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The storage, retrieval, and manipulation of thermodynamic data with the aid of a computer
requires accurate analytical representation of thermodynamic properties of solutions. In
the present paper, a critical assessment is made of simple power series expansions
and their limitations in representing thermodynamic properties over the entire composi-
tion range of a binary system. The advantages of certain orthogonal series as an alterna-

tive method of representation is also discussed. Particular emphasis is placed upon
series representations which use Legendre polynomials due to their simplicity and the
fact that their functional form is consistent with empirical observations of solution be-
havior. Since the coefficients of orthogonal series are independent of each other when the
entire composition range of a binary system is represented, any thermodynamic property
can be fitted to any desired degree of accuracy by a finite number of terms without the
necessity of storing a large number of significant digits. Also, because the coefficients
are uncorrelated, they are amenable to mathematical interpolation and extrapolation as
well as to physical interpretation. The relationships between coefficients of series ex-
pansions of all partial and integral properties for the general case have been derived

using the Gibbs-Duhem equation.

MODERN advances in computer technology have cre-
ated an increasing necessity to have an analytical rep-
resentation of the thermodynamic properties of binary
systems for purposes of: i) data storage and retrieval,
and ii) data manipulation, as for example in phase dia-
gram, Gibbs-Duhem, and chemical equilibrium calcu-

lations.

Until now, simple power series expansions in terms
of mole fractions have been used almost exclusively
for these purposes. The fact that the coefficients of a
power series expansion are highly interdependent
means that a large number of significant digits must
be retained in storage and in the calculations for all
but the simplest systems. Furthermore, for many sys-
tems in which the thermodynamic properties vary ina
more complicated way with composition it is impossi-
ble to adequately represent the properties by a simple
power series at all. This problem may be partially
rectified by data storage and retrieval using ‘‘spline
functions.’’ That is, a number of isolated data points
are stored, and these are connected by a series of in-
terpolating functions. However, this makes the task of
data extrapolation, comparison, and manipulation ardu-
ous.

Through the use of orthogonal series expansions, one
can retain the advantages of expressing properties by
one simple equation, while avoiding the need to store
and manipulate large numbers of significant digits,
for even the most complicated of systems. Fur-
thermore, since the coefficients of orthogonal expan-
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sions are completely uncorrelated with one another,
they provide an easy method of comparison between
systems, and they are more amenable to physical in-
terpretation. The particular orthogonal series chosen
should have a functional form similar to that of the
thermodynamic properties being fitted, and should be
easy to manipulate mathematically. In the present
work, several orthogonal series representations are
examined, and particular emphasis is placed upon the
advantages of the Legendre series of orthogonal poly-
nomials.

SIMPLE POWER SERIES EXPANSION

Any integral excess thermodynamic property, wE,
or any partial excess property of component 4, wﬁ,
or of component B, w%, in the binary system A-B,
may be expressed as a simple power series expansion
of the mole fraction:*

wF = X4Xp(go+9,XB + 4, Xg + e ) (1]
wE = Xp (@ +a,Xp +a,Xp +..... ) [2]
wk = X4 bo+b,Xp +h, X+ ... ) [3]

where X4 and Xp are the mole fractions, and w is any
thermodynamic property such as G, H, S, and so forth.
Excess properties are preferable in such series expan-
sions, since they remain finite in the dilute regions.

The simple power series expansions in the form
shown above are well-behaved in the dilute regions.
For example, wE = 0 when Xpg = 0, and Raoult’s Law,
dwk /dXp — 0 as Xg — 0, is obeyed. The thermody-
namic relationships between the coefficients of Egs.
[1] to [3] are derived in Appendix 1 by differentiation
of Eq. (1]. These are:
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b, =(n+1)g, (4]

a, = (n +1)(q, — qy.) [5]
1
a, =b, — %:—z'bnu [6]

Thus, if values of any one of the properties wf, wE, or
w% are known at various compositions, then a least
squares regression analysis to obtain the coefficients
a,,b,, or q, of the measured property, followed by
application of the above relationships, will generate
the functional behavior of all three thermodynamic
properties over the composition range in question.

For example, for a system where one coefficient is
sufficient to describe the measured property, then,
from Eqs. [4] to [6]:

ao=by=q, [7]

If the relative molar enthalpy can be described by one
coefficient, then we speak of a ‘‘regular solution’’:

AR = quAXB [8]
Ay = q,X5 [9]
Ahp = g, X} [10]

Or, in a ‘‘sub-regular’’ solution where Ak is adequately
described by two coefficients:

Ak = X4 Xp (4o +4,Xp) [11]
and so, from Egs. (4-5):

Ahy = X3 (4o + 29, Xp) [12]

Ahp = X390~ 4;) +24,Xp) [13]

In an actual system, we fit the experimental data to as
many coefficients as are necessary to give an adequate
representation. For example, in the AgC1-RbCl sys-
tem?® a least squares fit to the experimentally measured
values of the excess molar free energy gﬁ c] at 800°C
gives (in units of cal mol™): &

E _ Y2 _ — 2
85 .c1 = Xapoi(— 1497 — 3549 Xpy o + 2750 X%, )
[14]
From Eq. [6], with AgCl as component A:
E _ 2 - _ 2
&RpCl = XAgCl( 2334 1710XRbCl + 2759XRbCl) +C

[15]

where C is a constant of integration obtained from a
known end-point value of gﬁb 1 at some value of XebC1
somewhere in the composition range studied. Gener-
ally, the end-point composition will be that of the pure
component or of a phase boundary. In the present case,
the measured composition range extends up to Xgj,c1
=1 where ggbCl = 0. Hence, from Eq. [15], C = 0 in
this particular case.*

*The calculation of the integration constant C is discussed for the general case
in the summary of equations (Table V).

Thermodynamic properties in relatively simple sys-
tems which do not deviate too far from sub-regular
solution behavior can be adequately described by sim-
ple power series expansions with only a few coeffi-
cients (5 coefficients or less). However, a great many
systems require a much larger number of coefficients.
In such cases, the fact that the coefficients are inter-
dependent becomes a real problem. For example, sup-
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pose that wﬁ in a certain system is described by a ten-
coefficient power series. All the terms a, X% have a
maximum absolute value at Xg = 1.0, and are all zero
at Xp = 0. The higher terms such as a,X}% are ex-
tremely small near Xy = 0.0, but are many orders of
magnitude larger in absolute values near Xg = 1.0.
The result is that, as n increases, the absolute value
of a, must become very large in order that this term
can contribute to the total summation when Xp is
close to 0.0. As the total number of coefficients is
increased, the absolute values of g, increase dra-
matically. This necessitates the storage and manip-
ulation of variables in the computer to a large number
of significant digits (DOUBLE PRECISION—16 signifi-
cant digits, or higher) since the total summation in-
volves taking small differences between very large
numbers, particularly for larger values of Xg. In
many complicated systems, particularly those in which
the thermodynamic properties change rapidly over a
narrow composition range, this problem becomes so
acute that the properties cannot be adequately repre-
sented by simple power series expansions at all, as
will be illustrated later.

It is also clear that no significance, either mathe-
matical or physic:il, can be attached to the numerical
values of the coefficients. Because of the high interde-
pendence (correlation) between coefficients, simply add-
ing one more term to the series will completely change
the numerical values of all the previous coefficients.
Thus, one requirement of any proposed new series is
that there be no interdependence between coefficients.
Before proposing such a series, let us examine some
other important considerations in the analytical repre-
sentation of thermodynamic properties in binary sys-
tems.

