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Grain growth, defined as the increase in volume of the average grain, is found, in its steady-
state, to be directly proportional to the time of isothermal annealing. During steady-state
grain growth the grain corners are found all to be quadruple points, the grain edges ail
triple lines and the ratio of corners to faces to edges to be 6:7:12. The rate constant for
steady-state grain growth is shown to be calculable from first principles and from proper-
ties that can be measured independently of the growth observation, It is the product of four
individual constants, namely: 1) a dimensionless topological constant © that is characteris-
tic of steady-state grain growth in any material, 2) the mobility u of the average grain
boundary in the specific material, 3) the surface tension ¥ of the average grain boundary

in the specific material and 4) a dimensionless structural constant ¢ which expresses the
curvature of surface of the grain boundary in the array of grain forms obtaining in the
specific specimen of the material and which can be determined metallographically. The
topological changes that constitute steady-state growth are shown to exist as a logical

sequence of simple events.

GRAI"N growth in a polycrystalline aggregate differs
fundamentally from the growth of a mass of separate
particles, in that the polycrystalline body itself under-
goes no growth or shape change. In accord with this
restriction, no change can take place in the size or
shape of any grain without a compensating adjustment
in the system at large. For the size of the average
grain to increase, moreover, it is necessary that some
grains should disappear from the system. Thus, grain
growth in a polycrystalline aggregate amounts to a sys-
tematic elimination of grains, coordinated with such
grain size and shape changes as are needed to main-
tain perfect space filling at all times.

A geometry that is suitable for describing the growth
of individual particles will be inadequate for the defin-
ing of polycrystalline grain growth, unless it can deal
also with the connective property that is implied in the
coordination of grain sizes and shapes. The familiar
Euclidean geometry is deficient in this respect. Models
that have been constructed upon a purely Euclidean base
have failed to provide an exact, or even realistic, de-
scription of grain growth and its kinetics. Such a de-
scription can be had, however, by resort to some sim-
ple concepts of descriptive topology. All that is re-
quired is to express the structure in terms of the num-
bers of its parts, as connected by Euler’s rule for the
space network. The numbers that will be used are: the
number of grains (N), the number of grain faces (F),
the number of grain edges (E) and the number of grain
corners (C), all in a specific specimen of the material.

These parameters can be measured directly by se-
rial section analysis, the techniques of which have been
reported elsewhere.' Such a study has been carried
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out® upon a series of specimens of 99.99+ pct aluminum
that had been cold worked at —195°C and subjected to
isothermal grain growth at 635°C for times ranging
from 1 min to 1 h. This treatment provided a range of
grain size, by volume, of almost three orders of mag-
nitude. In order to avoid the intrusion of surface ef-
fects upon the measurements, that portion of each spec-
imen which was analyzed was taken at a distance of not
less than ten grain diameters from any external sur-
face. The exact volume of material analyzed in each
case was measured and the topological parameters
were expressed in terms of number per cubic centi-
meter, thus: Ny (grains per cm®), Fy (faces per cm®),
Ey (edges per cm®), and Cy (corners per cm®). The
results of this study provide the experimental basis
for the development that follows.

The average grain volume, obtained by taking the
reciprocal of the number of grains per cubic centi-
meter 1/Ny, provides a measure of grain size*

*The conventional expression for grain size is the mean intercept, obtained by
counting the number of grains crossed by unit length of line laid upon a two-
dimensional section through the grain structure. This parameter is sensitive to
shape. It is a function of the total surface area of the grain boundary, i.e., it is not
a grain diameter. Neither this nor any other measurement that can be made upon
a two-dimensional section through the material can be used to determine grain
volume. N, must be measured in three-dimensional space.

that is independent of grain shape, grain size dis-
tribution and shape assortment. Tt will be shown in
the following that the average grain volume is a lineal
function of the time, in steady-state grain growth at
constant temperature (1/Ny = kt).

TOPOLOGICAL NATURE OF THE GRAIN
STRUCTURE

The geometric form of the grain structure is de-
fined by the system of grain boundary, which consti-
tutes a topological network. If the grain corners be
taken as nodes and the grain edges as branches of a
point-line network, Fig. 1, its connectivity in one cubic
centimeter of material will be, by network law:’

Connectivity = Ey — Cy + 1 1]
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If, further, the grains themselves be represented as
individual points connected by lines representing the
grain faces, an interpenetrating network is formed,
Fig. 2, and its connectivity is:

Connectivity = Fy — Ny + 1 [2]

The connectivities of the two networks are identical,
because both networks correspond to opposite retracts*

*The corner-edge network and the grain-face network can be conceived as being
separated by a continuous multiply-connected surface, Fig. 3. If this surface be
shrunk toward the grain edges, its “retract” becomes the corner-edge network; if
it be shrunk upon the grain centers, its “retract’”” becomes the grain-face network.
The connectivity of the surface and of the two networks remains unaltered and,
therefore, identical in this operation.

of the same imaginary surface, Fig. 3, wherefore:
NV"'EV:FV"’CV [3]

This is a form of Euler’s rule for semi-infinite net-

works. It is valid irrespective of the number of branches

connected at each node.
The grain boundary network, being an interface be-
tween pairs of crystals of different orientation, has an

Fig. 1—-Edge-corner network surrounding an average grain.

