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A specif ic  method for improving the high t empera tu re  c reep  strength of /3-NiAl by a t e rna ry  
addition giving r i s e  to an additional degree  of order  is examined. The t e rna ry  al loy thus 
formed has the A2BCor Heusler type s t ruc ture ,  and the presen t  study is devoted to the 
c reep  behavior of polycrys ta l l ine  Ni2AlTi of s to ich iomet r ic  composition. Poss ible  s l ip 
modes are  predic ted on the bas i s  of the hard sphere  model, and quantitative t r ansmiss ion  
e lec t ron microscopy is used to ver i fy  these predict ions .  All in t race l lu la r  dis locat ions,  and 
network dis locat ions  have a ao<llO> type Burgers  vec tor ;  ao is the lat t ice pa r ame te r  of a 
bcc cell  of which the la rge  Ni2AlTi unit ce l l  is composed. The c reep  strength of this alloy 
is ~3 t imes  that of NiA1 in i ts most  c reep  r e s i s t an t  form, namely [100] axis single c r y s -  
ta ls .  

N I C K E L  aluminide (fi-NiA1) which has the CsC1, or  
B2 type s t ruc ture  is an important  coating ma te r i a l  in 
high t empera tu re  technology. The excellent  oxidation 
and cor ros ion  r e s i s t ance  p roper t i e s  of this alloy, how- 
ever ,  a re  offset by a marked ly  poor r e s i s t ance  to high 
t empera tu re  creep.  A specif ic  method of strengthening 
NiAl which has been proposed 1'2 is the addition of an 
e lement  giving r i s e  to the ex t remely  stable Heusler  
type s t ruc ture .  The par t i cu la r  Heusler  s t ruc ture  alloy 
which is studied in this  investigation is Ni2AlTi. The 
order ing  of A1 and Ti atoms on one of the sublat t ices  
of the or ig inal  B2 s t ruc ture  will be shown to modify 
the basic  glide modes in such a way as to improve the 
high t empera tu re  c reep  cha rac t e r i s t i c s .  

The presen t  paper is devoted to the bas ic  aspects  of 
high t empera tu re  c reep  deformation in polycrys ta t t ine  
Ni~AITi. The types of dislocations involved in glide 
processes in this material are first predicted on the 
basis of the hard sphere model, and then analyzed ex- 
perimentally using transmission electron microscopy. 
In order to avoid possible ambiguity in determining the 
nature of dislocations enlarged electron micrograph 
images are compared with computer simulated images. 

I - N I C K E L  ATOM S ITES 

O - A L U M I N U M  u # 

GLIDE MODE MODEL 

A d iagram of the Ni2A1Ti unit cel l  is shown in Fig. 1. 
It is composed of eight B2 or CsC1 unit ce l ls  in which 
Ni atoms form one sublatt ice,  and Al and Ti a toms 
form an o rdered  a r r a y  on the other sublatt ice.  The 
smal l  ce l ls  constituting the la rge  Ni2A1Ti unit cel l  a re  
1,7 pct l a rge r  in s ize  than the NiA1 unit cel l .  3 This dif-  
ference  is sufficiently smal l  that the magnitude of s l ip 
vec to rs  in both NiA1 and Ni,AlTi may be expres sed  in 
t e r m s  of a o the lat t ice pa ramete r  of NiA1. 

The var ious  possible  glide modes in compounds with 
the B2 type s t ruc ture  have been predicted on the bas i s  
of the hard  sphere model by Lautenschlager,  Hughes, 
and Brit tain.  4 On the bas i s  of these considerat ions  the 
predominant  s l ip  vector  in NiAl is  ao<100>. T r a n s m i s -  
sion e lec t ron  microscopy  confirms this predominance 
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Fig. 1--Unit cell of the HeusIer type structure~ 

of a0<100> type dis locat ions in ma te r i a l  deformed at 
t empera tu res  above 300K. z'5 

We now examine var ious  possible  glide modes in the 
A2BCor Heusler type s t ruc ture .  As is the case  with 
the B2 type s t ruc ture  the c loses t  packed planes a re  of 
the {110} type, and the a r rangement  of A, B and C 
atoms within a (101) plane is shown in Fig. 2. An in- 
s t ruct ive  way to consider  the Heusler phase is to note 
that it is  formed from se ts  of these planes a r ranged  
with a two layer  r epea t  sequence. Possible  sl ip t r a n s -  
lat ions between two adjacent  (:~01) planes a re  indicated 
by the vec to rs  in Fig. 2. For  this discussion,  however, 
only one atom (C') in the second atomic layer  need be 
considered,  this is of the C atomic specie .  In an 
ao[010 ] s l ip  t rans la t ion  atom C' is displaced along 
the [010] vector  shown in Fig. 2 into a posit ion in 
which C atoms are  now neares t  neighbors.  If the en- 
t i r e  second atomic layer  is  considered the ao[010] 
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Fig. 2--Possible slip movements in the (i01) plane of the 
A2BC Heusler type structure. C' is a C-type atom in an ad- 
jacent (101) atomic layer. 