GENERAL CONSIDERATIONS IN USE OF
SERIES REPRESENTATIONS IN BINARY
SYSTEMS

It must be recognized that in fitting thermodynamic
data to any series representation, one is usually not
attempting to obtain a statistical averaging of the data,
since there is no real physical significance to the terms
in the series (except possibly to the first and second
“regular’’ and ‘‘sub-regular’’ terms of a power series.)
One is simply trying to obtain an analytical expression
which adequately describes the property by a smooth
curve. Since there is no known analytical expression
to which data must conform over the entire composi-
tion range of a binary system, the ‘best’’ curve which
one can draw through the data points is the one which
one draws ‘by eye,’’ using experience and common
sense as one’s guide. Consequently, when analytically
representing thermodynamic data, one is better off
plotting up the data points, drawing the best curve by
eye, and then fitting an analytical series to this curve
rather than performing a least squares analysis di-
rectly to the experimental data points. Hence, in com-
plex systems it is possible that one may end up using
an analytical series with more coefficients than there
were original experimental data points.

In the dilute regions (Xg — 0.0 and Xp — 1.0), there
are certain criteria to which any analytical representa-
tion should conform. Specifically, the ‘““‘a’’ functions’’
should be well-behaved (i.e., continuous and finite)
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in the dilute regions. The « functions are defined as
follows:

Ut = wF /X4 Xp [16]
ay = wf/Xp [17]
ap = w§/X) (18]

(where the subscript ‘“int’’ refers to the integral ex-
cess property). For example, as Xg — 0.0 (and gE

— 0.0), it is necessary that the ratio a4 = g% /X5 re-
main finite. This is based upon empirical observations
of solution behavior as well as upon theoretical consid-
erations as discussed, for example, by Darken.® Con-
sequently, when fitting data to any series representa-
tion, we should note that: i) The series expansion
should be fitted to the best curve which has been drawn
‘by eye’’ through the experimental a function points
(rather than through the experimental w® points) in
order to ensure that one is extrapolating properly in
the limiting regions; ii) The analytical series employed
to represent the system must give finite and otherwise
well-behaved o functions in the limiting regions.

ORTHOGONAL SERIES

Orthogonal series appear attractive for representa-
tion of thermodynamic properties since the coefficients
of such series are uncorrelated. That is, the value of
any one coefficient in independent of the total number
of terms used in the series expansion. Before we look
at specific orthogonal series, we shall first consider
the general properties of orthogonal sets of functions.

Consider an infinite sequence of functions of the in-
dependent variable x: ¢,(x), ¢,(x), ¢.(x),... . These
functions are said to form an orthogonal set of func-
tions over the interval a <x < b if, for all m # n:

b

f ¢y %)+ ¢y(x)dx = 0 [19]
a
For example, the set of functions defined by ¢,, (x)

= ¢os {nx) are orthogonal over the interval 0 < x < 7
since

m

fcos {mx)-cos (nx)dx = 0
]

(20]

for all m # n. However, the functions used in the simple
power series of Eq. [1], ¢, (¥} = x™, are not orthogonal
over any interval.

An arbitrary function f (x) can be expressed as an in-
finite series of the orthogonal functions ¢, (x):

f®) = 23 cny (%) (21]
n=0

where the ¢, are called the coefficients of f (x) relative
to the orthogonal functions ¢, (v). For example, f(x)

can be expressed over the interval 0 < x <rmasa
‘‘Fourier cosine series’’:

f) = 25 ¢y cos (nx)

n=o0

[22]

where the ¢,, are the ““Fourier cosine coefficients’’ of

f ).

METALLURGICAL TRANSACTIONS

By multiplying both sides of Eq. [21] by ¢,, (x) and
integrating over the interval a < x < b, we see that:

b
[F @) by (x)dx
a

Cop = = [23]
where
b
W) = [ [om@)) dx [24]

a

W{m) is a normalization factor which can be seen to b.
a function only of m. Consequently, each of the coeffi-
cients ¢,, can be obtained by taking the area under the
curve of the product f (x) - ¢,, (x) over the interval a
=x =< b, and so the coefficients ¢, are uncorrelated
with each other. That is, the coefficient c,, for exam-
ple, has the same numerical value whether we termi-
nate the expansion after 4, 10, or 100 terms. Further-
more, there is no tendency for the coefficients to be-
come progressively larger as n increases, and in
general, all coefficients tend to be of the same order
or less than the first few coefficients.

The complete theory of orthogonal functions can be
found in standard texts.? It can be shown that if the set
{¢, (%)} is a ‘“‘complete’’ orthogonal set, then any func-
tion f (x) can be expressed to any desired degree of
precision by a finite number of terms in the expansion
Egq. [21].

If a graphical plot of a function f (x) is known, and
we wish to represent this curve by an orthogonal se-
ries, then we can determine as many coefficients c,,
as are necessary to give the desired precision of fit
by taking the areas as in Eq. [23]. This could easily
be done by numerical integration on a computer. Al-
ternatively, it may often be simpler to determine the
coefficients by a least squares regression analysis.
First, we note that if a function f (x) is approximated
by n’ terms of an orthogonal series, then the coeffi-
cients c,, are such as to minimize the integral

7

n
e by @)]* dx

n=0

b
JUfe) - (25]

This may be shown from the general theory of orthogo-
nal series.? Now, if we take our graphical plot of f (x)
which was drawn ‘Dby eye,’’ and from this curve we
read off a large number of dummy ‘‘data points’’ which
are evenly spaced along the x-axis, and which cover
the complete interval a < x < b, then a least squares
regression analysis using these dummy data points
will generate the coefficients £, of the series f (x)
nl
= 3 &,¢,(x), where the &, will approximate the co-
n=0
efficients ¢,,. The approximation will be better the
greater is the number of dummy data points. In effect,
we are approximating the integral {25] by a large num-
ber of rectangles, and then minimizing the area of thes
rectangles. Hence, it can be appreciated why the dumm
data points should be evenly spaced along the x-axis (s¢
that all the rectangles are of the same width), and also
why the entire interval a < x < b must be covered (since
the series is only orthogonal over the entire interval.)
If we do not wish to draw the function f (x) ‘by eye,”’
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but instead we wish to use the original experimental
data points in the least squares approximation of f (x)

n
= 25 & ¢, (%), then the coefficients £, which we gener-
7n=0

ate will not, in general, equal the orthogonal coeffi-
cients c¢,,, although the approximation will become bet-
ter the more data points there are and the more evenly
spaced these points are along the x-axis. Even in this
case, because of the nature of orthogonal series, the
coefficients £, will, in general, not be high interdepen-
dent, and will all tend to be of the same order of mag-
nitude or to decrease as » increases.

We shall now consider some of the orthogonal or
nearly orthogonal series which may be utilized to give
serjes representations of thermodynamic properties in
binary systems.