Fig. 2—Interpenetrating grain-face network represented by
lines drawn from the center of the grain through each face
to the center of each neighboring grain.
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energy which is felt as a surface tension* [Quincke® and
Desch®). This energy provides the driving force for

*While it is true that the magnitude of the surface tension of the grain bound-
ary varies with the local orientation difference between pairs of grains, the effect
of such orientation difference upon the average behavior of grain growth seems
to be minor. This is indicated, for example, by the regularity with which grain
faces are found to meet at dihedral angles near 120 deg. It is consistent also with
the fact that the grain boundary energy varies only moderately with orientation
difference, except in a narrow range of small angle grain boundaries and close to
the orientation of twin boundaries (Gjostein and Rhines).” In the case of aluminum,
few twin boundaries are to be expected.

grain growth. There is always a decrease in the grain
boundary area, representing an expenditure of surface
energy in accomplishing grain shape change and grain
growth, Fig. 4. Surface tension has the immediate ef-
fect upon the grain boundary network of causing all
junctions of grain faces to occur upon ‘‘triple lines’’

Fig. 3—Imaginary surface separating the edge-corner and the
grain-face networks for one grain. Compare with Figs. 1 and
2.
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Fig. 4—Decrease in the grain houndary area Sy as a function
of annealing time in minutes at 635°C.
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where three faces tend to meet at dihedral angles of
120 deg (Harker and Parker)® and of causing all triple
lines to meet at ‘‘quadruple points’’ where four edges
tend to meet at mutually included angles of 109 deg

28 min 16 s, Fig. 5. In the present experimental study,
more than 3000 grain corners were analyzed without
finding one that was other than a quadruple point. This
finding serves to substantiate the belief that surface
tension is a major force in shaping the grain boundary
network and in motivating grain growth. Rt also dem-
onstrates that all configurations of the edge-corner
network, other than those composed of triple lines and
quadruple points, are of such inferior stability as to
have extremely short periods of existence,*

J. W. Gibbs® has defined the angular relationships obtaining among the inter-
faces formed by four intersecting bodies, where the respective energies of the
several interfaces differ among themselves.

Euler’s rule becomes simplified in the triple-line-
quadruple-point network by virtue of the fact that there
must be exactly twice as many grain edges as grain
corners (C. S. Smith):*°

Ey =2Cy (4]
whence, Eq. [3] becomes:
Ny +Cy=Fy [5]

The grain boundary network is described completely,
therefore, by the experimental determination of any two
of these three parameters. In practice, it turns out to
be advantageous to measure all of the parameters, in
order to prove the self-consistency of the measure-
ments by means of Eqs. [4] and [5].*

*An evident source of experimental error resides in the uncertainty of counts
where a feature of the network intersects the boundary of the volume being ana-
lyzed. The uncertainty in the case of the number of grain corners is negligibly
small, because corners occupy no volume and their position with respect to the
sampling boundary is rarely ambiguous. Edges, faces and grains can also be iden-
tified and counted in terms of the first corner at which each appears. By so
counting only those features which originate in the serial section sequence within
the test volume, the counting error is made small. A more troublesome source of
experimental error exists in the choice of sample size, where it is important to
analyze a broad enough area through a sufficient number of serial sections to
include a representative sampling of the largest, as well as of the smaller grains.
Errors arising from a too small sample produce data that fail to satisfy Egs. [4]
and [5].

Topological quantities are always independent of all
dimensional (Euclidean) properties, Thus, the number

Fig. 5—An equilibrium grain corner where six faces and four
edges meet at minimum energy angles, as indicated.
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of grains (¥) in 2 specimen is independent of the shape
or size of any grain in the system. The same is true
of the number of faces (F), of edges (E) and of corners
(C). It follows that a dimensional property, such as the
average grain volume, cannot be expressed in purely
topological terms. The quantity 1/Ny is a hybrid
‘‘topological-Euclidean’’ expression. The introduction
of the volume concept (i.e., number per unit volume)
confers the power to measure and to express average
volume. Because the volume of the grain is also inde-
pendent of its shape, surface area and length of edge,
1/Ny remains independent of all dimensions except
volume. This expression for the average volume is
valid, therefore, for all simple polycrystalline bodies
in all stages of grain growth, as long as each grain can
be identified as a discrete entity.

Topological quantities also have the property of ex-
isting as whole numbers only. The number of grains
(N}, in a piece of metal, must be a whole number.
There may be grains present in a variety of sizes, but
none can be identified as other than a whole grain. The
same is true with respect to faces, edges and corners.
This situation is not altered by the artifice of counting
topological quantities in a limited volume, as is done
experimentally. Grain growth occurs in a sequence of
discrete steps in which one grain at a time disappears
from the system.

This does not mean that an average sized grain van-
ishes abruptly. On the contrary, the transfer of vol-
ume from a shrinking grain to its neighbors and on-
ward to their neighbors is a process that is going on
at many sites over extended periods. Ultimately, each
grain that is destined to vanish merely arrives at zero
size, instantaneously extinguishing all of its associated
topological numbers, but causing no discontinuous di-
mensional change in the system. Its volume and some
of its surface have already been contributed to the en-
largement of other grains. When it is no longer counted
among the grains of the system, the volume assignable
to the remaining grains of the system will have increased
by a total equal exactly to the volume of one average
sized grain.