translation is seen to create both B-B and C-C type 
wrong bonds; the fault thus formed is termed a sub- 
lattice antiphase boundary. Thus unit slip in (100) 
type directions must be accomplished by the movement 
of pairs of ao<100 > unit dislocations, in which the 
ao(100> dislocations are coupled by a sublattice A.P.B. 
It is also evident that slip in (III> type directions is 
accomplished by the glide of pairs of coupled ao(111) 
dislocations. In this case, however, a further dissoci- 
ation is possible, since each of the unit ao(111 } dislo- 
cations may dissociate into a pair of ao//2 (111) dislo- 
cations. This dissociation of an a 0 <i11> dislocation 
into a pair of ao/2 (i11} dislocations occurs in B2 
structure alloys in which (iii> slip is favored. 4 In 
contradistinction to (100>, and <III> slip, it is clearly 
evident from Fig. 2 that a unit ao(110 > glide transla- 
tion does not involve the creation of a fault. There- 
fore ao<ll0} slip is accomplished by the glide of indi- 
vidual aoill0> dislocations. 

EXPERIMENTAL 

Compression creep test specimens with dimensions 
3.2 m m  x 3.2 m m •  9.5 m m  were  p r e p a r e d  f rom as  
ca s t  a r c  me l t ed  but tons  of s t o i c h i o m e t r i c  Ni2AlTi. The 
cen te r  por t ion  of the but tons  conta ined long co lumnar  
g r a i n s  (~1  m m  in d i a m e t e r )  whose growth d i r ec t i on  
was  a long (100).  The s p e c i m e n s  we re  sec t ioned  f rom 
th is  po r t i on  of the button with the c o m p r e s s i o n  axis  
a long the (100) f ibe r  ax i s .  All  the  s p e c i m e n s  w e r e  
then annea led  for  48 hour s  (in vacuo at  1473 K; the 
me l t ing  point  t e m p e r a t u r e  of Ni2A1Ti is  ~ 1723 K. 
C r e e p  t e s t s  we re  c a r r i e d  out under  vacuum using a 
s p e c i a l  molybdenum a l loy  (C l imax  TZM) s t r a i n i n g  j ig .  
Axial  a l i gnmen t  was such that  k inking was  n o n - d e t e c -  
tab le  for  s t r a i n s  up to 0.1. B a r r e l l i n g  was p r even t ed  
by the use  of a g l a s s  l ub r i can t  be tween  the s p e c i m e n  
end f aces  and the c o m p r e s s i o n  p l a t ens  of the s t r a i n i n g  
j ig.  ~ e  s t r a i n  was m e a s u r e d  us ing an LVDT e x t e ns -  
o m e t e r .  

Subsequent  to mechan i ca l  c r e e p  t e s t i ng  t r a n s m i s s i o n  
e l e c t r o n  m i c r o s c o p e  s a m p l e s  w e r e  p r e p a r e d  f rom the 
c o m p r e s s i o n  s p e c i m e n s .  These  s a m p l e s  were  ~0 .5  

m m  th ick  and they were  cut p e r p e n d i c u l a r  to the c o m -  
p r e s s i o n  ax is .  Af ter  d imp l ing  the d i s c s  with a j e t -  
cu t t e r  they  we re  e l e c t r o p o l i s h e d  in a 10 pc t  p e r c h l o r i c  
ac id  methanol  so lu t ion  at  253 K at  a po ten t ia l  of 10 
vo l t s .  The fo i l s  we re  examined  in a Phi l ips  300 m i c r o -  
scope  us ing a • deg  t i l t  and 360 deg  r o t a t i o n  gon iom-  
e t e r  s t age .  A s p e c i a l  compu te r  p r o g r a m  6 was  used  to 
f ac i l i t a t e  the r a p i d  o r i en t a t i on  of the foil  in obta in ing  
a l a r g e  number  of t w o - b e a m  condi t ions .  As wel l  a s  
c h a r a c t e r i z i n g  d i s l o c a t i o n s  by  the d e g r e e  of v i s i b i l i t y  
ob ta inab le  with d i f f e ren t  c o n t r a s t  condi t ions  ac tua l  i m -  
ages  we re  c o m p a r e d  with compu te r  s i m u l a t e d  images .  
The c o m p u t e r  method is s i m i l a r  to that  of Head 7 but  
u ses  a d i f f e r en t  n u m e r i c a l  p r o c e d u r e  which r e d u c e s  
the computa t ion  t ime .  The method t akes  into account  
the effect  of e l a s t i c  a n i s o t r o p y  and the va lue s  of the 
e l a s t i c  coef f i c ien t s  a r e  those  for  NiA1. 8 