LEGENDRE POLYNOMIALS

Although many orthogonal series of functions could,
in principle, be used to represent thermodynamic func-
tions in binary systems, the number of coefficients re-
quired to give a representation of a desired precision
can be greatly reduced by choosing an orthogonal se-
ries which approximates the functional form of the
thermodynamic properties being represented. Since
quasi-chemical theory predicts that excess thermody-
namic functions are generally algebraic functions of
composition (rather than trigonometric or other trans-
cendental functions), an orthogonal series based upon
algebraic functions is preferable. Furthermore, the
series chosen should be such as to obey Raoult’s Law
and to give finite and well-behaved a functions in the
dilute regions, as discussed previously. It should also
be easily differentiated and integrated for manipulation
in the Gibbs-Duhem equation, etc. It would also be de-
sirable that the first and second terms correspond to
the ‘‘regular’ and ‘‘sub-regular’’ solution terms.
These criteria are all satisfied if we expand the o
functions as orthogonal series of the orthogonal func-
tions P, (x):

ne
ajne = WE/XsXp = 75 q,P,(Xp)

[26]
n=0
ay = wE/Xy = 3 ayP, (Xp) [27]
n=o
@p = wg/Xi = nZ’i;oann X3B) [28]

where the P, (x) are the Legendre polynomials which

form a complete orthogonal set of functions in the in-
terval 0 < x < 1.0. The first few Legendre functions
over this interval are:

Pyx) =1 [29]
Pyx)=2x — 1 [30]
Pyx) =6x%—6x +1 [31]
Py(x) = 20x° — 30x% + 12x — 1 [32]
P,(x) = T0x* — 140x> + 90x% — 20x + 1 (33]

For example the Legendre series of a4 is:
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ay = wﬁ/Xf; =ay (1) +a,-(2Xg — 1)

+a,(6X3 —6Xg +1) +..... [34]

The first term (» = 0) is simply the ‘‘regular solution’’
term, and the second (n = 1) is the ‘‘sub-regular solu-
tion’’ term. The series obeys Raoult’s Law (and hence
also Henry’s Law) and gives finite and otherwise well-
behaved a functions in the dilute regions. Each Le-
gendre polynomial P, (x) is merely a grouping of pow-
ers of x. Thus, all the physical advantages of a power
series representation are maintained, but because the
series is now orthogonal, the disadvantages are avoided.
The general recursion relationship for the terms
P, (x) is:

(n—1)

(2n—1)2x 1)
n n

P,(x) = Py, (x) ~ Py ,(x)

[35]

The series is orthogonal over the interval 0 =x < 1.
That is:

[ P,x) Pplx)dx =0 (n#m) [36]
1]

and the normalization factor (Eq. [24]) is:
Wn) = fl[P,l(x)]2 dx =1/(2n+1) [37]

o

Usually, in standard texts, the Legendre polynomials
are given as functions P,(z) orthogonal over the inter-
val =1 =< z < 1. In the present case, a substitution 2z

= 2x — 1 has been made to make the functions orthogo-
nal over the interval 0 <x < 1.

A graph of the first few Legendre functions is shown
in Fig. 1. All functions are equal to +1.0 at x = 1.0, and
to + 1.0 at x = 0. In the interval 0 < x < 1.0, all functions
are bounded by +1.0. Unlike the simple power series
functions (x, x% x°, .. ..) which all have maxima
at x = 1.0 and which are all zero at x = 0.0, the
Legendre functions all have maxima and minima
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Fig. 1—The first 5 Legendre polynomials orthogonal over the
interval 0 = x =<1,
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at different values of x. Also, each function after
the second one has one more extremum in the in-
terval 0 < x <1 that did the previous function, and so
the error in fit is not concentrated near x = 1.0 as in
the case of simple power series. We can thus appre-
ciate qualitatively why the coefficients of Legendre se-
ries expansions (as in Eqs. [26] to [28]) are uncorre-
lated. Each term P, (x) represents a different func-
tional ‘‘character’’ than any of the other terms. This
is, of course, the meaning of the orthogonality crite-
rion of Eq. [19].

Differentiation of Eq. [26] (see Appendix 2) gener-
ates the following relationships between the coeffi-
cients of Egs. [26] to [28]:

n+k)=n’

@ =m+1)q, + 2n+1) - T q,,(~1) [38]
k=1
(+k)=n’
by=(m+1)g, + 2n+1) - T g, [39]
k=1
(nt+k)=n’ 1
Gy =a,/In+1)+ 2n+1) - kz=)1 Tmr Bk 1) Cntk
(40}
(n+k) =n’ (- 1)k
Gn =On/nr e @nal) s N o R T Dnek
[41]
(n+k)—'n
_ E(2n+k+1)
bn_an+(2n+1)- m+E)Yn+E+1)
(42]

Thus, knowing numerical values of the coefficients of
any one of wF, Wk, or v expressed as an a function
Legendre series, we can calculate the coefficients of
the corresponding Legendre series for the other two
properties. For example, if the coefficients g, of the
expansion Eq. (26], expressed as a 6-member series
(n’ = 5) are known, then the coefficients a, of a4 in
Eq. [27] are given by Eq. [38] as:

as = 6q,

a, =5q, — 9q,

ag =49, — 19, + g,

a, = 34, - 54, + 5¢, — 54, [43]
a, =29, — 39, + 39, — 39, + 3q,

Go = o~ q1+ 43— qg+ G4 G,

Legendre Series Representation in
Complicated Systems

(a) Integral properties: We shall first demonstrate
the use of Legendre series in obtaining analytical rep-
resentations of integral thermodynamic properties of
relatively complex binary systems.

In Fig. 2{(a) are shown experimental relative integral
enthalpies Ak in the liquid system LiF-BeF, at 862°C.°
The corresponding integral o function, ajny = A/
X1irXBeF, is plotted in Fig. 2(b). The smooth curve
in Fig. 2(b) was drawn by eye through the points in
Fig. 2(b), thus ensuring that the o function remains
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Fig. 2—Relative integral molar enthalpy and corresponding
« function in the LiF-BeF, liquid system at 862°C.%

well-behaved in the dilute regions. Fifty equally space:
values were read off the smoothed curve of Fig. 2(b)
every 2 mole pct, and these points were then used as
the input dummy ‘‘data points’’ for the least squares
curve-fitting.

In Table Ia are the generated least squares coeffi-
cients ¢, of the Legendre expansion of Eq. [26]. That
is:

(XBeF,) + 91 P, (XBeF,) +42P; (XpeF,) + -
(44]

Values are listed for the cases when the total number
of coefficients used in the series was 4, 7, and 13.
Root-mean-square deviations p are also listed.

(It should be pointed out that although each term of
the series P, (XpeF,) could be calculated from the cor-
responding polynom1a1 expansion as in Eqs. [29] to [33]
the simple recursion relationship of Eq. [35] was alway
used to give P, (x) at any value of x in this and all sub-
sequent calculations. Thus, it is never necessary to ac
tually calculate-values of x” for large n, and so we avoi
the ‘‘round-off’’ error typical of polynomial expansions
when » is large which results from taking the differenc

it = 40P
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Table |. Coefficients of Legendre and Simple Power Series Expansions for
Qipe = AB/X 3 X (keal) in the LiF-BeF, System
(P = r.m.s, deviation)

(a) Legendre Expansion
4 Coefficients 7 Coefficients 13 Coefficients
0 =0.316 kcal £ =0.091 kcal £ =0.022 kcal
go=—0.718 go=-0.732 g0 =—0.731
g:=7.743 g:=17.730 g =7.730
g2=1.662 q:=1.586 gs =1.595
gs=—2.345 qs=-2.376 qs =—2.376
q4=0.821 gs =0.837
gs=0.234 gs =0.235
q¢=-0.035 q¢ =—0.011
q,; =—0.157
qs =—0.166
gy =0.262
q10= —0.041
qu;=-0.113
q12= 0.081
{b) Simple Power Series
4 Coefficients 7 Coefficients 13 Coefficients
P =0.316 kcal 0 =0.091 kcal 7=0.031 kcal
go= —4.452 go=—3.948 go = —4.046
q,=-22.632 4:= —30.476 91 =—16.735
g = 80.335 g2=90.592 g = ~167.517
g3 = —46.908 q3= 28.366 qs = 1147277
gs=-201.955 s = 5765.667
gs=157.455 as = —70909.856
g46=-32.807 qe =278574.173
q, =—576629.573
gs = 672556.393
qs = —405454.563
q10= 64075.408

41, = 51639.989
q12= —20564.477

between large numbers. It is more efficient to utilize
the recursion relationship Eq. [35], and we also note
that for all n, P, (x) > P,,,(x), and hence a round-off
error is impossible.)