NATURE OF STEADY-STATE
GRAIN GROWTH

Steady-state grain growth in metals is character-
ized by a progressive magnification of the size of the
grains without seeming to change their geometric form.
This kind of grain growth does not usually occur im-
mediately upon the creation of a new polycrystalline
aggregate, but follows after a growth period during
which the system of grains has been changing its topo-
logical state toward a constant average ratio of cor-
ners to faces to edges. At the same time the grain
shapes tend toward ‘‘equiaxed’’ forms. Thereafter,
steady-state grain growth proceeds in the interior of
the metal, where the constraints of external surface
pinning are insignificant.* Under the latter circum-

*The two-dimensional external surface network of grain boundary differs from
the three-dimensional internal network in that the former can become stable with
straight edges outlining hexagons with perfect 120 deg angles. In the absence of
curvature there is, then, no further tendency for the two-dimensional network
to undergo growth. When this happens, the three-dimensional network, which
is anchored to the surface network, is restrained in its growth.
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stance, the progress of grain growth is susceptible to
rigorous analysis and its kinetics can be derived and
expressed exactly.

Serial section studies upon aluminum have shown
that, in the steady-state stage, the average number of
corners per grain approaches 6, the average number
of faces per grain approaches 7, and the average num-
ber of edges per grain approaches 12, Fig. 6. Topolog-
ically, these numbers describe the tetrakaidecahedron,*

These are the “sharing numbers” for the tetrakaidecahedron, see Table I,
Column D.

Fig. 7, which was identified by C. S. Smith'® as the
geometric figure most likely to fill space with its
edges and corners most nearly complying with the
angular requirements imposed by surface tension.
Thus, during steady-state grain growth the change
that takes place can be described as the elimination,
one at a time, of grains of avervage volume and having
the average topological parameters of a tetrakaideca-
hedron.

The change toward equiaxed form, with equilibrium
angles at triple lines and quadruple points, constitutes
a local response to the force of surface tension, tend-
ing to minimize surface area. Its immediate goal is
an array of grains of assorted sizes, approximating
equiaxed form and achieving nearly equilibrium angles
by so curving the faces as to permit them to meet at
minimum energy angles. It has been demonstrated by
C. S. Smith'® that there exists no grain shape that can
permit simultaneous space filling and equilibrium
angles without curvature of face, although this condi-
tion is approached by regular tetrakaidecahedra.

Grain growth without further significant shape
change, is a long range vesponse to the force of sur-
face tension, resulting in continued reduction in the
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Fig. 6—Numbers of edges, faces and corners per grain, as a
function of the annealing time in minutes at 635°C.
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grain boundary area. It is characterized by a sweep-
ing migration of the grain boundaries, edges and cor-
ners. The driving force for this kind of process arises
from the grain boundary surface tension (y) acting
upon curved surface to produce a pressure {P), nor-
mal to the grain boundary, Fig. 8, according to the
well known relationship:

1 1

P=Y%G—

¥, + 1"2) (dynes/cmz) [6]

where », and », are the principal radii of curvature at
the point of application of the pressure.

24 14

On the cell 36

Shared features 6 7 12

Fig. 7—A 14-sided figure, a tetrakaidecahedron, representing
the average topological form of grains in the polycrystalline

aggregate,

r
2

Fig. 8—Mlustrating the method of defining the pressure at a
point upon a surface, in terms of the surface tension ¥ and
the surface mean curvature at the point.
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Simple grains, having small numbers of faces, tend
to be convex all over, while complex grains, with large
numbers of faces, tend to be concave upon most of
their faces, Fig. 9. This happens because grains with
fewer than fourteen faces must have a preponderance
of convex faces in order to maintain equilibrium angles
along their edges and at corners, while the opposite is
true of grains having more than fourteen faces. Ac-
cordingly, the pressure of surface tension acts upon
most faces of simple grains so as to collapse the grain
and upon most faces of complex grains so as to en-
large the grain. Under the driving force of surface
tension there is, then, a tendency for the larger, more
complex, grains to grow at the expense of the smaller,
simpler, grains.

Both the total surface area (Sy) and the total surface
curvature (My) of the grain boundary in one cubic cen-
timeter of specimen can be measured by standard
methods of quantitative microscopy.''* The total sur-

*S, = 2 Np, where N[ is the number of intercepts between one cm of test line
and grain boundary. M, = n T, where T is the number of tangencies produced
between grain boundary and one cm of test line in a sweep through one square
cm of two-dimensional section. Where T is a total, without reference to the
sign of the curvature at each point of tangency, as is the case with the grain bound-
ary measurement, the resulting curvature is absolute, i.e., %(11/r1l + {1/r,l). Here
the components of curvature 1/ry and 1/r; are added without reference to sign.
The pressure acting upon grain boundary is, however, absolute only in the sense:
%1(1/ry + 1/r;)|, where the net curvature at each point on the surface is added
without reference to sign. These two kinds of absolute curvature are indistin-
guishable for either concave or convex surface, but differ for saddle surface. In
an equiaxed grain structure the grain faces seem to be largely devoid of saddle
curvature,' wherefore, the measurement of My without reference to sign is ac-
ceptable. The same is not necessarily true of non-equiaxed grain types.

face curvature is the sum of the mean curvature at
every point in the total area of grain boundary in one
cubic centimeter of specimen:
1 1 -
My= [ %(7— + ‘;‘)dSV (cm™) M
Sy 2

1

Like the total surface area (Sy), the total curvature
(M) diminishes progressively with grain growth,
Fig. 10.