RESULTS 

C r e e p  Behavior  

The se t s  of c r e e p  cu rves  shown in Fig .  3 a r e  for  
t e s t s  c a r r i e d  out a t  four  s t r e s s  l e v e l s  at  1273 K. In a l l  
c a s e s  a p e r i o d  of n o r m a l  p r i m a r y  c r e e p  is fol lowed by 
s t eady  s t a t e  c r e e p .  F o r  the  f i r s t  900 seconds  of a t e s t  
the s t r a i n  i n c r e a s e d  l i n e a r l y  with t ime  and Ei the in-  
s t an taneous  s t r a i n  was taken  as  the s lope  of th is  l ine .  
The r a t i o  ~i/ds, of in i t i a l  to s t e ady  s t a t e  c r e e p  r a t e ,  
d e c r e a s e s  with i n c r e a s i n g  s t r e s s ;  th is  r a t i o  is  46, 29, 
25, and 7 r e s p e c t i v e l y  for  s t r e s s e s  of 17.2, 34.5, 51.7 
and 69.0 MN/m z. Values  of the s e c o n d a r y  c r e e p  r a t e s  
for  a l l  the t e s t s  which were  p e r f o r m e d  a r e  given in 
Table  I. 

The ac t iva t ion  e n e r g y  for  s t e a d y  s t a t e  c r e e p  was 
d e t e r m i n e d  f rom a s e t  of c r e e p  t e s t s  in which each  
s p e c i m e n  was c r e p t  at  the s a m e  s t r e s s  (69 MN/m 2) 
but  at  d i f fe ren t  t e m p e r a t u r e s .  In the  A r r h e n i u s  plot  
in Fig .  4 the  va lue  of h / / f o r  c r e e p  i s  280 k J / m o l .  This  
va lue  i s  in good a g r e e m e n t  with that  of 291 k J / m o l  for  
se l f  d i f fus ion in n ickel ,  9 and that  of 307 k J / m o l  for  d i f -  
fusion of 83Ni in s t o i c h i o m e t r i c  NiA1.1~ 

The s t r e s s  dependence  of the c r e e p  r a t e  is  shown in 
Fig.  5, where  n o r m a l i z e d  s t eady  s t a t e  c r e e p  r a t e  

exp AIt/KT i s  p lo t ted  as  a function of t e n s i l e  s t r e s s .  
Fo r  c o m p a r a t i v e  p u r p o s e s  da ta  for  N-1A1 [001] ax i s  
c r y s t a l s  11 i s  inc luded in Fig .  5, and i t  is  wel l  ev ident  
that  the p o l y c r y s t a l l i n e  RrlZAITi has  a s ign i f i can t ly  
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Fig. 3--Creep curves for stoichiometric Ni2AITi at 1273 K. 

24-VOLUME 7A JANUARY 1976 METALLURGICAL TRANSACTIONSA 



Table I. Summary of Polycrystatline NizAITi Creep Data, 
es is the Steady State Creep Rate 

Specimen Applied S t r e s s  Temperature 

No. MN/m 2 k.s.i. K ~ T/Tm '~s (s "1) 

4 17.2 2,5 1273 1000 0.74 2,82X 10- 8 
1 34,5 5 1273 1000 0,74 2.52 X 10 -7 
3 51.7 7.5 1273 I000 0.74 6,19X 1 0  -7 

13 69.0 10 1026 753 0.60 2.36 X 10- 8 
17 69,0 10 1048 775 0.61 4.21 • 10 .8 
12 69.0 10 1058 785 0.61 5,72 X 10- 8 
16 69.0 10 1088 815 0.63 1.33 X 1 0  "7 

