lu rgy .  A key p rob lem is the fact that f e r r i c  
chloride is  commonly  genera ted  dur ing p rocess ing  of a wide va r i e ty  of o res  and m i n e r a l s .  
This  paper  d e s c r i b e s  smal l  l a b o r a t o r y - s c a l e  s tudies  designed to effect dechlor ina t ion  of 
f e r r i c  chloride by oxygen in a f luidized bed reac to r  to produce a v iable ,  nonpol lut ing i ron  
oxide product  and chlor ine  gas,  which could be r ecyc led  in a chlor ina t ion  p r o c e s s .  These  
s tudies  demons t r a t ed  that c lose  to 100 pct convers ions  of f e r r i c  chlor ide to f e r r i c  oxide 
and chlor ine can be effected by reac t ion  with oxygen at t e m p e r a t u r e s  ranging f rom 500 ~ to 
650~ The off-gas f rom the s ing le - s t age  r e a c t o r  contained up to 95 pct ch lor ine .  The 
study a lso  demons t ra t ed  that the p r e sence  of a smal l  amount  of NaC1 in the r eac to r  ca ta-  
lyzed the reac t ion  between f e r r i c  chlor ide and oxygen and pe rmi t t ed  high c onve r s i ons  at  
t e m p e r a t u r e s  as  low as 500~ 

BECAUSE of pending wor ld-wide  shor tages  of ru t i l e ,  
there  has been in tens i f ied  i n t e r e s t  in methods of u t i -  
l iz ing  i lmen i t e  as a source  of t i tan ia  e i ther  for p igment  
or for meta l  product ion.  Although i lmeni te  can be 
t r ea ted  by sul fur ic  acid at tack,  undes i r ab le  quant i t ies  
of f e r rous  sulfate  a re  genera ted  that const i tute  a water  
pol lut ion p rob lem.  Other approaches  being studied in -  
clude py rome ta l l u rg i ca l  p r ac t i ce s  to produce high-  
t i tania  s lags ,  synthet ic  ru t i l e ,  or t i t an ium carbide .  1 
These  upgraded m a t e r i a l s  can be chlor ina ted  to p r o -  
duce t i t an ium te t rach lo r ide  and a sma l l  amount  of i ron 
chlor ide ,  which is  read i ly  r emoved  by f rac t ional  con-  
densat ion and d is t i l l a t ion .  After f inal  pur i f ica t ion  the 
r e su l t i ng  t i t an ium te t rach lo r ide  can be used for meta l  
produet ion  or conver ted to p igmen t -g rade  TiO2. 

An a l t e rna te  approach for r eeove r ing  t i tan ia  f rom 
i lmen i t e  involves  d i rec t  chlor inat ion;  however ,  in this  
ease ,  excess ive  quant i t ies  of f e r rous  or f e r r i c  chlor ide 
a r e  genera ted  which const i tute a loss  of chlor ine  and 
pose a s e r i ous  pollution p rob lem.  The appl ica t ion of 
ch lo r ine  in me ta l lu rg i ca l  p roces s ing  is  s e r ious ly  ham-  
pe red  from both an economic and an ecological  s t and-  
point  by the genera t ion  of i ron  ch lor ides .  

Although we have emphas ized  the genera t ion  of f e r r i c  
chlor ide dur ing  i lmeni te  p rocess ing ,  it should be r e c o g -  
n ized  that the use  of chlor inat ion p rac t i ce  in p roces s ing  
a wide va r i e ty  of o res  and concen t ra tes  depends upon 
the success fu l  development  of a method for dech lo r in -  
at ing f e r r i c  chloride.  Accordingly ,  this  study was un-  
der taken  to develop an economica l  method for dech lo r -  
inat ing f e r r i c  chloride to produce a nonpollut ing i ron 
oxide product  and chlor ine  for r ecyc le .  