In steady-state grain growth the product of the sur-
face area and the surface curvature per grain is found
experimentally, Fig. 11, to be a constant (0):

My -Sy

Ny
This is a necessary consequence of the condition that
the grain shapes remain constant during steady-state
grain growth, The value of ¢ is the slope of the graph
My - Sy vs Ny, Fig. 11. It varies with the distribution
of grain forms in the system. In the present aluminum
series the spread in grain forms was from 3 to more
than 50 faces per grain, Fig. 12, and this distribution
was maintained after the beginning of steady-state
grain growth. The value of o was 1.33, If the grains
had all been tetrakaidecahedra, with their faces nearly
flat, ¢ would have approached zero, because My would
have been very small. The value of ¢ is, thus, a mea-
sure of a ‘‘structural gradient’’ in the system.* 1t will

= ¢ {unitless) [8]

*[t may be recalled that Zay Jeffries'? believed that grain growth can occur only
in the presence of some kind of gradient, i.e., a temperature gradient, composition
gradient, grain size gradient.

be shown presently that the rate of grain growth is a
lineal function of the magnitude of o.

METALLURGICAL TRANSACTIONS

TOPOLOGICAL PATH OF GRAIN GROWTH

For the number of grains to decrease, while the rel-
ative distribution of grain forms remains unchanged,
it is necessary that grains be lost from forms with all
numbers of faces in proportion to their frequency in
the distribution. H, further, such loss is to occur by
the collapse of only simple grains, the process must
consist of a progressive loss of faces, culminating in
the collapse of any grain that reaches its form of ulti-
mate simplicity. The topological states through which

Fig. 9—Typical shapes of simple and complex types of grains.
The faces of the simple grains are mostly convex; the faces
of the complex grains are mostly concave.

30 ¢

TIME — MINUTES

Fig. 10—Total curvature of grain boundary surface My as a
function of annealing time in minutes at 635°C.
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Fig. 11—In steady-state grain growth the product of the total
curvature and the total surface per grain (My « Sy/Ny) is con-
stant with time. Its value is 0.

each grain must pass in such a sequence are itemized,
up to 25 faces, in Table 1. These states are derived
from various forms of Euler’s rule, Column C corre-
sponding to Egs. [3], [4], and [5]. It is apparent at once
that there exists, under conditions of surface tension
equilibrium, only one topological state for any grain
with a specified number of faces.

This is not to say that all grains with the same num-
ber of faces look alike. The topological features can,
in fact, be arranged in various ways to produce differ-
ent polyhedra with the same number of faces. As an
example, the hexahedron may exist in cube-like form
with 6 quadrilateral faces and also as a modified prism
with 2 triangular faces, 2 quadrilateral faces and 2
pentagonal faces, Fig. 13. If two-edged faces were in-
cluded, additional modifications of the hexahedron
could be constructed. The number of possible varia-
tions becomes much greater with the more complex
polyhedra. Yet, this diversity has no meaning for grain
growth, because all grains having a common number of
faces are topologically equivalent.

In reducing a grain of the network to one having one
less face, the topological change is always a loss of 1
corner, 1 face and 2 edges, see Table I, Column C.
This is true regardless of the complexity of the grain,
i.e., whether the change is from 2 faces to 1, or from
25 faces to 24. A topological change of this specifica-

Table |. Topology of Grains*

D
4 B ¢ Shared Features per Grain
On the Separate Polyhedron For One Grain in the Net C + F_E_ 1
Grain Form (C+F-E=2) (C+F-E=1) 4 2 3

C F E C F E C F E
Monohedron 0 1 0
Dyohedron 1 2 2
Triahedron 2 3 3 2 3 4 % 1% 1
Tetrahedron 4 4 6 3 4 6 1 2 2
Pentahedron 6 5 9 4 5 8 1% 2% 3
Hexahedron 8 6 12 5 6 10 2 3 4
Heptahedron 10 7 15 6 7 12 2% 3% 5
Octahedron 12 8 18 7 8 14 3 4 6
Enneahedron 14 9 21 8 9 16 3% 4% 7
Decahedron 16 10 24 9 10 18 4 5 8
Hendecahedron 18 11 27 10 11 20 4% 5% 9
Dodecahedron 20 12 30 11 12 22 5 6 10
Tria-kai-decahedron 22 13 33 12 13 24 5% 6% 11
Tetra-kai-decahedron 24 14 36 13 14 26 6 7 12
Penta-kai-decahedron 26 15 39 14 15 28 6% 7% 13
Hekka-kai-decahedron 26 16 42 15 16 30 7 8 14
Hepta-kai-decahedron 30 17 45 16 17 32 7% 8% 15
Octo-kai-decahedron 32 18 48 17 18 34 8 9 16
Ennea-kai-decahedron 34 19 51 18 19 36 8% 9% 17
Icosihedron 36 20 54 19 20 38 9 10 18
Hen-kai-icosihedron 38 21 57 20 21 40 9% 10% 19
Dyo-kai-icosihedron 40 22 60 21 22 42 10 11 20
Tria-kai-icosihedron 42 23 63 22 23 44 10% 11% 21
Tetra-kai-icosihedron 44 24 66 23 24 46 11 12 22
Penta-kai-icosthedron 46 25 69 24 25 48 11% 12% 23

*Column B is derived from the usual form of Buler’s rule connecting the numbers of comers, faces and edges of an isolated polyhedron. An additional constraint has
been imposed to fulfill the condition that the polyhedron must be constructed exclusively of edges and comers that would appear in the network as triple lines and

quadruple points, i.e., C/2= E/3.