15 69.0 10 1124 851 0.65 3.42X 1 0  -7 

18 69.0 10 1173 900 0.68 7.72 X 10- 7 
2 69.0 10 1273 1000 0.74 7.65 X 1 0  "6 

8 82.7 12 1073 800 0.62 2.83 X 10 ,7 
7 103,4 15 1023 750 0.59 1.83 X t0 "7 
5 103.4 15 1148 875 0,67 6.50X 10- ~ 

h i g h e r  c r e e p  s t r e n g t h  t h a n  n i c k e l  a l u m i n i d e  in i t s  

m o s t  c r e e p  r e s i s t a n t  f o r m .  zz S p e c i f i c a l l y ,  c o m p a r e d  

w i t h  a NiA1 [001] a x i s  c r y s t a l ,  t h r e e  t i m e s  t h e  s t r e s s  

m u s t  b e  a p p l i e d  to  Ni2A1Ti to  m a i n t a i n  a n o r m a l i z e d  

c r e e p  r a t e  (~ e x p  AH/k T) o f  10 ~ s -z. 

F i n a l l y ,  f o r  Ni2A1Ti , t h e  s t r e s s  e x p o n e n t  n in  t h e  

c r e e p  e q u a t i o n  ~ = a n  e x p  - A H / k T  v a r i e s  f r o m  a 

v a l u e  o f  3 a t  l o w  s t r e s s e s  to  a v a l u e  o f  13 a t  h i g h  
s t r e s s e s .  

Dislocation Analysis 

Several electron microscope diffraction contrast ex- 
periments were carried out in order to (i) determine 
the Burgers vector of isolated dislocations, (ii) analyze 
dislocation reactions within nodal networks, and (iii) 
analyze dislocation networks within simple sub-bounda- 
ries. 

Electron micrographs forming part of a contrast 
analysis experiment on a thin foil region containing 
three isolated sloping dislocations A, B, and C are 
shown in Fig. 6. The foil, whose normal was close to 
[001], was sectioned from a specimen crept at 69 
MN/m~ at 1123 K. In the complete analysis two (200), 
six (110) and ten (112) reflections were used. The 
axis of dislocations A, B, C are closely parallel to the 
[011], [101] and [II i]  directions respectively. These 
were determined by first finding the projected direc- 
tion of each dislocation for several foil orientations. 
The actual direction of a dislocation is then given by 
the intersection point on the stereographic projection 
of a set of great circles, each representing the plane 
containing the beam direction and the projected dis- 
location axis. 

In proceeding to analyze dislocations A, B and C it 
should be noted that for each two beam condition all 
three dislocations tend to have a similar appearance; 
an obvious indication that they probably have the same 
Burgers vector. Next, in Figs. 6(b), (c), and (d) dislo- 
cation A appears to be invisible for g = [200], [0il], 
and [211], and a tentative application of the ~ .~ = 0 
invisibility condition shows b = a 0 [011]. Since A lies 
very close to [011] it appears to be a screw disloca- 
tion lying_along an evenfold symmetry axis. In this 
case the g. b = 0 condition is fully valid, since even in 
an anisotropic crystal the only elastic displacement 
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Fig. 4--An Arrhenius plot of In Es vs 1/T K for stoichiometric 
Ni2AiTi for a stress of 69 MN/m 2. The value of AH is 280 
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e g (oTI) f =JgTzl (J Sz) 
Fig. 6--Part of a B~rgers vector analysis of three isolated sloping dislocations in a Ni,2AITi specimen deformed in creep. The 
three dislocations are deduced to have an a0(001 ) Burgers vector. The plane perpendicular to the beam direction is indicated in 
the lower z'ight hand corner of the mierographs. 

is along the dis locat ion a x i s ; t h u s  the res idua l  cont ras t  
at the in tersec t ion  with one sur face  (and both sur faces  
in Fig. 6(b)) is p resumably  due to sur face  relaxation.  ~ 
The analyses  for dis locat ions B and C a re  more  c o m -  
plex, s ince conditions of apparent  invisibil i ty (o1" near  
invisibility) a re  not attainable. However,  it becomes  
c lea r ly  evident that these dis locat ions,  like dis locat ion 
A, have an not011 ] Burge r s  vec to r  when enlarged con-  
t r a s t  images  a r e  compared  with computer  s imulated 
images .  In Figs.  7(a) and (b) there  is excellent  a g r e e -  
meat  between the actual  and s imula ted  images  for d i s -  
locat ions B and C respec t ive ly  for the conditions g" 
= 0, and g - 6  = - 2  respec t ive ly .  