In Table Ib are the corresponding least squares co-
efficients ¢, of the simple power series expansion

(Eq. [1]):
Cint =40+ anBer + QZXEer +..... [45]

The least squares fit was performed on the same 50
dummy data points. For both the Legendre and the
simple power series, the 13 coefficient fit gave a gen-
erated curve with a maximum deviation from the curve
which was drawn by eye of approximately 60 cal. This
is about the width of the line drawn in Fig. 2(0).

From Table 1, the following observations can be
made: (1) The coefficients of the Legendre series are
uncorrelated. That is, the value of any Legendre coef-
ficient g, is virtually independent of the total number
of coefficients used in the series. The fact that in this
example the coefficients do not remain exactly constant
is due to the use of the least squares approximation to
the true orthogonal coefficients. Clearly, increasing
the number of dummy ‘‘data points’’ to «, or calculat-
ing coefficients by the area method (Eq. [23]) would
completely eliminate this slight variation. In the sim-
ple power series expression, on the other hand, we see
that the coefficients are highly correlated. For exam-
ple, ¢, = 157.455 when a T-coefficient fit is used, but
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q, = —70909.856 in a 13-coefficient series. (2) From
the 13-coefficient fit it can be seen that the Legendre
coefficients tend, in general, to become smaller as

one progresses down the list from ¢, to ¢,,. The coef-
ficients of the power series, on the other hand, tend to
become larger. For example, ¢,, is some 5000 times
larger than g, If we desire to generate the curve in
Fig. 2(b) to about +10 cal, it is necessary to store all
coefficients to 3 decimal places. Clearly, the Legendre
coefficients in this example need be stored to a maxi-
mum of only 4 significant digits, whereas the simple
power series coefficients require up to 9 significant
digits when a 13-coefficient series is used. In prac-
tice, we generally need more than the 4 or 9 significant
figure storage, respectively, in the computer in order
to eliminate round-off error. Thus, a 13-coefficient
power series fit actually requires at least 16 signifi-
cant digit (DOUBLE PRECISION) computing programs,
whereas it has been found that for even the most com-
plicated systems, where far more than 13 coefficients
are required, the Legendre expansion can always be
calculated with 8 significant digit (SINGLE PRECISION)
computer programs. (3) For the 4 and 7 coefficient fits,
the r.m.s. deviations are exactly the same for the Le-
gendre and the simple power series expansions. This
is to be expected, since the Legendre series can obvi-
ously be reduced to the simple power series expansion
by a rearrangement of terms. For 13 coefficients, the
r.m.s. deviation for a simple power series is slightly
greater than for the Legendre expansion. This is the
result of the round-off error involved in carrying so
many significant digits. For systems requiring more
than 13 coefficients, this error soon becomes so acute
that thermodynamic properties in many complicated
systems cannot be adequately represented by a simple
power series expansion at all. An example will be
given shortly.

From the coefficients g,, in Table I, the coefficients
a, and b, of the Legendre expansions for ay;r and
aper, (LiF = A; BeF, = B) as in Egs. [27] and [28] were
calculated by use of the relationships in Eqs. [38] and
[39]. These are listed in Table Ila. We see that the
calculated coefficients change only slightly as the num-
ber of coefficients is changed. Furthermore, the higher
coefficients are of the same order of magnitude or
smaller than the first few coefficients. We note that
these coefficients a, and b, are the true orthogonal
coefficients of the calculated series expansions for
ayiF and agey,, but since the fits to the smoothed ;¢
curve improves somewhat as the number of coefficients
is increased, the calculated curves of oy and OBeF,
also change somewhat, and so the values of g, and 5,
also vary.

The coefficients @, and b, of the simple power series
expansions (Eqs.[2] and[3]) for a1 and ap.p, Were
calculated from the coefficients ¢, in Table Ibzby use
of Eqs.[4] and [5]. These are listed in Table Ilb. As ex-
pected, these coefficients are highly correlated and re-
quire the storage of a large number of significant digits.

Plots of the relative partial molar enthalpies Ahy ;g
and AhBeF2 as calculated from the 13 coefficient expan-
sions are drawn in Fig. 3. As mentioned previously, for
this particular example, the fits obtained using the Le-
gendre and the simple power series are virtually the
same.
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Table I1. Coefficients of Legendre and Simple Power Series Exp

of the Enthalpy a F

oy ie (Coetficients a, ), and ap,r, (Cosfficients b,) (kcal)

s Calculated from the Coefficients for a;, in Table I.

4 Coefficients

7 Coefficients

13 Coefficients

(a) Legendre Expansion

ao= —4.453
a,=3.463

a,=16.713
as= —9.382

bo=6.342 o= —3.948
by = 13.436
by= —6.740 4=
by=—-9.382 2,= - 13.364

bo=7.228 ap =--4.018
5,=16.150 ay = =
by=-2023 a; = 19.024 by =-
by=—2.366 a3 = =

be=5.894 as =0.902
bs=1.015
be= —0.248 a

dio

(b) Simple Power Series

ao=18.179
a,=-205934
a;=381.728
a3=—187.632

bo=-4453
by=—45.264
by = 241.004
by=—187.632

o= 26.527
a1=—242.136
a1 = 186.680
a3=921.281
as= —1797.046
as= 1141.566
a¢ = —229.645

bo=-3.948 o= 12.688 bo= —4.046

b= -60.951
by =271.777
b3=113.463
be= —1009.773
bs=944.727
be= ~299.645

a; =301.565

--18493.597
383377.623

- 2096904.130
5986426.125
-9993487.720
9702098.510
4695299.644
a10= 136789.621

1)
©
[
|

by =-33.469
by =-502.551

bs =4569.071

be = 28828.335

bs = - 425459.143
be =1950019.215
by = —4613036.628
bs = 6053007.519
by = —4054545.645
bio= 704829.493

by, = 619679.864
bia= ~267338.200

4y, = B66453.594
a4y = —267338.202

Ahi (Kcal)

) B ) S "\ L 1 L -

0 01 02 03 04 05 06 07 08 09 10
X Be Fz

Fig. 3—~Relative partial molar enthalpies in LiF-BeF, sys-
tem calculated analytically,
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(b) Partial properties: We shall now consider the use
of Legendre expansions for representing excess partial
molar properties. In Fig. 4(a) are plotted the excess
partial molar free energies of Mg, gﬁg , in the Mg-Bi
binary system at 700°C.® The calculated corresponding
values of ay, = g, /Xp; are shown in Fig. 4(). The
points shown in Fig. 4 are not experimental values, but
are the smoothed values as tabulated by Hultgren et al.°
We note that this system has a strong stability at Xp;
~ 0.4 (the point of inflection in Fig. 4(a)), which may
be associated with a ¢‘tendency to ordering’’ at this
composition. The plotted curve in Fig. 4(b) was drawn
by eye through the o function points. Fifty evenly space
dummy data points were read off the curve in Fig. 4(b)
every 2 mole pct, and a least squares regression analy-
sis was performed on these points. The coefficients of
the Legendre expansion

aMg = aoPo(XBi) + alPl (XBi) + asz (XBi) + oL

(48]
for expansions with a total of 4, 10, and 16 coefficients
are listed in Table III. The curve generated by the 16
coefficient series had a maximum deviation of 0.7 kecal
from the curve which was drawn by eye. This is about
the thickness of the line drawn in Fig. 4(b). Again we
see that the coefficients are uncorrelated and that a,
tends to become smaller as n increases.