In gene ra l ,  there  is  only l imi ted  in format ion  in the 
l i t e r a t u r e  deal ing with dechlor ina t ion  of f e r r i c  chlor ide .  
The in format ion  that is  avai lable  is most ly  r e s t r i c t e d  
to pa ten ts ,  which d isc lose  the d i sp lacement  of chlor ine  
by oxygen. These patentable  d i s c l o s u r e s  differ p r i -  
m a r i l y  in the method used to in t roduce f e r r i c  chlor ide 
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into a r eac to r  for combust ion  with oxygen according  to 
the following equation:  

3 2 FeC13 + -~O2 = FeeO3 + 3 C12 

The pa tents  indicate  that the above reac t ion  occur s  
at t e m p e r a t u r e s  r ang ing  f rom 500 ~ to 1000~ Dunn 2 
de sc r i be s  the use  of a sodium c h l o r i de - i r on  chloride 
eutect ic  sa l t  in a moving bed r e a c t o r .  The eutect ic  sa l t  
is  d i spe r sed  as  a l iquid f i lm on ine r t  sphe res  (alumina)  
which a re  in t roduced at the top of a ve r t i c a l  r e a c t o r .  
The coated spheres  move downward through the r eac to r  
c o u n t e r c u r r e n t  to a flow of oxygen. As the coated 
spheres  move downward, i ron  oxide and C12 a re  p r o -  
duced. Another  method r epor t ed  involves  the d i rec t  
combust ion  of f e r r i c  chloride vapor with oxygen. 3 C a r -  
bon or carbon monoxide was in t roduced nea r  the outlet 
of the r eac to r  to inact ivate  oxygen. This  inact iva t ion  
p rocedure  is  r epor ted  to p reven t  a c rus t  of i ron oxide 
fo rming  which would otherwise  cause plugs.  The use  of 
a f lu id ized-bed r eac to r  was also repor ted .  4'5 P a r t i c l e s  
of i ron  oxide a r e  ma in ta ined  in a s tate  of f luidizat ion to 
provide a la rge  number  of su r faces  for f e r r i c  chlor ide 
vapor to r eac t  with oxygen. The f luidized pa r t i c l e s  of 
i ron  oxide a r e  r epor ted  to catalyze the fo rmat ion  of 
i ron oxide and chlor ine .  

After  a p r e l i m i n a r y  inves t igat ion of these pa tentable  
d i sc lo su re s ,  the combust ion  of FeCls in a f luidized bed 
of i ron oxide was chosen for more  extens ive  study. 
At t rac t ive  f ea tu res  of a f luidizat ion p r oc e s s  include 
excel lent  heat  t r a n s f e r ,  high throughput,  good control  
of p r oc e s s  s t r e a m s ,  and cont inuous opera t ion .  

P r e l i m i n a r y  s tudies  on the dechlor ina t ion  of FeC13 
quickly indicated that a c r i t i ca l  feeding p rob lem is a s -  
socia ted with the phys ica l  and chemical  c h a r a c t e r i s t i c s  
of this compound and i ts  reac t ion  products  with oxy- 
gen. At t e m p e r a t u r e s  rang ing  f rom 100 ~ to about 320~ 
s table  compounds including Fe203, FeC12, and FeOC1 
form on the FeC13 feed inlet  l ines  leading into the 
f lu id ized-bed r e a c t o r ,  causing plugging and d is rupt ing  
operat ion.  

EXPERIMENTAL PROCEDURES AND RESULTS 

P r i o r  to conducting r e s e a r c h  in a f luidized bed r e -  
ac tor ,  s tudies  were  under taken  in a c losed sys t em to 
obtain a be t te r  unders tand ing  of the FeC13-O2 sys tem.  
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Table I. Physical Properties of Iron Chlorides 7 

Meltmg Boihng Thermal Decomposition 
Chloride Point, ~ Pomt, ~ Reactions 6 

FeCI3 304 319 FeC13 = FeC12 + ~ C12 
FeC12 677 1,026 None 
FeOCI Decomposes above Decomposes above 3FeOCI = Fe2 O3 + FeCla 

200~ 200~ 

Selected physical  p rope r t i e s  of these i ron  chlor ide 
compounds a re  given in Table  I. 