For  dis locat ions  B and C s t rong  res idua l  cont ras t  
in Figs.  6(b), (c) and (d) a r i s e s  f rom non-ze ro  values 
of g .I~ •  and g .l~e, where 6 e is the edge component 
of l~. ~ In addition, an effect  a r i s e s  f rom disp lace-  
ments  in the dis locat ion s t ra in  field due to the elast ic  
aniso t ropy of the c rys ta l .  There  is a s t r ik ing case  of 
s t rong  res idua l  con t ra s t  in Fig. 6(b) for  dis locat ion C 
where  the re  is a s t rong  double image when both g .  
and g . b  •  a re  both zero.  This degree  of cont ras t  
a r i s e s  f r o m  a non-ze ro  value of g .b  e (equal to 4/3)  
and anisotropic  elast ic  d isplacements .  

Finally,  concerning  the con t ras t  analysis  of d i s loca-  
tion C, there  is again excellent  ag reemen t  between the 
a c ~ a l ,  and s imulated images in Fig. 7(c); in this case  
g . b  = 3. Thus it is conclusive  that the th ree  d i s loca -  
t ions in Fig. 6 have the same  Burgers  vec tor ,  namely  

~ a o [ 0 1 t 1 .  

In the presen t  study only a o ( l l 0  ) type dis locat ions  
have been observed  in the single phase Ni2A1Ti alloy, 
However,  pa i r s  of a 0 <100) dis locat ions  coupled with 
a sublat t ice A.P.B. a re  observed  in NieAlTi when this 
is a coexistent  phase in a two phase Ni -AI-Ti  alloy. ~4 

Examples  of reac t ions  between ao<lt0)  dis locat ions  
in Ni2AITi fo rmed  in c reep  a re  shown in Fig. 8; Table 
II l i s ts  the Burgers  vec to r s  and axes of the d i s loca-  
t ions. In d i scuss ing  pa r t  of the analys is  of eight d is -  
locat ions in Fig. 8, ma jo r  attention is devoted to the 
three  dis locat ions  (1, 2 and 3) which fo rm one of the 
nodes. Dislocation 1 appears  to be essent ia l ly  invis-  
ible in Figs.  8, (b) and (f), t he re fo re  l~ is deduced to 
be not101 ]. This infers  that in Figs.  8(a) and (g) g .b 
is - 2 for dis locat ion 1. This is a con t ras t  condition 
giving r i s e  to a double image, and careful  examination 
of the mic rog raphs  revea l s  doublet cont ras t  i raafies. 
As shown by computer  s imulated images  for g .b  = ~2 
the intensi ty of the individual peaks of a doublet may  
v a r y  appreciably .  For  example in Fig.  8(a) dis locat ion 
2 does not appear  to have a double image  for  g .b  = +2. 
In an en la rgement  of this  image in Fig.  9(a) an ex-  
t r eme ly  faint subs id ia ry  peak is just  d iscernible  to 
the left of the main peak. It is also evident in the c o r -  
responding computer  p ic ture  in Fig. 9(a), which is a c -  
tual ly for  a higher  l a te ra l  magnification.  The c h a r a c -  
ter iza t ion of  dis locat ion 2 as having a Burge r s  vec tor  
of ao[ i10 ] is based  on (i) invisibil i ty f o r g  . b  = 0 in Fig. 
8(h), and (it) con t ras t  co r respond ing  to g .b = +2 in 
Figs.  8(a), (b), and (e). Since dis locat ions  1 and 2 a re  
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Fig. 7--A comparison between the actual and computer simulated images for (i) dislocation B in Fig. 6(c}, (it} dislocation C in 
Fig. 6(e), and (iii) dislocation C in Fig. 6(f). 

deduced to have B u r g e r s  v e c t o r s  of a0[101 ] and a o [ i l 0 ]  
that  of d i s loca t ion  3 has  to be a 0 [ 0 i i ]  to main ta in  
Burge r  v e c t o r  conse rva t i on  at  the node. This  deduc-  
t ion was  v e r i f i e d  by c o n t r a s t  a n a l y s i s  s ince  inv i s ib i l i t y  
with g - b  = 0 is  ev ident  with g = [200] and [01i]  in F igs .  
8(a) and (d) r e s p e c t i v e l y .  Well  def ined  i m a g e s  for  g .  6 
= - 1  a r e  s een  in F igs .  8(e), (f)  and (h) for g = ~10] ,  
[ i01] and [110], s imil_arly in F igs .  8(g) for g [101]. 
Double i m a g e s  for g .b  = 2 and - 2  r e s p e c t i v e l y  a r e  
seen  in F igs .  8(c) and (b) for g = [011] and [020]. 