The coefficients of the simple power series expansior

(47]
are also listed for a 16 coefficient expansion in Table

aMg =a,+ a,Xpj +a2Xf§i R

VOLUME 5, NOVEMBER 1974-2329



III. The r.m.s. deviation of this fit is now about twice
that of the Legendre expansion for the same number of
coefficients. As before, a large number of significant
digits must be stored in order to retain significance,

Integration of Eq. [46] (essentially a Gibbs-Duhem
integration) yields the corresponding Legendre expan-
sions for a; and o,

n’
i =&fi /Xy = D baPn X)) + C/ Xy, [48]
no
n

Z) ann(XBi )+ C/XMg

n-o

Oint = &%/ Xmg Xpi = [49]

where C is a constant of integration. The coefficients
b, and ¢, can be calculated from Egs. [40] and [42].
The constant C must, in general, be calculated from
a known end point value of gF. or of g’ at some point
within the composition range over which oy, has been
measured. In the present example, the entire composi-
tion range of the Mg-Bi system has been covered, and
since gl = g¥ = 0.0 when Xyg = 0.0, it follows from
Eqs. [48] to [49] that C = 0.0 for this particular case.
The calculated coefficients g, and b, for the 16 co-
efficient series are listed in Table III, and the gener-
ated curves of gf, and of g€ are shown in Fig. 5. The
calculation of the integration constant C is discussed
for the general case in the summary of equations (Table
vI).
A useful thermodynamic quantity is the ‘‘stability
function,”s"’ ¥, which, for a binary system is defined by:’

XsXp d’gf

=1
v * RT dXZB

(50]

It is often difficult to calculate stability functions
graphically, since such calculations involve the graph-
ical determination of the second derivative. Analyti-
cally, however, this is an easy matter, If we expand ¥

then the following relationship exists between the coef-
ficients 8, and the coefficients g, of the expansion Eq.
[26] (See Appendix 2):

(ntk)=n’
0, ==+ 1n+2)g, —22n+1) 25 G, [52]
k=1
The calculated curve of ¥ over the range of interest in
the Mg-Bi system is plotted in Fig. 5. The solution of
maximum “‘stability’’ occurs at Xy ~ 0.42.

N . -40 A i U i I ed, . (b)
as a Legendre series: 0 01 02 03 04 05 06 07 08 09 10
X4 Xp n X
y=14+ I‘:T DY 6n Py (Xp) [51] Fig. 4 —Partial molar excess free energy of Mg and corre-
n=0 sponding « function in the Mg-Bi liquid system® at 700°C.
Table 111. Coefficients of the a Functions (kcal} for the Excess Molar Free Energies in the Mg-Bi System at 700°C (A = Mg; B = Bi)
(5 = r.m.s. deviation)
(a) Legendre Expansion (b) Simple Power Series
4 Coefficients 10 CoefTicients 16 Coefficients 16 Coefficients
p = 4.498 keal 5= 0.994 keal 5 =0.290 keal 5= 0.548 keal
ap=-16.41 a9=-16.25 ay =—16.28 qo =-1676  bo=-11.38 ap =—0.51
ay=-5.97 a;=-5.99 a =-596 g =4.54 b, =11.59 a; =-92.56
a,=16.73 a,=17.53 a; =17.38 g2 =3.85 by =-3.52 a, =2822.66
a3=0.62 a3=0.57 ay =0.64 qs = -2.94 by =—12.24 ay =—37075.75
as=-10.97 aq =—-11.24 qe =-1.18 be =4.14 a, =204207.76
as=0.20 as =0.32 qs =1.24 bs =6.11 as =-—431517.16
as=17.00 as =6.61 g6 =030 bg =-3.33 as = —393529.30
a,=-0.76 a7 =-061 g, =-066 by =-1.64 a7 =3557834.32
as=-4.16 ag = —4.69 gs = —0.07 by =4.69 a2y = —6072116.28
ay=0.85 2 = 1.04 gs =0.38 by =2.53 ay =2279811.64
a10= 3. ¢10=0.00 Bro=— 145 a50= 4798141.33
ay,=-1.05 qn=-021 by =075 a,,= —5786413.80
a,= -2.28 q12=0.05 b1n=2.94 a, = 1439827.04
a=1.16 g13=0.16 b13=0.35 ;3= 698122.29
434=1.35 gua=—0.01 b= ~1.80 as4= —177380.52
a;s=—0.87 qs=—0.05 hys=—0.87 ays= —82652.58
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Fig. 5—Partial molar excess free energy of Bi, integral molar

excess free energy, and stability function in Mg-Bi system at
700°C, calculated analytically,

P could also be expanded in terms of a simple power
series, and an analogous coefficient relationship to Eq.
[52] can be derived. (See Appendix 1). These equations
are all listed in the summary.

One of the more difficult excess properties to repre-
sent analytically is the partial molar excess entropy
for a system which exhibits a strong tendency to ‘‘or-
dering.’”’ For example, experimental values of the ex-
cess molar entropy of RbCl, SIIE{bCI and its correspond-

ing o function, ap, o = sﬁbCl /Xf,[gCI in the RbC1-MgCl,
system® at 717°C are plotted in Figs. 6(z) and 6(b) re-
spectively (A = RbCl; B = MgCl,). The smoothed heavy
curve in Fig. 6(b) was drawn by eye, and 100 equidistant
dummy data points were read off this curve every 1
mole pct. It was found that about 50 coefficients were
required in the Legendre expansion (Eq. [27]) in order
to fit the curve to within one width of the line drawn in
Fig. 6(b). While 50 coefficients may seem to be quite

a large number, these coefficients need only be re-
corded to a maximum of 4 significant digits. For pur-
poses of comparison, in Fig, 6(b) are also shown the
curves generated by 19 coefficient fits using the Le-
gendre expansion and also using a simple power series
(Eq. [2]). The Legendre expansion already gives a quite
acceptable fit except near Xyoc1, = 0.0. The power
series, however, has started to break down, particu-
larly near Xygc), = 1.0 due to the large errors in-
volved in manipulating the extremely large numbers,
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Fig. 6—Partial molar excess entropy of RbCl and correspond
ing « function in RbC1-MgCl, system? at 717°C, Curv-
drawn ‘‘by eye’’ and 50 coefficient Legendre representation
{2 curves coincidental)._.____. 19 coefficient Legendre repre-
sentation, 19 coefficient simple power series represer
tation,

even though all calculations were performed with 16
significant digit (DOUBLE PRECISION) accuracy, and
the power series were ‘‘nested’’ within the computer
subroutine in order to bring all round-off errors to an
absolute possible minimum (see Appendix 1). Increas-
ing the number of coefficients in the simple power se-
ries expansion now only serves to increase the error,
and so the smooth curve in Fig. 6(») cannot be satis-
factorily represented by a simple power series.

Legendre Series Representation in
Less-Complicated Systems

In the preceding section, we have shown the advan-
tages of a Legendre expansion over the simple power
series in obtaining analytical representations of ther-
modynamic properties in systems where many coeffi-
cients are required to give a satisfactory representa-
tion. However, even for simple systems, in which only
a few coefficients (5 or less) can satisfactorily descril
the properties, the Legendre expansion is still prefer-
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able to the simple power series, as will now be dem-
onstrated.

In Fig. 7 are plotted the o functions of the relative
molar integral enthalpies (a;,; = Az/X4Xg) for the
binary liquid alloy systems of Sn with the Group Ib
metals.® The first four coefficients of the Legendre
expansions for each system are listed in Table IV, and
the generated curves using 4 coefficients are drawn in
Fig. 1.