React ion r a t e s  were  de t e rmined  by p r e s s u r e  d i f fer -  
ences  as  a function of t ime  and t e m p e r a t u r e s .  Studies 
were  conducted at 1 to 2 arm p r e s s u r e  and t e m p e r a -  
t u r e s  ranging  f rom 50 ~ to 300~ Resul t s  show two 
s imul t aneous ,  f i r s t - o r d e r  r eac t i ons ,  ne i ther  of which 
went to complet ion,  probably  because  of i n t e r f e r e n c e  
by a product  layer  on the un reac ted  chlor ide .  Gr inding 
the reac t ing  sol id i n c r e a s e d  the amount  of FeC13 
reac ted ,  but the r eac t ion  was s t i l l  not complete ,  and 
the reac t ion  gases  had a low chlor ine  content .  

L o w - t e m p e r a t u r e  (below 300~ reac t ion  of oxygen 
with f e r r i c  chlor ide  has been cha rac t e r i z ed  by th ree  
genera l  t e m p e r a t u r e  r eg ions .  Below 100~ no subs t an -  
t ia l  r eac t ion  occurs .  Between 100 ~ and 200~ the 
reac t ion  

2 FeC13 = 2 FeC12 + C12 [1] 

occurs ,  along with some oxidation to FeOC1 accord ing  
to the reac t ion:  

2 FeC12 + 02 = 2 FeOC1 and C12 [2] 

At t e m p e r a t u r e s  g r ea t e r  than 200~ FeOC1 decom-  
poses  as  shown in Eq. [3] 

3 FeOC1 = FeC13 + Fe203 [3] 
3 _- 2FeCls  +-~O2 Fe203+3C12 [4] 

and fur ther  reac t ion  with oxygen occurs  slowly. The 
ra te  of reac t ion  between FeC13 and 02 to form Fe203 
and C12 is  somewhat  slow at 300~ but is  a lmos t  in -  
s tan taneous  at 600~ 

Equipment  

Several  f lu id ized-bed r eac to r  des igns  were  tes ted  
for the dechlor ina t ion  of FeC13. The major  p rob lem 
encountered  was that caused by plugging of feed inlet  
l ines  by FeC12, FeOC1, and FeC13. This  p rob lem was 
l a rge ly  overcome by pass ing  both cold f luidizing gas 
and FeC13 through a U-shaped  feed tube.  F e r r i c  oxide 
bed pa r t i c l e s  osc i l la ted  in the feed tube owing to p r e s -  
su re  f luctuat ions and tended to scour  the feed in le t .  The 
combined effects of us ing a cold f luidizing gas and the 
scour ing  act ion of the bed m a t e r i a l  tended to keep the 
l ine open and preven ted  p r e m a t u r e  reac t ion  in the feed 
inle t  to the r eac to r .  The r eac to r  shown in Fig.  1 proved 
effective and al lowed a t t a inment  of s t eady-s ta te  condi - 
t ions  in a few minu te s  of operat ion with only inf requent  
plugging of feed l ines .  Major  fea tures  of the appara tus  
include a feed m e c h a n i s m ,  f lu id-bed r e a c t o r ,  condenser ,  
dust t r ap ,  and C12 ana lys i s  uni t .  Heat to the f luidized 
bed was supplied by a 2 in.  d iam,  24 in. long, two-zone 
r e s i s t a n c e - h e a t e d  tube furnace .  The 2 in. d iam r e a c t o r  
was cons t ruc ted  of Vycor.* The condenser  and dust  

*Reference to trade names is made to faclhtate understanding and does not 
imply endorsement by the Bureau of Mines 

t r aps  were  cons t ruc ted  of 2 in.  diam double- tough 
Pyrex  pipe followed by two sa tu ra ted  NaC1 b u b b l e r s  
which incorpora ted  the gas sampl ing  unit  and a con t in -  
uous u l t r av io le t  C12 a na l yz e r .  