Cotumn C is derived directly from Eq. [3], setting the number of grains (V) equal to unity and with the added constraint of Eq. [4].
Column D is derived from Column B, by dividing each feature by the number of neighboring grains among which it is shared in the network.
The monohedron and the dyohedron both are capable of existence in a space network, although neither can be classified among the isolated polyhedra.
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Fig. 12—Distribution of grain forms according to number of
faces is unaffected by the annealing time in the course of
steady-state grain growth.

Parameters for both < F E
The polyhedron 8 6 12
in the network 5 6 10
Shared features 2 3 4

Fig. 13—Two kinds of hexahedra, but the topological param-
eters are identical.

tion represents the loss of one triangular face, as is
illustrated in Fig. 14. Represented in this sketch is a
triangular face between two grains and sharing edges
with three other grains. As the three corners of the
triangle come together, there exists, momentarily, a
five-grain junction with six triple lines meeting at a
point. Immediately, the two original neighbors sepa-
rate, permitting the other three grains to meet along
a new triple line that joins two new quadruple points.
Destroyed in this exchange are the triangular face, its
three edges and its three corners. Created are one new
edge and two new corners, resulting in a net loss of:
1 corner, 1 face and 2 edges. The same result can be
obtained through other sequences of structural trans-
formation, wherein a triangular face alone is lost. Thus
the degrading of complex to simple grains is seen to
occur by the loss, one at a time, of triangular faces.
At the end of the degradation sequence lies one of
the simple grain forms, the monohedron, the dyohe-
dron, the triahedron, or the tetrahedron, Fig. 15, any
one of which might be capable of direct collapse to
zero volume. The simplest grain that has been found
experimentally in the aluminum grain growth speci-

METALLURGICAL TRANSACTIONS

In the network < _E E_
Betore 3 1 3
After 2 0 1
Lost 1 1 2

Fig. 14—As a pair of neighboring grains moves apart, their
mutual triangular face (top sketch) closes (center sketch) to
produce a new triple line joining two new corners (bottom
sketch). This occurs with a net loss of one corner, one face
and two edges.

mens is the triahedron. This polyhedron could col-
lapse by its two corners coming together, whereupon
the system loses: 1 grain, 2 corners, 3 faces and 4
edges.* Fig. 16 and Column C of Table L. If it be ar-

*The loss of the fourth edge is occasioned by the fact that the two triple lines,
that had attached the ends of the triahedron to the network, are joined to be-
come one triple line when the triahedral grain is gone.

gued that collapse of the triahedron occurs in steps,
by first forming a dyohedron and then a monohedron,
which finally shrinks to zero volume, the net topologi-
cal change is found to be the same.

Since the average number of corners, faces and
edges per grain remains in the ratio 6:7:12, Fig. 6,
it follows that the elimination of grains, in grain
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DYOHEDRON
1—2-2

TRIAHEDRON
2-3-4

PENTAHEDRON
4-5-8

HEPTAHEDRON
6—7—12

growth, must occur by the removal of corners, faces
and edges in exactly this ratio. This would be accom-
plished by collapsing 6 triangular faces and 1 mono-
hedron, or 5 triangular faces and 1 dyohedron, or 4
triangular faces and 1 triahedron, or 3 triangular faces
and 1 tetrahedron and so on up to 1 heptahedron, for
each grain lost. In terms of shared features per grain,
Column D of Table I, any of these processes is equiva-
lent to removing a tetrakaidecahedral grain without
changing the average topology of its neighbors.

It may appear remarkable that the system could go
on losing simple grains and triangular faces without
running out of them. The reason lies in an inexhausti-
ble replenishment of these topological units. The re-
moval of one monohedral grain and six triangular faces
takes a total of 13 faces away from grains that remain

420-VOLUME 5, FEBRUARY 1974

TETRAHEDRON
3—4-6

Fig. 15—Topological forms of the seven
simplest grains, as they occur in the grain
boundary network. The numbers below
each sketch denote respectively the cor-
ners, faces and edges that would be re-
moved from the network by the collapse

of the grain,

HEXAHEDRON
5—6—10

in the system.* This is precisely the number required

*Each triangular face of the network belongs to two grains and thus removes
faces from two grains when it coltapses. The surface of the monohedron also be-
longs to two grains, but only one of these grains remains in the system, after its
collapse. Thus: 6 X 2+ 1 =13.

to reduce one average tetrakaidecahedral grain to a
monohedron. The same argument applies to grains of
increasing numbers of faces, up to the heptahedron.
Thus, the collapse of a simple grain serves, on the
average, to provide a new grain of the same kind.

The removal of one triangular face carries away
one edge from each of six faces that remain in the sys-
tem and gives new edge to three other faces, taking
away a difference of three edges. The collapse of six
triangular faces with one monohedron (a total of 7

METALLURGICAL TRANSACTIONS



In the network NG B E
Before 1 2 3 5
After 0 (0] (0] 1
Lost 1 2 3 4

Fig. 16—A triabedral grain (top sketch) collapses (center
sketch) leaving one triple line (bottom sketch). This occurs
with a loss of one grain, two corners, three faces and four
edges.

faces) removes 18 edges from faces that remain in
the system. Since the average face of an isolated
tetrakaidecahedral grain has 36/7 edges,* it s appar-

*Each edge is shared by two faces of the tetrakaidecahedron. Hence, the 36
edges of the separate tetrakaidecahedron, Column B of Table I, are divided by 7,
that is half the number of faces of the tetrakaidecahedron, in order to obtain the
average number of edges per face.

ent that the removal of 18 edges from the system is
just enough to reduce seven average faces to six tri-
angular faces and one edgeless face, thus replacing
the six collapsed triangular faces and the edgeless
face of the monohedron.