We see from Table IV that, for each system, the ab-
solute value of the coefficients decreases markedly as
we go down the series from g, to ¢,. Hence, we can de-

Table V. Coeffici of the Legendre Exg of tj = AW/X s X3 (kcal)
for Liquid Binary Systems of Sn with Group Ilb Metals

Hg-Sn Cd-Sn Zn-Sn
go=0.845 go=1.800 qo=3313
q, =-0.453 q1=—0.365 q,=-1372
g2 =0.069 g,=0.108 q,=0.456
q3=—-0.019 q3=—0.060 q3=-0.261

5.0 .
4.5 i
4.0 1
3.5 (Sn-Zn) 1
g 30f
X
2
< 25)
>
=
<4 20} (Sn-Cd) 1
1]
<
Y 15
1.0} ( Sn-Hg) .
0.5} .
0 01 02 03 04 05 06 07 08 09 1.0

Xsn

Fig. 7—o function of the relative integral molar enthalpy®

in liquid systems of Sn with group IIb metals,
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duce that adding the fourth coefficient, g,, has had only
a very slight effect upon the overall fit. This may be
compared to the case of a simple power series repre-
sentation where the final coefficient is generally one
of the largest.

The orthogonality of the Legendre series ensures
that adding additional coefficients does not affect the
numerical values of the preceding coefficients. Conse-
quently, mathematical and /or physical significance
can be attributed to the coefficients. For example, the
first coefficient, 4., is the ‘‘average’’ value of the o
function over the interval 0 < Xp < 1. That is, from
Eqs. [23], [24], and [37]:

1
90 = faint'dx (53]
0
and Eq. [53] is true no matter how many coefficients
we use in the series. The next coefficient, ¢,, is a mea-
sure of the ‘‘average slope’’ of the curve, as can be ap-
preciated by examining the plot of P, (x) in Fig. 1. From
Eqs. (23], [24], and {37]:
1
q,=3 [flx) P, (x) dx [54]
)]

The coefficient g, gives the ‘‘average parabolic charac-
ter’’ of the curve, etc. Thus, the coefficients g, and g,
are a more meaningful measure of the ‘‘regular’’ and
‘‘sub-regular’’ character of the thermodynamic prop-
erty than are the first two coefficients of a simple
power series expansion, This leads to the possibility
of interpreting the first few coefficients of the Legendre
expansion in terms of atomistic models. For example,
q, could be related to the change in ‘‘average bond en-
ergy’’ upon mixing the pure components, and ¢, could
be related to the second-nearest-neighbor effects, etc.

In comparing the three Sn-M systems in Table IV,
we see that there is a general trend in the values of
each coefficient ¢,, as M proceeds down Group Ib. (For
the 4 coefficients in Table IV, only ¢, fails to exhibit an
obvious trend.) From this we can imply that Legendre
expansions provide a means of estimating thermody-
namic properties of unmeasured systems by interpola-
tion or extrapolation, as well as providing an easy
means of comparison of thermodynamic properties of
different systems.

FOURIER SERIES

1, Sine Series. It has been proposed® that excess in-
tegral properties be represented by an orthogonal Fou-
rier sine series:

nl
wF = 33 q, sin (nnXp)
n=1
which is orthogonal over the interval 0 < Xg < 1. The
main objection to this representation is that thermody-
namic properties of solutions, for physical reasons,
are not well represented by trigonometric functions.
For example, the o function is not finite in the dilute
regions. That is: ajy = wE/X,Xp = « when X, = 0.0
and when Xg = 0.0 if Eq, [55] is used for wE. Differ-
entiation of Eq. [55] yields the expansion for wk:

[55]

nl
wﬁ = Y 4, *(sin(mnXp) — nuXp-cos (n1Xp))
n=1

[56]
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Again, a4 = wE /X% = o when Xp = 0.0, and there is
the additional undesirable restriction that dw% /dXp
=0 at Xp = 1.0. Furthermore, the generated Eq. [56]
is no longer an orthogonal series.

2. Cosine Series. If we fit the a function of the
partial molar excess property to the Fourier cosine
series:

nl
ay = wﬁ/Xi; =@y + 2, @,+cos (n1Xp)

n=1

[57]

there is still the undesirable restriction that do 4 /dXp
= 0 when Xz = 0.0 and Xp = 1.0. Of course, if a large
number of coefficients are used to fit the curves, then
the dilute regions over which da 4 /dXp —- 0 can be re-
duced to a negligible composition range. For the
smoothed curves of Figs. 4 and 6, fits were obtained
using Eq. [57] which were generally as good as were
the fits using the Legendre expansion for the same num-
bers of coefficients. However, for simple systems such
as those in Fig. 7, many more terms have to be used to
obtain a satisfactory representation using Eq. [57] than
are necessary when a Legendre expansion (or a simple
power series) are used.

By integration (Gibbs-Duhem integration) of Eq. [57],
the following expansions for oz and a;,; are generated:

1

op = wlk/X} =a,+ T-[C—ao
XA

n

-2 a, (sm(:+XB) +X,Xpg cos (nnXB)>] (58]
n=1

aint = wE/X4Xp =

1
%, . [C - ayXp

nl
-2 % sin(mrXB)] [59]

n=1
where C is a constant of integration which has the same
value in both Egs. [58] and [59]. Again we see that the
calculated functions are no longer orthogonal series,
and we also note that ag = =« when Xg = 0,0, Analo-
gous problems will arise if we fit the integral o func-
tion to an equation of the form of Eq. [57] and generate
the corresponding partial properties.

CHEBYSHEV POLYNOMIALS

Chebyshev polynomials appear attractive for the rep-
resentation of thermodynamic properties in binary sys-
tems, since they are well-known in the field of numeri-
cal analysis for the ‘‘Chebyshev economization princi-
ple.”’” Furthermore, they are quite similar to the Le-
gendre polynomials. The first three Chebyshev poly-
nomials, transposed to the interval 0 =x <1 are:

Tolx) =1
T,(x)=2x — 1 [60]
T, (x) = 8x% — 8x + 1
The general recursion relationship is:
T,(x)=202x — 1) Ty, (x) = Tp_, (x) [61]

The o functions may be expanded as Chebyshev series:
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n
Uing = 23 9, Tn(Xp) [62]
n=0
nl
ay =2 a,T,(Xp) [63]
n=o0
nl
ap =2, b,T,(Xp) [64]
n=0
The coefficient relationships are as follows:
(n+k)=n’
a, = m+1)g, + 25 (—1Y(2n+20k)g,,, [65]
k=1
b=3if n=0
6=1ifn>0
tntk)=n'
by=m+1)g, + 3 (2n+28k)q,,, [66]
k=1

The Chebyshev polynomials are not truly orthogonal,
but since each function 7, (x) has one more extremum
in the interval 0 < x < 1 than does T, (x), the coeffi-
cients of a Chebyshev expansion tend to decrease as n
increases, and do not become unmanageably large as
in the case of a simple power series. Since Chebyshev
and Legendre expansions are both polynomial expan-
sions, exactly the same curve, with exactly the same
r.m.s. deviation is generated if the data points are
fitted by a least squares analysis to either series for
the same number of coefficients. The Chebyshev poly-
nomials may be made orthogonal over the interval
0 < x < 1 by multiplying each term by the weighting
factor (4x — 4x% /% but this markedly increases the
mathematical complexity and would not yield any ad-
vantages over the Legendre expansion.

OTHER ORTHOGONAL POLYNOMIALS

Williams® has proposed a method of grouping poly-
nomial terms into ¢‘Z functions,”” Z, (x), in a concept
similar to the Legendre or Chebyshev polynomials.
The excess properties wF, wk, or ok, rather than
the a functions, are fitted to an expansion in terms
of the Z functions. The advantage of this representa-
tion is that it is fully consistent with Darken’s quad-
ratic formalism®® in the dilute regions. The disadvan-
tages are that the series is only approximately orthog-
onal, and that no recursion relationship has been found
which will generate members of the series Z, (x) for
n>6.