Iron compounds (FeC13, Fe2Oa), NaC1, and 02 were  
t echn ica l -g rade  m a t e r i a l s  pu rchased  f rom c o m m e r c i a l  
supp l i e r s  and used as  r ece ived .  It was found n e c e s s a r y  
to p r e t r e a t  the Fe2Oa because  of i t s  ex t r eme ly  fine p a r -  
t ic le  s ize .  The method adapted for p r e p a r i n g  a sui table  
bed of Fe203 for f lu idizat ion involved blending Fe203 
with anhydrous  FeC13 in a 10 to 1 ra t io ,  followed by 
adding water ,  baking,  and igni t ion at 600~ A sui table  
pa r t i c l e  s ize  was obtained by s c r e e n i n g  this  m a t e r i a l  
through a s t andard  2 0 - m e s h  Ty l e r  s c r e e n .  The FeC13 
was a lso  sc reened  to minus  20 mesh;  however ,  ca re  
was exe rc i s ed  to p reven t  excess ive  pickup of mo i s tu r e  
by the highly hygroscopic  ch lor ide  sa l t .  

The FeC13 was contained in a mi ld  s teel  hopper and 
sc r ew- fed  into a U-shaped  P y r e x  tube.  Oxygen was in -  
t roduced along with the FeC13 to a s s i s t  t r a n s p o r t  of the 
chlor ide  sal t  into the base  of the f luidized bed. The U-  
shaped feed tube was kept f ree of plugs by the scour ing  
act ion of Fe203 pa r t i c l e s  which osc i l l a ted  up and down, 
along with FeC13, at the base  of the f luidized bed. The 
base  of the t ape red  f luidized bed was jo ined to a w a t e r -  
cooled 12 -mm Pyrex  feed a s s e m b l y  by a bal l  joint con-  
nec t ion .  A short  length of piano wi r e  was i n se r t ed  into 
the U-shaped  feed l ine which extended into the f luidized 
bed. Occas iona l  ro ta t ion  of this  wi re  caused a f l icking 
mot ion which was p a r t i c u l a r l y  effective in ma in ta in ing  
a smooth flow of r e a c t a n t s  and a l so  helped p reven t  
c rus t  fo rmat ion  at the base  of the FluoSolids r e a c t o r .  

Chlor ine  was cont inuously  ana lyzed  by spl i t t ing  the 
off-gas s t r e a m ,  and pass ing  the 02 and C12 mix tu re  
through a sys t em of f i l t e r s  and then into a chlor ine  
ana ly s i s  uni t .  The chlor ine  a n a l y s i s  uni t  i nco rpo ra t e s  
an u l t r av io le t  light source  and photocel l .  Absorpt ion  
of u l t r av io le t  light by ch lor ine  p e r m i t s  de t e rmina t ion  
of chlor ine  concen t ra t ion .  Light which p a s s e s  through 
a specia l  f i l ter  fal ls  upon a photoe lec t r i c  cell  which 
conver t s  the light energy  into a m i c r o a m p  cu r r en t .  
This  c u r r e n t  is  then re l ayed  to a cont inuous r eco rd ing  
i n s t r u m e n t  for readout .  I nc r e a se d  chlor ine  content of 

T herrnocouple p r o b e ~  

Fluldlzed- bed reactor ~ 

Pressure 
release - ~  
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Flow- r ~  
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? 
Oxygen 
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Feeder j 
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To vent TOanalyzerUltrovlolet chlorine~ 

,CI 
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Fig. 1--Fluidized bed for conversion of FeC13 to Fe20 ~ and C12. 
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90  
Table II.  Constant Operating Parameters 