Another  node where  a s i m i l a r  type  r e a c t i o n  o c c u r s  
i s  f o r m e d  by the junct ion of d i s l oca t i ons  5, 6 and 7, 
which have  B u r g e r s  v e c t o r s  of [011], [ i i 0 ]  and [10i]  

r e s p e c t i v e l y .  An unusual  f ea tu re  in the a n a l y s i s  of 
these  d i s l oca t i ons  is  t h e s t r o n g  double image  of d i s l o -  
c a t i o n 7 i n  Fig .  8(b) for  g . b  = 0 .  In Fig .  9(b) a c o m -  
pu te r  s imu la t ed  image  of th is  d i s loca t ion  (which l i e s  
n e a r l y  p a r a l l e l  to the foi l  s u r f a c e s )  d i s p l a y s  a wide in -  
t ense  double  image  even though g .  b = 0. It should be  
pointed out however  that  g . b  e and g . 6  • u a r e  a p p r e -  
c iab le  in th is  ca se ,  n a m e l y  - 4 / 5 ,  and 8/3~/~- and these  
quan t i t i e s  a r e  r e s p o n s i b l e  for the s t rong  image .  In 
con t r ad i s t i nc t ion  i t  is  seen  that  d i s l oca t i ons  4 and 8, 
al though having the s a m e  6 as  d i s loca t ion  7 a r e  nea r  
the  s c r e w  o r i en ta t ion ,  thus the  quan t i t i e s  g - b  e and 
g -  6 • u a r e  exceed ing ly  s m a l l .  These  d i s l oca t i ons  a r e  
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Fig. 8--Part of a Burgers vector analysis of a nodal dislocation network formed during creep. All dislocation segments are de- 
duced to have an a0(110 > type Burgers vector. Plane perpendicular to the beam direction is shown in the lower right hand corner 
of the micrographs. 

Table II. The Burgers Vector b, and Dislocation Axis u 

for Each Dislocation in Fig, 8 

Dislocation ~ u 

1 lOl 523 
2 110 251 
3 011 443 
4 lO1 lOl 
5 011 521 
6 110 132 
7 101 571 
8 10T 515 

then e s sen t i a l ly  invis ib le  in Fig. 8(b) for g = [020], and 
the r e s idua l  con t ras t  is due to e las t ic  d i sp lacements  
a r i s i ng  f rom sur face  relaxat ion. t2  Examinat ion  of the 
mic rographs  in Fig. 8 r evea l s  the con t ras t  pa t te rns  
along d is loca t ions  4 and 8 are  r e v e r s e d  with r e spec t  
to each other,  thus they a re  s i m i l a r  type dis locat ions  
with opposite s ign Burgers  vec tors .  Final ly ,  Fig. 9(c) 
shows a computer  s imula ted  image for d is locat ion 5 
in Fig. 8(d), for g = [01i]. 

In s u m m a r y ,  all  the eight d is loca t ion  segments  in 
Fig. 8 have been shown to have an a o ( l l 0  ) type Burg-  
e r s  vec tor ,  as did in fact the three  isola ted d i s loca-  
t ions in Fig. 6. 

This sect ion on the cha rac t e r i za t ion  of d is locat ions ,  
and d is locat ion  networks  in Ni2A1Ti concludes with an 
ana lys i s  of a s imple  sub-boundary .  An inheren t  diffi-  
culty in an ana lys i s  of this type is that even with a 
fa i r ly  open network the d is locat ion  segments  a re  too 
shor t  for the use of computer  s imula ted  p ic tures .  A 

n ~  

Table III. Values of g- b for Three ao <110) Type Dislocations 
Forming the Network in Fig, 10 

g.b 0~_0 (a) 200 (b) 110 (c) 1 l0 (d) 1~01 (e) 011 (f) 

g "b 1 --2 +2 0 --2 --1 +1 
g'b2 +2 0 -1  +1 1 0 
g "b3 0 - 2  +1 +1 +2 - 1  

cons is ten t  ana lys i s  of d is locat ions  in the network in 
Fig. 10 is based  on the following c r i t e r i a .  

(i) Each d is locat ion  segment  has an a o ( l l 0  ) type 
Burgers  vec tor .  This is in view of the previous  ana ly-  
ses ,  and the fact that a0(100 ) d is locat ions  occur  in 
pa i r s  coupled by a subla t t ice  A.P.B.14 

(ii) The vec to r i a l  sum of the Burgers  vec to rs  of d i s -  
locat ions i n t e r sec t ing  at a node is zero.  