The sharing of a triangular face between two grains
occurs mostly when the centers of the grain pair are
nearing maximum spacing without parting. Continued
separation of the grain centers, with the loss of the
triangular face, is a natural consequence of grain
growth., The grains that constitute the separating pair
are most likely to consist of one grain with fewer than
14 faces and one with more than 14 faces (or both with
14 faces), because the convexity of face of the simpler
grains must be mated to the concavity of face of the
more complex grains. For this reason, grain complex-
ity does not enter into the probability of the loss of a

triangular face. This probability is equal for all grains.

As a result, faces are lost from each topological form
of grain in proportion to its frequency in the distribu-
tion. This maintains a constant distribution of topolog-
ical grain forms, fulfilling the requirement of steady-
state grain growth and accounting for the constant value
of .

From the foregoing it is amply apparent that exten-
sive migration of the grain boundary is required for
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grain growth to proceed. The great vigor and fre-
quency with which grain boundaries sweep back and
forth during grain growth has been documented in mo-
tion picture studies upon grain growth in y-iron by
Grube and Rouze.™®

THE TOPOLOGICAL TRANSFORMATION

The topological changes that constitute grain growth
are immune to being driven by any direct force, be-
cause they are independent of any Euclidean dimension
of the structure. Physical force can act directly to
change a volume, an area, or a length, but it cannot
change a number. Topological transformations sim-
ply happen when the Euclidean dimensions of some
part of the system chance to pass through zero. This
occurs when a grain goes to zero volume and when a
triangular face goes to zero area, or is created. Such
events can occur only as grain boundary sweeps
through the system.

It can be deduced that the volume swept by the grain
boundary is always the same for the disappearance of
one average grain and the readjustment of the remain-
ing grains to equiaxedness, irrespective of the size of
the average grain. This principle is most readily un-
derstood by reference to a one-dimensional analog.
Consider a thin rod divided along its length into
“grains’’ of equal length, Fig. 17. Let one grain be
removed by sweeping its ‘‘boundary’’ to the end of the
rod and readjust the remaining grains to equal size.

In this process, it is evident that boundary has swept
through half the length of the rod. The same is true
whether the rod goes from three grains to two, from
four to three, or from any number to one less. A
three-dimensional model can be constructed by plac-
ing grains in concentric shells, Fig. 18. When the
center grain is collapsed, the adjustment of the re-
maining shells to equal spacing (approximately equiv-
alent to equiaxing the grains) causes the shell bounda-
ries to sweep a total of one quarter of the total volume
of the sphere. The next such event centers upon a col-
lapsing grain located randomly elsewhere in the sys-
tem, thus maintaining anisotropy of grain shape. This
result can be obtained graphically, or it can be de-
rived analytically, as has been done by R. T. DeHoff
in an Appendix to this paper.

Although models of this kind possess a degree of ar-
tificiality, it is clear from them that a fixed relation-
ship obtains between the number of grains eliminated
and the volume swept by grain boundaries, in maintain-
ing a surface tension equilibrium structural state. This
geometric constant provides a link between the Euclid-
ean dimensional change and the topological change in
number. In so doing, it opens the way for a direct anal-
ysis of the kinetics of the topological transformation
that constitutes steady-state grain growth. The ‘‘sweep-
constant ©’’ shall be defined as the number of grains
lost when the grain boundary sweeps through one cubic
centimeter of the material. Its units are number,
which is to say that the sweep constant is dimension-
less. Upon the basis of the spherical model it will be
estimated that the value of © is 4.

RATE OF GRAIN GROWTH

The grain size having been defined as 1/Ny, grain
growth becomes the time rate of increase in 1/Ny.
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Fig. 17—A one-dimensional model of grain growth, showing
that boundary sweeps through half the length (gray zones)
when a ‘‘grain’’ is collapsed and the remaining ‘‘grains’’
are adjusted to equal volume. The boundaries before growth
are represented as heavy lines, after growth as light lines.

To determine the rate of grain growth it is necessary
only to know how many grains are lost in unit time.
Making use of the sweep constant ©, this information
can be derived from the rate of sweep of the grain
boundary under the force of surface tension.

The average pressure (P) exerted upon a point on
the grain boundary is the product of the surface ten-
sion (y) and the average mean curvature (My /Sy/),
which latter is the total curvature (M y) in one cubic
centimeter of material divided by the total area of
grain boundary (Sy) in one cubic centimeter. Thus:

P=yMy/Sy (dynes/cm?) [9]

The total force (F) is the product of the pressure (P)
and the surface area (Sy/) in one cubic centimeter of
material:

F = yMy (dynes/cm®) [10]

If the mobility of the boundary be defined as u, the
number of centimeters of migration of the boundary
in one second, under a force of one dyne, the number
of sweeps made by all of the grain boundary through
one cubic centimeter of the material in one second
will be the product of the mobility {u), the force (F)
and the surface area (Sy):

pyMy Sy (em™ sec™) [11]

The number of grains lost per cubic centimeter in one
second then becomes:

% sec™) [12]

The total volume transferred from the lost grains to
the remaining grains is the product of the number of
grains lost per cubic centimeter and the volume of the
average grain (1/Ny):

OuyMy Sy /Ny (sec™) [13]