Fluidized Bed Pressure Drop 
Fe203,  Bed Cross Oxygen Flow Rate* Across Bed 

Wt, g Height, era Sectmn, cm 2 cc/Mm cc/cm2-Min mm/Hg 

800 33 to 38 18 1950+_50 t08 +_ 2.8 60 to 80 

*By stoichiometry ttus amount of O~ reacts with 18.15 -+ 0.47 g/mm of FeCI3 
(1.01 -+ 0.126 g/cm2-min). 

the gas  s t r e a m  d e c r e a s e s  the m i c r o a m p  r ead ing  b e -  
cause  ch lo r ine  gas  i s  a s t rong  a b s o r b e r  of l ight  with 
wave lengths  between 280 and 390 m p .  Ca l i b r a t i ng  and 
mon i to r ing  th i s  gas  a n a l y s i s  unit involved the use  of a 
s t a n d a r d  O r s a t  gas  a n a l y s i s  a p p a r a t u s .  The gas  a n a l -  
y s i s  method  involved m e a s u r i n g  a vo lume of gas  be fo re  
and a f t e r  p a s s i n g  through a solut ion of p o t a s s i u m  
hydrox ide .  

Opera t ing  P r o c e d u r e  

S t a r t - u p  of the f iu id ized bed r e a c t o r  was  a c c o m -  
p l i shed  by  charg ing  800 g of Fe203 into the r e a c t o r ,  
in t roduc ing  O2 for f lu id iza t ion ,  and then b r ing ing  the 
bed  up to the d e s i r e d  opera t ing  t e m p e r a t u r e  which 
r anged  f rom 400 ~ to 650~ When the Fe203 bed  r e a c h e d  
ope ra t ing  t e m p e r a t u r e ,  a slow feed (0.25 g / c m 2 - m i n )  * 

* 2 2 (g/cm -ram) refers to grams of FeC13 per cm of reactor cross secaon per minute. 

of FeCI~ was  in t roduced  into the r e a c t o r  for 5 min,  
a f t e r  which O2 at  a flow r a t e  of 108 c c / c m 2 - m i n  * was  

*(cc/cm2-mm) refers to cm 3 of 02 per cm 2 of reactor cross sectmn per minute. 

p a s s e d  through the bed  for  5 min .  Th is  p r o c e d u r e  
tended to r e m o v e  f ines  f rom the bed ,  p r o m o t e d  p a r t i c l e  
s i ze  growth of Fe203 p a r t i c l e s ,  and s t a b i l i z e d  the bed,  
which p r o m o t e d  smooth  ope ra t ion .  Af t e r  th i s  bed con-  
di t ioning s tep ,  f inal  t e m p e r a t u r e  a d j u s t m e n t s  we re  
made  and FeC13 feeding was  r e s u m e d .  F e r r i c  ch lo r ide  
feed r a t e s  w e r e  v a r i e d  by use of a v a r i a b l e  speed  
moto r  which drove  the feed s c r e w .  Bed weight ,  bed 
height ,  02 flow r a t e ,  and p r e s s u r e  w e r e  e s s e n t i a l l y  
he ld  cons tan t  dur ing  e x p e r i m e n t a l  r u n s .  The magni tude  
of t he se  p a r a m e t e r s  i s  shown in Table  II. The amount  
of FeC13 conve r t ed  to Fe203 and Ctz was  ca l cu l a t ed  f rom 
the known oxygen flow r a t e  and the p e r c e n t  Clz in the 
p roduc t  gas  s t r e a m ,  Reac t ion  [4]. Continuous a n a l y s i s  
of the p e r c e n t  C12 in the produc t  gas  a l lowed d e t e r m i n -  
a t ion  of s t e a d y - s t a t e  opera t ion  which was  ind ica ted  by 
cons tant  C12 gas  compos i t ion .  The p e r c e n t  conve r s ion  
of FeCI3 to Fe203 was  a l so  ca l cu la t ed  f rom the FeC13 
feed  r a t e ,  and the amount  of un reac t ed  FeC13 in the 
s y s t e m  condense r  and dust  c o l l e c t o r .  