(iii) For  g.l~ = 0 dis locat ions  a re  genera l ly  inv is ib le  
or in faint  cont ras t .  For  g.l~ = +2, or - 2  d is locat ions  
display a double image with e i ther ,  both peaks in weak 
cont ras t ,  or one well  del ineated whils t  the other is 
ve ry  faint.  

For  the purpose  of ident i f icat ion the s ides  of the 
numbered  i n se r t s  in Figs .  10(a), and (d) a re  al igned 
pa ra l l e l  to the segments  of the hexagonal type d i s loca -  
t ion network. F i r s t ,  cons ider ing  dis locat ion segments  
pa ra l l e l  to d i rec t ion  1, these a re  complete ly  inv is ib le  
in Fig. 10(c) for g =_[il0], hence a s suming  (i) above, 
the Burgers  vec tor  b, is a o [ l l 0  ]. The faint con t ras t  in 
Figs.  10(b), and (d) then cor responds  to g - b  1 = +2, and 
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Fig, 9--A compar i son  between actual  and s imula ted  images  of d is locat ions  2, 7, and 5 in Fig. 8(a), (b), and (d) respec t ive ly .  

--2 respect ively .  The contras t  in Fig. 10(a) for 
= [020] where g .  1~ = - 2 shows a double image with a 
s trong and weak peak. Strong single image contras t  
is evident in Figs. 10(e) and (f) for g = [101] and [01i]. 
and this corresponds  to g "bl equal to - 1  and +1 r e -  
spectively. 

By employing s imi la r  reasoning,  and applying c r i -  
t e r i a  (i) through (iii), it may be shown that dislocation 
segments  2 and 3 have Burgers  vec tors  of ao[0 i l  ] and 
ao[i01 ] respect ively.  The values of g.l~ for dislocation 
segments  t ,  2, and 3 for each operat ive reflect ion are  
summar ied  in Table IIt. 

DISCUSSION 

A significant feature  of this investigation is that only 
ao(l 10> dislocations were  observed in single phase 

METALLURGICAL TRANSACTIONS A 

Ni~A1TL This is in conb-ast to the predominance of 
ao(100 ) dislocations in NiA1. ~'s Unlike NiA1 however, 
considerat ions based on the hard sphere  model (see 
Fig. 2) show that (t00) glide involves the glide of pa i rs  
of ao<100 ) dislocations coupled by a sublattice A.P.B. 
In NiA1 <110) glide although predicted 4 is not ob- 
served,  2'~ thus it is concluded that a~<100) dis loca-  
tions have a higher mobili ty than ao<110) dislocations. 
However, in the Heusler  s t ruc ture  (110) slip is fav- 
ored since <100) slip involves the formation of a sub- 
latt ice ant |phase boundary. 

The foregoing considerations re la te  solely to the 
nature of the operat ive slip sys tems .  In comparing 
the creep  behavior of NiA1 and Ni2A1Ti it is also nec-  
e s s a r y  to consider the dislocation climb velocity v, 
and the mean dislocation slip length L. The creep ra te  

depends on these quantities via Eq. [1], this form of 
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Fig. 10--A hexagonal-Wpe network 
formed during creep in Ni2AITi, the net- 
work results  from the reaction of aD(lt0 > 
type dislocations. Plane perpendicular 
to the beam direction is shown in the 
upper left hand corner of the micro-  
graphs. 

the Tay lo r  r e l a t i o n  i s  used in v a r i o u s  c r e e p  modets . I6  
= Nbw(v)A(L)  [1] 

Here  N is  the number  of d i s l o c a t i o n  s o u r c e s  pe r  
c m  -s, b the B u r g e r s  vec to r ,  and w(v) the f requency  
with which a r r e s t e d  d i s l oca t i ons  s u c c e s s f u l l y  o v e r -  
come  o b s t a c l e s .  The a r e a  A ( ~ L  2) is  that  swept  out 
by a d i s loca t ion  a f te r  having o v e r c o m e  an obs t ac l e .  If 
d i f fus ion  i s  the r a t e  con t ro l l ing  p r o c e s s  then w i s  p r o -  
po r t i ona l  to the c l imb  ve loc i t y  v, which is  given by Eq. 
[2}. ~7 

DUa(F/L) 
v ~ b ~ k T  [2] 