The average growth per grain is obtained by dividing

OuyMy Sy (cm
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Fig. 18—~A three-dimensional model of grain growth, showing
concentric shells of boundary sweeping through one guarter
of the volume, when the central grain is collapsed and the
shells are adjusted to equal spacing. The total sweep fraction
is evidently independent of the number of shells. The next
collapse occurs randomly elsewhere in the system, thus,
maintaining equiaxedness of the grain structure.

the total volume transferred by the number of grains
in one cubic centimeter of the material:

OuyMy Sy /Ny (cm®/s) [14]
Substituting the structural gradient (o) from Eq. [8]:
®uyo/Ny (cm®/s) [15}

This is the volume increase per grain per second. In
time (¢) the volume increase per grain is:

euyot/Ny (cm®) [16]

The average grain volume at time (¢) is the average
grain volume at time zero plus the volume increase
of the initial average grain in time (¢):

1/(Ny) = 1/(Ny),{1 + Ouyot} (cm®) [17]

Steady-state grain growth, expressed as the increase

in the volume of the average grain, is thus expected to
be proportional directly with the time, as is found ex-
perimentally, Fig. 19.

DISCUSSION

It has not been required, in developing the foregoing
rate law, to introduce any arbitrarily adjustable param-
eter, as has been done in the usual expression* of
grain growth kinetics. Each factor in the expression
is fully defined and growth is described uniquely, using
only fundamental properties of the material. This has
resulted from applying a topological analysis to a topo-
logical problem, instead of using the usual Euclidean
approach, in which adjustment factors are introduced
in an effort to compensate for the omission of topolog-
teal considerations.

The grain growth observations that exist presently
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Fig. 19—Grain volume 1/Ny is found to be a linear function
of the time of isothermal annealing of the aluminum. The
larger range of uncertainty at long time results from the
greater difficulty in sampling the coarser grained material.

in the literature are unavailable for comparison with
the present result, because none can be translated into
grain volume growth. A reverse comparison is possi-
ble, however, because mean intercept measurements
have been made upon the specimens subjected to serial
section analysis. The mean intercept readings give a
value for the exponent (x) in the expression D = k" of
0.43, which is almost identical with the exponent re-
ported by Beck et al.'* for pure aluminum, This cor-
respondence is understood to mean that the material
that has been evaluated topologically, in the present
study, is typical of materials that have provided the
basis for prior expressions of grain growth kinetics.
If a true average grain diameter is computed from
the serial section measurements and is used to evalu-
ate () in the expression D = kt”, a value close to 0.33
is obtained. This is consistent with proportionality of
grain volume to the time. The difference between this
and the mean intercept result is believed to arise from
the different sensitivity of the two measurements to
surface area. The mean intercept, being the inverse
of grain boundary area, is highly sensitive to changes
in surface area. The grain volume, being independent
of surface area, notices only changes in topology, i.e.,
the number of grains, corners, faces and edges. The
establishment of a steady-state with respect to the
topological parameters appears to occur long before
a really steady state with respect to grain shape has
been achieved. The larger value of (1) resulting from
the mean intercept measurements probably includes
some area decrease resulting from a continued ap-
proach to equiaxedness, as well as area decrease as-
sociated with the enlargement of the grains per se. it
has also been noticed, in the present experimental stud-
ies, that the mean intercept values display much greater
sensitivity to proximity to external surface than do the
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topological measurements. A distortion of the surface
and near surface grains away from equiaxed shape is,
of course, to be anticipated.

The discovery of the structural gradient {¢) and of
means for its evaluation opens a promising avenue for
future investigation and development. This factor,
which is so important in establishing the growth poten-
tial of the grain structure, doubtless derives its mag-
nitude from the manner in which the initial grain bound-
ary network is created. H all grain centers were to oc-
cur upon a pattern of three-dimensional equally spaced
points, the system would be made up largely of tetra-
kaidecahedral grains, of nearly uniform size, with
nearly flat faces and with ¢ approaching zero, because
the absolute curvature (M) would be very small, Such
a dispersion might result from the growth of a system
of grains {rom simple pelygonization. The small value
of 0 would be consistent with the commonly observed
stability of sub-grain structures. Cold work, followed
by recrystallization, is likely to give an inhomogene-
ous distribution of grain centers, resulting in a higher
value of o. It may be conjectured that o would maxi-
mize for light deformations, where the inhomogeneity
is expected to be greatest and the rate of grain coars-
ening is commonly large. Thus, the evaluation of o
provides a tool by which the grain form distribution
can be studied.

The product gy can also be evaluated from the serial
section and quantitative microscopy measurements. In
the present case, assuming © = 4, this product is found
to be approximately 2.6 x 107% sec™’. Where y is known,
the value of u is immediately accessible through the
metallographic readings. In the case of aluminum, the
grain boundary energy has not been measured, but there
are determinations of the external surface tension,
ranging from 500 to 900 dynes per cm. Upon this basis,
it appears that the grain boundary surface tension
should be of the order of a few hundred dynes, proba-
bly not greater than 500 dynes per cm. ¥ the figure
500 be accepted, the value of the mobility (1) becomes
5%107% em/dyne s.

There are again no values of the mobility in the lit-
erature that can be compared with this estimate, be-
cause all recorded measurements involve boundaries
in direct contact with external surface, as well as other
complications. Mobility in the semi-infinite network
may be regarded as a fundamental property of the ma-
terial, because it is relatively uninfluenced by external
conditions. Its determination is, therefore, desirable.
This may be accomplished, in cases where vy is not al-
ready known, by newly measuring y through the use of
the sintering technique,'® combined with the method of
grain boundary grooving.’