The p e r c e n t  ch lor ine  in the o f f -gas  a s  a function of 
t ime  at  s e v e r a l  d i f ferent  feed r a t e s  i s  shown in F ig .  2. 
Inspec t ion  of F ig .  2 ind ica tes  that  s t e a d y - s t a t e  condi -  
t ions  w e r e  e s t a b l i s h e d  in f rom 5 to 10 rain.  Wide f luc -  
tua t ions  in the pe r cen t  ch lor ine  w e r e  de t ec t ed  i m m e d i -  
a t e ly  and ind ica ted  dev ia t ions  f rom s t e a d y - s t a t e  
ope ra t ion .  These  dev ia t ions  w e r e  caused  by channel ing,  
bed  s lugging,  and plugs  fo rming  e i the r  at  the in le t  or  a t  
some  point downs t r eam.  

Ma jo r  ob jec t ives  of e x p e r i m e n t s  we re  to m a x i m i z e  
the convers ion  of FeC13 to Fe203 and C12, and to p r o -  
duce an o f f -gas  containing a high (>90 pet)  ch lor ine  
content ,  which would be su i tab le  for r e c y c l e  a s  a c h l o r -  
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inat ing agent .  V a r i a b l e s  s tud ied  dur ing  th is  i n v e s t i g a -  
t ion included t e m p e r a t u r e ,  f e r r i c  ch lo r ide  feed r a t e s ,  
and the c a t a l y t i c  effect  of NaC1. 

Effec ts  of T e m p e r a t u r e  

A s e r i e s  of t e s t s  was  p e r f o r m e d  at  t e m p e r a t u r e s  
rang ing  f rom 400 ~ to 650~ T h e s e  t e s t s  w e r e  conducted  
in Fe203 beds  which conta ined no NaC1. T e s t s  w e r e  
conducted at  a FeC13 feed r a t e  of 1.0 g / c m 2 - m i n  and an 
oxygen flow r a t e  of 108 cm3/cm2-min.  * Inspec t ion  of 

*TheoreUcally an O~ flow of 108 cc/cm2-min should convert 1.0 g/cm2-min of 
FeC13. 

Fig .  3 shows that  conve r s ion  of FeC13 to Fe203 and C12 
i s  t e m p e r a t u r e  dependent  and i s  v e r y  low at  t e m p e r a -  
t u r e s  below 500~ High ch lor ine  concen t r a t ions  (>90 
pct)  and high c o n v e r s i o n s  (>90 pct)  of FeC13 to FezO3 
w e r e  not e f fec ted  at  t e m p e r a t u r e s  below 600~ 

Effec ts  of Vary ing  FeC13 F e e d  R a t e s  

Af te r  e s t a b l i sh ing  the n e c e s s i t y  of conducting o p e r a -  
t ions  at  or  above 600~ a s e r i e s  of t e s t s  was con-  
ducted to d e t e r m i n e  the effect  of va ry ing  FeC13 feed 
r a t e  on the p e r c e n t  conve r s ion  of FeC13 and the p e r -  
cent  ch lo r ine  in the o f f -gas .  T h e s e  t e s t s  w e r e  con-  
ducted at 600~ with an Oz flow of 108 c c / c m 2 - m i n  and 
without  NaCI in the f lu id ized  Fe203 bed .  The r e s u l t s  of 
t he se  t e s t s  a r e  shown in F ig .  4. 