Laguerre and Hermite polynomials are unsuitable
for fitting thermodynamic properties of binary system:
since they are orthogonal over the intervals O =x < «
and — « < x < = respectively. There are many other
orthogonal polynomials which we have not considered,
but generally, all tend to be more complex than those
which have been discussed above, and consequently
they are unsuitable for simple representation of ther-
modynamic solution properties.

SUMMARY AND CONCLUSIONS

In Tables V and VI are summarized the pertinent
equations for simple power series and for Legendre
expansions for the a functions.
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Table V. Summary of Simple Power Series Relationships

Table V1. S y of Legendre Exp Relationships

"
o= wF/XpXp = Y g, X}
n=0

n
ap =wR/AG =3 a, X}
n=0

n
-1~ 3 0,13
n=0
Coefficient Relationships:
bp=(n+ 1)y,
ap =(n+ 1)qn ~ qn+1)

n+1
L)

ap=b, B+t

By convention, any coefficient ap, by, gy is zero if n > n'.

If a partial property ap is known, and ag and iy are to be calculated then:

n
ag =Y b,Xg+C/X;
n=0
"
Gint = Z q,Xg + C/X,
n=0
The constant of integration C is zero if the entire composition range to X 4 =0.0is
covered so that the end point condition wg = Wip = 0.0 when X; = 0.0 can be

used. (The calculation of &, and ag when the integral property aint is known does
not involve a constant of integration.)

Stability function:

p=1+

E n'
XAXB.ng _ XA Xy n
RT d—xﬁ —1+—A—BRT nz=:00"XB

0p=(n+ 1)(n+2)qn+1 — an)

We conclude that orthogonal series provide a more
rational analytical representation of thermodynamic
properties of binary systems which are homogeneous
over a wide composition range for the following rea-
sons:

(1) Systems of any complexity can be fitted to any
desired degree of precision simply by including more
terms in the expansion. The coefficients are all of the
same order or smaller than the first few coefficients,
and all calculations and storage can be performed with
only a very few significant digits (SINGLE PRECISION).

(2) The coefficients are completely uncorrelated, pro-
vided that the thermodynamic properties are repre-
sented over the entire composition range of the binary
system, and so the coefficients provide a basis for com-
parison between systems and a more meaningful physi-
cal interpretation.

We further conclude that the orthogonal Legendre ex-
pansion of the o functions is preferable to the other
orthogonal or approximately orthogonal series consid-
ered because:

(1) The Legendre expansions are algebraic functions
of the mole fractions. Since quasi-chemical theory pre-
dicts that excess thermodynamic functions are generally
algebraic functions (rather than trigonometric or other
transcendental functions), the Legendre expansion is, in
general, more capable of efficiently representing the
thermodynamic property than, say, a Fourier series.

(2) The Legendre expansion gives finite and other-
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"
it = E/XAXp = 3 a,Pa(Xp)
n=0

v
ay =E/XE =Y a,Pa(Xp)
n=0

o
ap = wh/X3 = 20 buPn(Xp)
n=0
where
Pox)=1

and

Pup= @D p o 0D p
and

1P 2dx =1/(2n + 1)

[1]

Coefficient Relationships:

(n+k)=n'

E - 1)*‘1n+k

k=1

@n =(n+ Dgp+(2n+1)

(ntk)=n'

bp=(n+1)ga+Qn+1) 3, Quex
k=1

(n+k)=n’

an=apgfn+1)+@ntl) Y 1
k=1

(k) + k+ 1) ntk

(n+k)=n' (_1
n = bul(n+ 1)+ 20+ 1) ?:1 T RN PR Ty Dk

(n+k)y=n'

by=ay+(2n+1) 2
k=1

k(2n+k +1)

M+ n+k+1) 2k

. . . . '
By convention, any coefficient a,, by, q, iszero if n>n'.

If a partial property o, is known and ag and &in are to be calculated then:
o
ap = 2 baPa(Xp) + C/X}
n=0
"
Gt = Y, anPa(Xp) + C/X,
n=0
The constant of integration C'is zero if the entire composition range to X, = 0.0 is
covered so that the end point condition wg = wjn, = 0.0 when X, = 0.0 can be
used. (The calculation of ap and ap when the integral property ajns is known
does not involve a constant of integration.)

Stability function:
L XX P Xadp O
v+ axi” 1+ =57 z_: 0,Pn(XB)
n=0
(n+k)=n'
On=—(n+1)n+2qy~22n+1) 3. dne2k
k=1
Symmetry relations:

Pp(Xp)=Ppy(Xg) whenniseven
P(Xs)=—P,(Xg) when nis odd

Thus, for example, if we write:

n' n'
it = 3 anPa(Xp)= 2 anPu(Xy)
n=0 n=0
then:
qr=q, ifniseven
q%=—qn ifnisodd

and similarly for the expansions for a4, ag, and Y.
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wise well-behaved o functions in the dilute regions.

(3) The first and second coefficients are the ‘‘regu-
lar”’ and ‘‘sub-regular’’ solution terms, respectively,
and the values of these coefficients are independent of
the total number of coefficients used in the expansion.

(4) The expansions for the a4, g, and @, functions
are all orthogonal expansions, and so the series expan-
sion of, say, o g, calculated by the coefficient relation-
ship equations (derived from the Gibbs-Duhem equation)
from known values of the coefficients for the Legendre
expansion of a4, will itself also be an orthogonal Le-
gendre expansion. The coefficients of the three series
for a4, ap, and o4, are all interrelated by simple
equations.

It is proposed that thermodynamic properties in bi-
nary systems be stored in computers by first drawing
the best curve ‘Dby eye’’ to the experimental « function
points (thus ensuring proper thermodynamic behavior
in the dilute regions) and then fitting this smoothed
curve to the appropriate Legendre expansion (Egs.

[26] to [28].

One could, of course, fit a Legendre expansion by a
least squares analysis to the original data points, but
the coefficients so obtained would only approximate the
true orthogonal coefficients, and there is no a priori
statistical rationale for dolng this anyway. Only one
set of coefficients (either the q,, the b,, or the g,,)
need be stored, and in general they need only be stored
to a maximum of about four significant digits. All the
thermodynamic functions (w4, wp, w, stability function,
etc) can then readily be generated by a standard com-
puter subroutine.

Furthermore, by storing one set of coefficients for
the relative molar enthalpy Ak, and one set for the
molar excess entropy sE, and by assuming these func-
tions to be independent of temperature, we can gener-
ate all thermodynamic solution properties for a phase
at any temperature as well as at any composition.

APPENDIX 1

SIMPLE POWER SERIES
Coefficient Relationships
Substituting Eqs. [1] and [3] into the following ther-

modynamic relationship,

duE

w§=w5+(1—XB)-7XE [AI]

and noting that X4 = 1 — Xg, we obtain, after expansion,
the equation:

n,
by, — n+1) g, ) Xp— 2XE"+ X5 =0
n=o

Since this equation must be true for all values of Xp,
it follows that:

by = n+1)qy, [A3]

Substituting Eqs. [2] and [3] into the Gibbs-Duhem
equation:

[A2]

(4]

we obtain, after expansion, the equation

METALLURGICAL TRANSACTIONS

n ne
2 (n+2)(a, — bn)Xlni + 20 nang-l= 0

n=o0 n=1

[A5)

We now replace the dummy variable # in the second
summation by (n +1):

n n
T +2)a, —by) + T (n+1)byy XB =0 [AS6]
n=0 n=o0

Equating coefficients of Xz for all n, we obtain the re-
lationship

n+1

@ =by = 5 ban [A7]

which can be combined with Eq. [A3] to give the rela-
tionship

a, = (n +1)(qy — Qpa) [A8]