All of the foregoing has dealt with the behavior of a
semi-infinite network of a single kind of interface,
Where, through the presence of another phase, a sec-
ond kind of interface is present, it becomes a part of
the network and the properties of the network are modi-
fied accordingly, In most cases the added interface is
relatively immobile. Topological processes involving
such interface are then limited to the traverse of triple
lines across the stationary surface, the extinction of
grains at the fixed surface and the attachement and de-
tachment of grain boundary from contact with the sec-
ond phase. All such processes involve increased en-
ergies and are likely to be relatively slow. This de-
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ters the progress of grain growth and constitutes what
has been called ‘‘pinning.’’ Obviously, this subject
could be approached by the topological route with defi-
nite advantage. It is, however, a much larger subject
than the one presently undertaken.

Finally, it should be observed that many of the fea-
tures of microstructure, in general, have the charac-
teristics of a topological continuum. Matters dealing
with their measurement and with the kinetics of their
change should be made both easier and more exact by
analyzing them through their topological properties.

SUMMARY

1) Recognizing grain growth as a topological pro-
cess, grain size is defined as the average grain vol-
ume, obtained by taking the reciprocal of the number
of grains in unit volume 1/Ny.

2) It has been found experimentally that all grain
corners are quadruple points, that all grain edges are
triple lines and that, during steady-state grain growth,
the average grain is topologically a tetrakaidecahe-

dron, with corners, faces and edges in the ratio 6:7:12.

3) The susceptibility of a specific material to under-
go steady-state grain growth depends upon a structural
gradient (o) which is experimentally constant and which
is equal to the product of the total curvature and the
total sarface area per grain: 0 = My - Sy /Ny.

4) The number of grains eliminated when the grain
boundary sweeps through unit volume of the material
is a constant ©, independent of the gize of the grains,
and the identity of the material.

5) It has been demonstrated that the structural
changes required to implement steady-state grain
growth, i.e., magnification without net shape change,
can occur as a logical sequence of topological trans-
formations in the grain boundary network.

6) The average grain volume (1/Ny) increases lin-
early with time. The rate of increase in the average
grain volume is proportional directly to the mobility
(1), the grain boundary surface tension (y) and the
structural gradient (¢) of the grain boundary network.
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APPENDIX

Volume Swept Out By Gradin Boundaries Due To The
Annihilation Of The Average Grain; Spherical
Shell Model

ROBERT T. DeHOFF
I. For the i-th shell, before the grain annihilates,
R
. =¢{—2
7; (before) z( - ) [1]
where R is the radius of the sample.
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A} The location of this same shell after annihilation
is

7; (after) ={—- 1)(%) [2]

because it is now the (7 —1)-st shell of (n—1).

I1. The volume it sweeps in going from »; (before) to
7; (after) is

AV; = 3 7[r; (before)] — 47 [r; (after)]®

i =l

:1_ i—1 3
o (L) - (224 g
A) The fraction of the total volume swept by the i-th
shell is
1G]
n (n—1)

III. The total volume fraction swept by the motion
of all (n— 1) spheres (the n-th, or outside, sphere does

not move) is
n-1 s 8 1 3
E @) - G=4]

=1

n
b

AV,
RS

(4]

n-1
= i§1 AVV;' = [5]

A) The rest is simply the evaluation of these sums.
IV. Introduce a new index:

j=(i-1)

or
i=j+1
A) Then the second term in Eq. [5] can be written:

- 3
n 1 )

B) To make the sums run over the same limits, the
first term may be written;

(6]

(n_ 1)3 [7]

Z=l

1 -3 n-2 ~3

Th.T L, e

=1 n* i= W n

(8

(Simply writing the last term explicitly).
C) Since, for j = 0, the quantity ;% (n—1)® =
may be written:

’ZE“(L—L)S: 5 g

0, Eq. [7]

(9]

in m—1 jm =1y
D) Put Egs. [8] and [9] back into [5] to get:
(n— 1)8 n~-2 P n-2 js
AVy = S
inn o (-1

n-2 n-2
1) Since 2 i* = 2, j° [what the index symbol is
i=1 j=1
does not affect the sum.]

G = i S ]
Ay n® :E [ﬂs (n-1)° (o}
2) Since it can be shown that:
% = imlm + OF [11]

t=1
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a) In the present example, the upper index on the
sum is:

m=n—2

(compare [11] to [10]).
3) Thus:

_ (n—1)° Ly _on2f gy ) 1 1
svy= 8= 20 5 - ]

(12]

Now everything is in terms of », the number of
spheres in the system before annihilation.

E) Eq. [12] can be simplified by putting everything
over a least common denominator, 4x® (n—1). Then:

1 2 3 3
AVy=s —————{am—1)* + (n—2%[(n—1)°— »*]}
Vo D) { ) [
[13]
1) Expand everything to see what cancels:
1 4 3 2
AVy = —er—— {4In°—4n" +6n°— dn + 1
v 4n3(n—1){ [ ]
+ [n®— 4n + 4][n* - 30® + 3n—1-1°]}
1 1
vy [1- o) 4]

V. Tabulated Values:
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n AV, n AV, n AV,
2 0.1250 8 0.2455 18 0.2492
3 0.2082 9 0.2465 20 0.2493
4 0.2291 10 0.2472 25 0.2496
5 0.2375 12 0.2481 30 0.2497
6 0.2416 14 0.2486 40 0.2498
7 0.2446 16 0.2489 50 0.2499
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