In th i s  e x p r e s s i o n  D is  the d i f fus ion coeff ic ient ,  v a 
the  a tomic  vo lume ,  F / L  the  f o r c e  p e r  c m  ac t ing  on the 
d i s loca t ion ,  and b e the B u r g e r s  v e c t o r  of the d i s l o c a -  
t ion edge component ;  k and T have the usual  meaning .  
In th is  d i s cus s ion  we wish to c o m p a r e  the r e l a t i v e  
c l imb  mobi l i ty  of a0(100 } d i s l oca t i ons  in NiA1 with that  
of ao ( I10  } d i s loca t i ons  in Ni2AlTi. Although a d i r e c t  
c o m p a r i s o n  i s  not p o s s i b l e  an a p p r o x i m a t e  idea  is  ob -  
t a ined  by c o m p a r i n g  c l imb  mob i l i t i e s  of a0<100 } and 
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a 0 ( l l 0  > d i s loca t i ons  in the s a m e  c r y s t a l  s t r u c t u r e .  
F r o m  Eq. [2] the c l imb  v e l o c i t i e s  of these  two types  
of d i s l oca t i ons  (for the s a m e  value  of F / L )  di f fe r  by  
a f ac to r  of two. In view of th is  i t  a p p e a r s  that  a~<100} 
dislocations in NiA1 and ao(ll0> dislocations in 
Ni~AITi climb with about equal facility. 

It is proposed that the higher creep strength of 
Ni2AITi , whilst not attributable to a decreased dislo- 
cation climb mobility is due in part to an inability for 
a0(ll0 > dislocations to undergo cross-slip in the 
Heusler structure. Firstly, an ao<ll0) screw dislo- 
cation cannot transfer from one {110} plane to an- 
other, as planes of this type do not intersect in a 
<110) direction. Secondly, the hard sphere model 
suggests that shear on a cube pIane directly along a 
(ii0) direction is highly improbable, 4 The only alter- 
native way for accomplishing (II0){001} shear is by 
the dissociation given by Eq. [3]; the fault is a sub- 
lattice A. la. B. 

a o [ l l 0 ] -  a0[100] + faul t  + ao[010] [3] 

Again, th is  type  of s h e a r ,  which involves  the mot ion  
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of  a d i s l o c a t i o n / f a u l t  p a i r  wi l l  be  d i f f i c u l t  in  c o m p a r i -  
son  to s i m p l e  (110){110}  s h e a r .  F r o m  the  p r e c e d i n g  
c o n s i d e r a t i o n s  i t  i s  c o n c l u d e d  t h a t  t he  c r o s s - s l i p  of  
a 0 ( l l 0  ) d i s l o c a t i o n s  in Ni2AITi i s  un l i ke ly  to  o c c u r .  
Th i s  e l i m i n a t e s  one  way  by  w h i c h  d i s l o c a t i o n s  m a y  
c i r c u m v e n t  o b s t a c l e s  d u r i n g  c r e e p .  

Q u a n t i t a t i v e l y  t h i s  r e s u l t s  in a v a l u e  of  A in Eq. [1] 
w h i c h  m a y  be  s i g n i f i c a n t l y  s m a l l e r  t han  t h a t  fo r  NiA1. 
The a r e a  A i s  ~ L  2, w h e r e  L i s  the  a v e r a g e  d i s l o c a t i o n  
s l i p  d i s t a n c e .  

F i n a l l y ,  a n o t h e r  s o u r c e  of c r e e p  s t r e n g t h e n i n g  in 
Ni2A1Ti m a y  be the  h igh ly  s t a b i l i z e d  d i s I o c a t i o n  n e t -  
w o r k s  f o r m e d  by the  r e a c t i o n  of a o ( l l 0  ) d i s l o c a t i o n s .  
O b v i o u s l y  t h e  r e a c t i o n  of two a o ( l l 0 )  d i s l o c a t i o n s  is  
s t r o n g l y  f a v o r a b l e  e n e r g e t i c a l l y .  In NiA1 the  r e a c t i o n  
of ao(100)  d i s l o c a t i o n s  m a y  r e d u c e  the  a n i s o t r o p i c  
e l a s t i c  s t r a i n  e n e r g y ,  2' 18,~9 but  not  by  a c o m p a r a b l e  
a m o u n t .  The r e a c t i o n  of a o ( l l 0 )  d i s l o c a t i o n s  in 
NizAITi i s  c l e a r l y  a n a l o g o u s  to t h a t  b e t w e e n  a o / 2  (110) 
d i s l o c a t i o n s  in f cc  m e t a l s ,  w h e r e  h e x a g o n a l  n e t w o r k s  
f o r m  wi th  g r e a t  f a c i l i t y  d u r i n g  h igh  t e m p e r a t u r e  d e -  
fo r  ma t ion .  2o 
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