Stability Function

Expand the stability function, ¥, as a simple power
series in Xpg:

XaX XsXp i
v=1 +—;T£ @%gFlaxy) = 1+ 522 T 6,X5
n=o0
[a9]
Substituting the expansion
nt
gE = XAXB E ang [AIO]

n=0

into Eq. [A9], differentiating, and re-arranging, we ob-
tain the equation:

n’ n' "
Y 6, X5 = 3 e+ D)+ 2)(@pe — 90) X5 [Al1]

n=0 n=0
Equating coefficientis of XZ, we obtain the relationship:
by = (n+ 1)(n+ 2)(qpss — @) [A12]

Nesting Power Series

Given the coefficients A, of a simple power series
expansion of some function f (X):

FX) = T A,x" [A13]

n=0

where n’ is relatively large (»’ > 5), it may be shown
that the truncation error involved in calculating f (X)
for a given value of X is minimized by ‘‘nesting’’ the
series (Horner’s Rule):

FX) =B+ XA, + X (A + XA+ X(..on....
+ X (A, + X AN ... [A14]

APPENDIX 2

LEGENDRE EXPANSION
Coefficient Relationships
Substitute Eqs. [26] and [27] into the following thermc
dynamic relationship:

VOLUME 5, NOVEMBER 1974-2335



dwf

“’ﬁ”"E_XB'd—XB [A15]
to give the expression:
n n
XB 20 anPy(Xp) = Xp 75 4, P, (Xp) — Xa X}
n=0 n=o
n dP,(X
-Eo p* T")((Bgl [A16]

P, (Xpg) can be represented by the following general
expression:

N@)
P,(Xp) = 25 Fln,k)2Xpg— 1y:-2k [A17]
=0
k N(n) =n/2 if n is even
N@) = ”2_1 if n is odd
where:
— 1Y% (24 — 1
F(n,k)= ( ) (n 2k) [A18]

2% (n— k) (n— 28)!

(Note: When actually calculating the Legendre functions
P,(Xg), it is preferable to use the recursion relation-
ship Eq. [35] rather than Eq. [A17] and [A18], since cal-
culating by Eq. [A17] and [A18] would involve taking the
difference between large powers of Xp, thus resulting
in the same round-off errors which occur when simple
power series are used.)
Let

2Xp—-1)=2z
Substitute Eqs. [A17] to [A19] into Eq. [A16]:
n' N@)

Z; Z; (qﬂ - an + (n -
n=0 k=0
n’ N@)
=2 2 dy(n— 2B)F (n, k)zn-2%-1 = 0
n=1 k=0

[A19]

2k)q, ) F(n, k) 272k
[A20]
We now replace the dummy variable » in the second

summation by (z + 1), noting also that
(2n + 1 — 2k)

Fn+l, k) = s 1=2F) «Fn, k) [A21]
We thus obtain the expression:

n* N@)

20 21 @, —a,+ (- 2k)q, — (2n+1— 2k)q,,,)

n=0 k=0

Fn,k)z"%=0 [A22]

Let

n— 2k =m, [A23]
and substitute into Eq. [A22]:

n’ N’ -m)

EOkZ%) (—' Ap49p + (1 + m)qm+2k - (1 + 2m + 2k)qm+2k+1)

m: =

(=1 @2m + 2k)1
2" %5t m 4 k) m !
Eq. [A24] must be true for all z. Thus:

N(n’'-n)
kz%) (—a,0p + L4+ 1)q, 40 —

M =0 [A24]

(1 + 2n + Zk) qn+2k+1)
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(=1)%(2n + 2k)!

=0 A25
228 k1 (n + E) [az2]

where the dummy variable ‘“#’’ has been renamed ‘‘n’’.

If we expand Eq. [A25] for »n’ =5, we obtain the set of
Eqs. [43], which, by inspection, gives us the general re-
lationship Eq. [38]. This relationship can be verified to
be equivalent to Eq. [A25] by direct calculation for any
value of n'.

To now calculate the relationship between the coeffi-
cients b, and g, of the expansions [26] and [28], we pro-
ceed just as above using the thermodynamic relation-
ship in Eq. [Al] as our starting point. The result of
these calculations is the relationship in Eq. [39].

By expanding Eqs.[38]and [39] for any value of »n’ and
rearranging terms, we can arrive at Egs. [40] to [42] by
inspection. By direct substitution, the set of Egs. [38]
to [42] can be shown to be self-consistent.

Stability Function

Let:
XX X,Xp
$=14+ %ﬁ . (@%E/dxXy) =1+ gT E 8,P,(Xg)
n=o0
[A26]
where
n’
gf = X4Xp ¥ 4,P,(XB) [A27]

n=0

Substitute Eq. [A27] into Eq. [A26], making use also of
Eq. [Al 9]:

" d®P,(2)
Z}OP(z)-(l—z)En — — 42
dz
n dP
Z) Gy —— — 2 E dn Py [A28]
Substitute Egs. [A17] and [A18] into Eq. [A28]:
n’ n’ N(n) n' Nin)
Y 0, Ppe) = T X 4 Fln, R)2n %2 - 3 3
ne=0 n=0 k=o n=0 k=0
q l(n—2k)n—2k— 1) +4(n— 2) + 2]
. Fln, b) 2" 2 [A29]

Replacing the dummy variable n by (z + 2) in the first
summation on the right-hand-side of Eq. [A29], we ob-
tain, after some rearrangement:

n’ Nn)

Z X (6, -

n=0 k=0

+{(n—22)m— 2+ 3) +2)q,]+F

(2n— 2k + 1)(2n— 2k+ 3)q,,,

n,k)2% =0
[A30]

We now replace (r— 2&) by m, and equate coefficients
of 2™ to give:

N’ -m)
37 [0meop— @m+ 28+ 1)(2m + 2k + 3) G084
k=0
— 1%
o+ 1n + 2) Gag) ML

2k 1
29RE Y (m + k) ! [A31]
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which is true for a.ll m. By expanding Eq. [A31] for ar-
bitrary values of »’, we can arrlve at Eq. [52] by inspec-
tion. Direct substltutlon for any n’ then shows the equiv-
alency of Eqgs. [A31] and [52].

TABLE OF SYMBOLS

ay, n-th coefficient of series expansion of o4

b, r-th coefficient of series expansion of a g

Cp n-th coefficient of a general orthogonal series
expansion

c constant of integration

f(x) general function of x

F(n, k) function defined in Eq. [A18]

gE integral molar excess free energy

gf partial molar excess free energy of component i

Ah relative integral molar enthalpy

Ah; partial relative molar enthalpy of component 7
n upper summation limit of summation index »

N(n)  an upper summation limit defined in Eq. [A17]
P,(x) n-th Legendre polynomial

q, n-th coefficient of series expansion of a;y;

R Gas constant (1.987 cal mole™ deg™)

sE integral molar excess entropy

sf partial molar excess entropy of component ¢

T temperatuve (Kelvin}

T, (x) n-th Chebyshev polynomial

W(n) normalization factor of the n-th term of an
orthogonal set

x general independent variable

X; mole fraction of component ¢

o; alpha function of the partlal molar excess prop-
erty of component i, a; = w; F/(1- Xx; )

o;ny alpha function of the integral molar excess

property. a;; = wE/X4Xp

METALLURGICAL TRANSACTIONS

6, n-th coefficient of series expansion of the sta-
bility function

£, n-th coefficient of an expansion obtained by a
least squares analysis

o root mean square deviation of a least squares
regression analysis

¢, (x) n-th function of an orthogonal set of functions

¥ stability function

w any relative integral molar property

w; any relative partial molar property of compo-
nent ¢

wE any integral molar excess property

wf any partial molar excess property of compo-

nent ¢
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