Inspec t ion  of F ig .  4 ind ica t e s  that  op t imum r e s u l t s  
f rom the s tandpoint  of both p e r c e n t  conve r s ion  and p e r -  
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cent ch lor ine  in the off-gas was obtained at a feed ra te  
of 0.83 g FeC13/cm2-min.  This  feed r a t e  gave an off- 
gas containing 87 pct C12 and an 87 pct convers ion  of 
FeC13. Fig.  4 a lso  shows that high conve r s ions  of 
FeCla a re  read i ly  effected but only at the expense of 
having a low concent ra t ion  of C12 in the off-gas .  It 
should a l so  be observed  that C12 concen t ra t ion  and 
FeC13 convers ions  above 90 pct were  obtained at high 
FeC13 feed r a t e s  or at t e m p e r a t u r e s  above 600~ as  
shown in Figs .  3 and 4. An adve r se  factor  a ssoc ia ted  
with opera t ing  at  t e m p e r a t u r e s  of 600~ or above is  
due to the co r ros ive  na tu re  of both FeC13 and C12 at 
e levated t e m p e r a t u r e .  Accord ingly ,  s tudies  were  i n i t i -  
ated to de te rmine  if the p r e s e n c e  of NaC1 in the Fe203 
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would p e r m i t  opera t ion  at lower  t e m p e r a t u r e s .  A lower  
t e m p e r a t u r e  would be des i r ab l e  because  it would r e -  
duce c o r r o s i o n  and poss ib ly  p e r m i t  the use of n ickel  or 
Inconel  as  m a t e r i a l s  of cons t ruc t ion .  

Effects  of NaC1 Addit ions 

During an e a r l i e r  study involving NaC1-FeC13 sal t  
m i x t u r e s ,  8 it was  obse rved  that the vapor  p r e s s u r e  of 
Fee13 is  s igni f icant ly  reduced  by the p r e s e n c e  of even 
sma l l  amounts  of NaC1 and that oxidation of FeCI3 is  
ca ta lyzed  by NaC1. Accord ing ly ,  a s e r i e s  of t e s t s  was 
made in which NaC1 addit ions w e r e  made  to the Fe~O~ 
bed in amounts  ranging f rom 0 to 5 pet  of the bed 
weight .  These  t e s t s  w e r e  al l  conducted at 500~ a feed 
r a t e  of 1.0 g FeC13/cm2-min,  and a gas flow of 108 
c c / c m 2 - m i n .  The pe rcen t  C12 in the of f -gas  is  plot ted 
vs  the wt pet  NaC1 in Fig .  5. Inspect ion of Fig .  5 shows 
that C12 concen t ra t ions  ranged  f rom 89 to 95 pct and 

that as  l i t t le  as  0.2 wt pet  NaC1 e f fec t ive ly  ca ta lyzed  
the r eac t ion  between Fee l3  and O2. 

An addi t ional  s e r i e s  of t e s t s  was  conducted under the 
s a m e  condit ions but with the wt pet  NaC1 in the bed held  
constant .  The r e s u l t s  of these  t e s t s  a r e  shown in Fig .  
6 along with data f rom a s e r i e s  of t e s t s  conducted at 
500~ but without NaC1 in the bed.  The e f f ec t i venes s  of 
NaC1 as  a ca ta lys t  can be r ead i l y  seen by inspect ion  of 
F ig .  6. The pe rcen t  Fee13 conver s ion  is  shown in Fig .  
7. Resu l t s  obtained in s i m i l a r  t e s t s  but without NaC1 
a r e  shown for compar i son .  These  r e s u l t s  show that 
Fee13 conve r s ions  above 95 pct  and an o f f -gas  conta in-  
ing over  90 pct C12 a r e  obtainable at 500~ when NaCI 
is  used  to ca ta lyze  the dech lor ina t ion  of Fee13 by Oz. 

R e f e r e n c e  to Fig .  3 shows that comparab l e  r e s u l t s  
r e q u i r e d  a t e m p e r a t u r e  of 650~ in the absence  of NaC1. 

CONCLUSIONS 

This study has shown that FeCI3 can be fed into a 
fluidized bed of Fe203 and can be dechlorinated by re- 
action with 02 to produce an off-gas containing over 90 
pct C12 and with conversions of FeCI3 above 95 pct. 
These results can be achieved at 500~ when NaCI is 
added to the bed as a catalyst. In the absence of NaCl, 
a temperature of 650~ is required to achieve com- 
parable results. The work also showed that as little 
as 0.2 wt pct NaC1 in the bed effectively catalyzed re- 
action between FeCI3 and 02. 
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